Oncorhynchus Mykiss)

Total Page:16

File Type:pdf, Size:1020Kb

Oncorhynchus Mykiss) INVESTIGATING SURVIVAL MECHANISMS OF YERSINIA RUCKERI IN RAINBOW TROUT (ONCORHYNCHUS MYKISS) A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph by INDERVESH In partial fulfilment of requirements for the degree of Doctor of Philosophy May, 2008 © Indervesh, 2008 Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-42562-6 Our file Notre reference ISBN: 978-0-494-42562-6 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation. reproduced without the author's permission. In compliance with the Canadian Conformement a la loi canadienne Privacy Act some supporting sur la protection de la vie privee, forms may have been removed quelques formulaires secondaires from this thesis. ont ete enleves de cette these. While these forms may be included Bien que ces formulaires in the document page count, aient inclus dans la pagination, their removal does not represent il n'y aura aucun contenu manquant. any loss of content from the thesis. Canada ABSTRACT INVESTIGATING SURVIVAL MECHANISMS OF YERSINIA RUCKERI IN RAINBOW TROUT (ONCHORHYNCHUS MYKISS) Indervesh Advisor: University of Guelph, 2008 Dr. R.M.W. Stevenson Yersinia ruckeri causes hemorrhagic septicemia of salmonid fish. We hypothesized that the ability to persist inside infected fish was a key component of virulence strategy of Y. ruckeri and aimed to identify survival-essential genes of Y. ruckeri serotype 1 strain, RSI 154. After two rounds of screening of 1056 miniTn5Km2 signature-tagged mutants, 25 mutants that did not survive in kidney at 7 days post­ infection in immersion infected rainbow trout were selected for further study. Sequencing of interrupted genes in selected mutants identified genes homologous to znuA, which encodes a component of a zinc transporter in Escherichia coli, and uvrY, which encodes the response regulator of BarA-UvrY two-component system (TCS) in E. coli. The uvrY mutant was hypersensitive to EkC^-mediated killing and was less invasive to Epithelioma papulosum cyprini fish cells than wild type (WT) bacteria, but was not affected in serum sensitivity or growth under iron-limiting conditions. In a competitive infection with WT, the uvrY mutant had lower infection loads in rainbow trout kidney. When present in a low-copy plasmid, the znuACB locus of Y. ruckeri fully restored growth of a zinc-transport deficient kznuACB mutant of E. coli in Luria-Bertani (LB) medium supplemented with 2.0 mM ethylenediamine tetraacetic acid (EDTA), indicating that znuACB locus of Y. ruckeri is likely involved in zinc transport. Unlike AznuACB mutants of E. coli, AznuACB mutant of Y. ruckeri did not show poor growth in zinc-deficient M9 medium and LB medium supplemented with metal chelators, EDTA and tetrakis-(2-pyridylmethyl)-ethylenediamine, suggesting presence of additional zinc transporters in Y. ruckeri. The znuA mutant of Y. ruckeri was out-competed by WT in rainbow trout kidney. Survival of Y. ruckeri in rainbow trout was also reduced with mutations in gene homologs encoding an O-antigen polymerase (wzy), peptidoglycan deacetylase (pdaA), protease (ptrA), bundle-forming pili (rcpA), ATPase of DNA segregation (parA) and transposase of Tn7, bacteriophage tail fiber-like protein and genes of unknown functions. Characterization of survival-essential genes in fish helps identify new virulence genes and contributes to understanding survival strategies and pathogenic mechanisms of Y. ruckeri. ACKNOWLEDGMENTS Financial support for this study was provided by the Natural Sciences and Engineering Research Council of Canada and the Fish Culture section of Ontario Ministry of Natural Resources through grants to Dr. R.M.W. Stevenson. I sincerely thank my advisor Dr. R.M.W. Stevenson for her constant help, constructive criticism, and excellent mentorship throughout my thesis research. Besides learning principles of science from her, I learned so many things as a person that I will cherish throughout life. I would like to thank members of my advisory committee, Dr. J. Wood, Dr. J. Prescott and Dr. M. Ferguson for their guidance, constructive criticism and critical evaluation of my thesis. Thank you to members of my examination committee, Dr. J. Nash, Dr. P. Krell, Dr. J. Wood, Dr. J. Prescott, and R. Lo for reading my thesis and suggestions. Special thanks to Dr. L. Mutharia, Dr. Reggie Lo and Dr. Jerry King for helpful discussion on various research problems pertaining to this work. I would like to acknowledge help of my friend, Dr. A. Singh for statistical analyses. Many thanks go to S. Lord, V. Harper, M. Raymond, R. Quinn and R. Jones for their nice company and help with experiments. I enjoyed wonderful company and help of many friends throughout this study. No words can express my thankfulness to my parents, grandparents and wife for everything they have done and are doing for me. Their constant help and support made this difficult task possible. You people matter the most for me. i TABLE OF CONTENTS Page# TABLE OF CONTENTS i LIST OF TABLES v LIST OF FIGURES vi CHAPTER 1 INTRODUCTION 1 LITRATURE REVIEW 3 1.1. Yersinia ruckeri 3 1.2. Plasmids of Y. ruckeri 4 1.3. Serotypes of Y. ruckeri 6 1.4. Enteric redmouth disease 8 1.5. Stress and ERM disease 9 1.6. Pathogenic mechanisms of Y. ruckeri 10 1.6.1. Environmental survival of Y. ruckeri 10 1.6.2. Attachment and entry into fish 12 1.6.3. Factors involved in resistance to fish defenses 14 1.6.4. Toxins causing host damage 18 1.7. Regulation of virulence genes expression 21 1.8. Model of Y. ruckeri pathogenesis 23 1.9. Signature-tagged mutagenesis (STM) and identification 25 of virulence genes 1.9.1. Animal model for screening ST mutants 29 1.9.2. Genes identified in STM screens 32 1.10. Research objectives and approach 37 n CHAPTER 2 MATERIALS AND METHODS 38 2.1. Bacterial strains and growth conditions 38 2.2. Recombinant DNA techniques 41 2.3. Competent cell preparation 41 2.4. Polymerase chain reaction 44 2.5. Generation of signature-tagged (ST) mutants 44 2.6. Randomness of transposon insertion 49 2.7. Rainbow trout infection experiments 50 2.8. Screening of ST mutants in rainbow trout 52 2.9. Number of transposon insertions in the genome of mutants 53 2.10. Sequence characterization of mutants 53 2.11. Screening for auxotrophs 54 2.12. Identification of barA homolog of Y. ruckeri RSI 154 54 2.13. PCR amplification of barA and uvrY genes in Y. ruckeri strains 55 2.14. Growth of uvrY mutant in Luria-Bertani medium and 55 under iron-limiting conditions 2.15. Fish cell invasion by uvrY mutant 56 2.16. Serum sensitivity of uvrY mutant 57 2.17. Ultraviolet light (UV) sensitivity of uvrY mutant 57 2.18. H2O2 sensitivity of uvrY mutant 58 2.19. Sequence characterization of znuACB locus 58 2.20. PCR amplification and cloning of znuACB locus 59 2.21. Generation of AznuACB mutant 59 2.22. In vitro growth of AznuACB mutant 62 2.23. Transcomplementation of AznuACB mutant of E. coli 64 2.24. The znuAv.lacZ and znuCBv.lacZ transcriptional fusion analysis 64 2.25. Generation of isogenic mutants of Y. ruckeri 68 2.26. Statistical analyses 68 iii CHAPTER 3 GENERATION AND SCREENING OF SIGNATURE-TAGGED 69 MUTANTS RESULTS 69 3.1. Generation of ST mutants 69 3.2. Primary screening of ST mutants in rainbow trout 69 3.3. Secondary screening of ST mutants in rainbow trout 79 3.4. One-to-one competitive challenge of mutants with WT strain 81 3.5. Effect of miniTn5Km2 cassette on survival of mutants 85 3.6. Number of transposon insertions in ST mutants 85 DISCUSSION 85 CHAPTER 4 CHARACTERIZATION OF MUTANTS UNABLE TO 92 SURVIVE IN FISH RESULTS AND DISCUSSION 92 4.1. Screening for auxotrophy 92 4.2. Identification of mutated genes in ST mutants 92 4.3. Gene encoding bundle-forming pili (Bfp) 99 4.4. O-antigen polymerase 100 4.5. Polysaccharide deacetylase 101 4.6. PtrA protease 103 4.7. Genes involved in cellular transport 106 4.8. Insertion sequence (IS) /transposon proteins 106 4.9. Bacteriophage-like genes 109 4.10. ATPase for DNA segregation 111 CHAPTER 5 CHARACTERIZATION OF THE BarA-UvrY 113 TWO-COMPONENT SYSTEM RESULTS 114 5.1. In silico analysis of UvrY response regulator 114 5.2. Non-polarity of the uvrY mutation 119 IV 5.3. Growth of uvrY mutant in Luria-Bertani medium 123 5.4. H2O2 sensitivity of uvrY mutant 123 5.5. Serum sensitivity of uvrY mutant 126 5.6. Growth of uvrY mutant under iron-limiting conditions 126 5.7.
Recommended publications
  • Metabolic and Genetic Basis for Auxotrophies in Gram-Negative Species
    Metabolic and genetic basis for auxotrophies in Gram-negative species Yara Seifa,1 , Kumari Sonal Choudharya,1 , Ying Hefnera, Amitesh Ananda , Laurence Yanga,b , and Bernhard O. Palssona,c,2 aSystems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122; bDepartment of Chemical Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada; and cNovo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark Edited by Ralph R. Isberg, Tufts University School of Medicine, Boston, MA, and approved February 5, 2020 (received for review June 18, 2019) Auxotrophies constrain the interactions of bacteria with their exist in most free-living microorganisms, indicating that they rely environment, but are often difficult to identify. Here, we develop on cross-feeding (25). However, it has been demonstrated that an algorithm (AuxoFind) using genome-scale metabolic recon- amino acid auxotrophies are predicted incorrectly as a result struction to predict auxotrophies and apply it to a series of the insufficient number of known gene paralogs (26). Addi- of available genome sequences of over 1,300 Gram-negative tionally, these methods rely on the identification of pathway strains. We identify 54 auxotrophs, along with the corre- completeness, with a 50% cutoff used to determine auxotrophy sponding metabolic and genetic basis, using a pangenome (25). A mechanistic approach is expected to be more appropriate approach, and highlight auxotrophies conferring a fitness advan- and can be achieved using genome-scale models of metabolism tage in vivo. We show that the metabolic basis of auxotro- (GEMs). For example, requirements can arise by means of a sin- phy is species-dependent and varies with 1) pathway structure, gle deleterious mutation in a conditionally essential gene (CEG), 2) enzyme promiscuity, and 3) network redundancy.
    [Show full text]
  • Yersinia Ruckeri Sp. Nov., the Redmouth (RM) Bacterium
    0020-7713/78/0028-0037$02-00/0 INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1978, p. 37-44 Vol. 28, No. 1 Copyright 0 1978 International Association of Microbiological Societies Printed in U.S. A. Yersinia ruckeri sp. nov., the Redmouth (RM) Bacterium W. H. EWING,? A. J. ROSS,?t DON J. BRENNER,??? AND G. R. FANNING Division of Biochemistry, Walter Reed Army Institute of Research, Washington, D.C. 20012 Cultures of the redmouth (RM) bacterium, one of the etiological agents of redmouth disease in rainbow trout (Salmo gairdneri) and certain other fishes, were characterized by means of their biochemical reactions, by deoxyribonucleic acid (DNA) hybridization, and by determination of guanine-plus-cytosine(G+C) ratios in DNA. The DNA relatedness studies confirmed the fact that the RM bacteria are members of the family Enterobacteriaceae and that they comprise a single species that is not closely related to any other species of Enterobacteri- aceae. They are about 30% related to species of both Serratia and Yersinia. A comparison of the biochemical reactions of RM bacteria and serratiae indicated that there are many differences between these organisms and that biochemically the RM bacteria are most closely related to yersiniae. The G+C ratios of RM bacteria were approximated to be between 47.5 and 48.5% These values are similar to those of yersiniae but markedly different from those of serratiae. On the basis of their biochemical reactions and their G+C ratios, the RM bacteria are considered to be a new species of Yersinia, for which the name Yersinia ruckeri is proposed.
    [Show full text]
  • Mouse Anti-Bacteria Yersinia Ruckeri Monoclonal Antibody, Clone 8G6/G7 (DMAB6804) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Mouse anti-Bacteria Yersinia Ruckeri Monoclonal antibody, clone 8G6/G7 (DMAB6804) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Product Overview Mouse anti-bacteria yersinia ruckeri monoclonal antibody. Yersinia Ruckeri IgG fraction obtained by immunizing mice with five Chilean isolates of Yersinia ruckeri (whole bacterial cells). The IgG fraction was purified using Protein G-Sepharose. Antigen Description Y. ruckeri is a Gram-negative, rod-shaped bacterium that shows a variable motility due to the presence of flagella. These flagella are not always observed. It is the causative agent of enteric redmouth disease (ERM) which is characterized by a chronic or acute enterosepticemia with high morbidity and mortality rates in salmonids and non-salmonids species. Six serovars have been described according to whole-cell serological typing. Isotype IgG2b Source/Host Mouse Clone 8G6/G7 Conjugate Unconjugated Applications ELISA, WB, IF Stability Stable at least one year at -20oC. Avoid repeated freezing and thawing. Format Solution at 1.0 mg/ml in PBS. Size 100 μg Preservative None Storage Store at -20ºC. BACKGROUND Introduction Yersinia is a genus of bacteria in the family Enterobacteriaceae. Yersinia are Gram-negative rod shaped bacteria, a few micrometers long and fractions of a micrometer in diameter, and are facultative anaerobes. Some members of Yersinia are pathogenic in humans; in particular, Y. 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved pestis is the causative agent of the plague.
    [Show full text]
  • Unraveling the Biotechnological Potential of the Secretome of Burkholderia Cepacia Complex, with Focus on Its Antimicrobial Activity
    Unraveling the biotechnological potential of the secretome of Burkholderia cepacia complex, with focus on its antimicrobial activity Carina Andreia Ribeiro Galhofa Thesis to obtain the Master of Science Degree in Biotechnology Supervisors: Prof. Doctor Isabel Maria de Sá Correia Leite de Almeida; Doctor Patrick de Oliveira Freire Examination Committee Chairperson: Doctor Arsénio do Carmo Sales Mendes Fialho Supervisor: Prof. Doctor Isabel Maria de Sá Correia Leite de Almeida Members of the Committee: Doctor Inês Batista Guinote December 2017 Acknowledgements The wish to become a future microbiologist and to study the “little bugs” that were able to cause diseases in individuals way bigger than them has been present since I was a child. As such, I would like to acknowledge those that helped me from the beginning to the end of this work, making this possible. To Prof. Dr.Isabel Sá Correia, I would like to express my gratitude not only for advising, but also for accepting me in this project which I enjoyed to do so much. To Dr. Patrick Freire, my advisor within BioMimetx, not only for all the guidance and patience but, most of all, for the motivation and believing in my work and Dr. Carla Coutinho for the support, for bearing my inexperience and for all the tips given that prevented me from exploding the laboratory…and the centrifuge. To the funding of IBB (Institute for Bioengineering and Biosciences) and BioMimetx, that gave me all the resources and conditions that enabled the conduction of my work. To Amir Hassan, for staying up late at the lab waiting for me to finish my work and for the “Goooooodddd woooorkkkkk” motivational screams.
    [Show full text]
  • A Further Characterization of Yersinia Ruckeri (Enteric Redmouth Bacterium)
    ‹›•aŒ¤‹† Fish Pathology 14 (2) 71-78, 1979. 9 A further Characterization of Yersinia ruckeri (Enteric Redmouth Bacterium) P. J. O'LEARY, J. S. ROHOVEC and J. L. FRYER Department of Microbiology, Oregon State University, Corvallis, OR 97331 (Received May 22, 1979) Seventeen cultures of Enteric Redmouth Bacterium were examined biochemically at selected temperatures. Incubation temperature altered the motility of the bacterium. At 9•Ž non functional peritrichous flagella were produced, while at 18, 22, and 27•Ž the bacterium was motile. The cells were nonmotile at 37•Ž due to a lack of flagellar production. The percent guanine plus cytosine was determined to be 47.95•}0.45 (P=0.05). This work supports the proposal of Yersinia ruckeri as the genus and species designation of the Entric Redmouth Bacterium. hynchus tshawytscha) and coho (O. kisutch) Introduction salmon, and rainbow trout (Salmo gairdneri). In the early 1950's, Rucker isolated a gram Each isolate was stored on Brain Heart In- negative, oxidase negative, motile bacterium fusion (BHI: Difco) slants under sterile mineral from moribund rainbow trout (Salmo gaird oil. neri). The first publication concerning this Biochemical tests bacterium did not appear until 1966 (Ross et The methods used to study most of the al., 1966) in which the definitive taxonomic biochemical properties of this organism have position of the bacterium could not be defined, been described previously (EDWARDSand EWING although it was placed in the family Entero 1972; LENETTE et al., 1974). For carbohydrate bacteriaceae. Hence the name Enteric Red utilization tests, sugars were incorporated into mouth Bacterium (ERMB) arose.
    [Show full text]
  • Scientific Opinion
    SCIENTIFIC OPINION ADOPTED: 29 April 2021 doi: 10.2903/j.efsa.2021.6651 Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain EFSA Panel on Biological Hazards (BIOHAZ), Konstantinos Koutsoumanis, Ana Allende, Avelino Alvarez-Ord onez,~ Declan Bolton, Sara Bover-Cid, Marianne Chemaly, Robert Davies, Alessandra De Cesare, Lieve Herman, Friederike Hilbert, Roland Lindqvist, Maarten Nauta, Giuseppe Ru, Marion Simmons, Panagiotis Skandamis, Elisabetta Suffredini, Hector Arguello,€ Thomas Berendonk, Lina Maria Cavaco, William Gaze, Heike Schmitt, Ed Topp, Beatriz Guerra, Ernesto Liebana, Pietro Stella and Luisa Peixe Abstract The role of food-producing environments in the emergence and spread of antimicrobial resistance (AMR) in EU plant-based food production, terrestrial animals (poultry, cattle and pigs) and aquaculture was assessed. Among the various sources and transmission routes identified, fertilisers of faecal origin, irrigation and surface water for plant-based food and water for aquaculture were considered of major importance. For terrestrial animal production, potential sources consist of feed, humans, water, air/dust, soil, wildlife, rodents, arthropods and equipment. Among those, evidence was found for introduction with feed and humans, for the other sources, the importance could not be assessed. Several ARB of highest priority for public health, such as carbapenem or extended-spectrum cephalosporin and/or fluoroquinolone-resistant Enterobacterales (including Salmonella enterica), fluoroquinolone-resistant Campylobacter spp., methicillin-resistant Staphylococcus aureus and glycopeptide-resistant Enterococcus faecium and E. faecalis were identified. Among highest priority ARGs blaCTX-M, blaVIM, blaNDM, blaOXA-48- like, blaOXA-23, mcr, armA, vanA, cfr and optrA were reported. These highest priority bacteria and genes were identified in different sources, at primary and post-harvest level, particularly faeces/manure, soil and water.
    [Show full text]
  • PADLS User Guide
    PADLS User Guide Updated - 01/01/2017 [Type text] [Type text] Table of Contents Message from the Secretary .......................................................................................................................................................................... 3 Foreword ...................................................................................................................................................................................................... 4 Animal Health and Diagnostic Commission ..................................................................................................................................................... 5 PA Dept of Agriculture ................................................................................................................................................................................... 6 General information ...................................................................................................................................................................................... 8 Submission information ............................................................................................................................................................................... 13 Results and reports ...................................................................................................................................................................................... 20 Fees and Billing...........................................................................................................................................................................................
    [Show full text]
  • The Impact of Co-Infections on Fish: a Review
    Kotob et al. Vet Res (2016) 47:98 DOI 10.1186/s13567-016-0383-4 REVIEW Open Access The impact of co‑infections on fish: a review Mohamed H. Kotob1,2, Simon Menanteau‑Ledouble1, Gokhlesh Kumar1, Mahmoud Abdelzaher2 and Mansour El‑Matbouli1* Abstract Co-infections are very common in nature and occur when hosts are infected by two or more different pathogens either by simultaneous or secondary infections so that two or more infectious agents are active together in the same host. Co-infections have a fundamental effect and can alter the course and the severity of different fish diseases. How‑ ever, co-infection effect has still received limited scrutiny in aquatic animals like fish and available data on this subject is still scarce. The susceptibility of fish to different pathogens could be changed during mixed infections causing the appearance of sudden fish outbreaks. In this review, we focus on the synergistic and antagonistic interactions occur‑ ring during co-infections by homologous or heterologous pathogens. We present a concise summary about the pre‑ sent knowledge regarding co-infections in fish. More research is needed to better understand the immune response of fish during mixed infections as these could have an important impact on the development of new strategies for disease control programs and vaccination in fish. Table of contents 1 Introduction 1 Introduction The subject of co-infections of aquatic animals by differ- 2 Co‑infections with homologous pathogens ent pathogens has received little attention even though such infections are common in nature. Co-infections are 2.1 Bacterial co‑infections defined by infection of the host by two or more geneti- 2.2 Viral co‑infections cally different pathogens where each pathogen has patho- 2.3 Parasitic co‑infections genic effects and causes harm to the host in coincidence 3 Co‑infections with heterologous pathogens with other pathogens [1, 2].
    [Show full text]
  • Early Pathogenesis of Yersinia Ruckeri Infections in Rainbow Trout (Oncorhynchus Mykiss , Walbaum)
    FACULTEIT DIERGENEESKUNDE Early pathogenesis of Yersinia ruckeri infections in rainbow trout (Oncorhynchus mykiss , Walbaum) Els Tobback Thesis submitted in fulfilment of the requirements for the degree of Doctor in Veterinary Sciences (PhD), Faculty of Veterinary Medicine, Ghent University, 2009 Promotors: Prof. Dr. K. Chiers Prof. Dr. K. Hermans Prof. Dr. A. Decostere Faculty of Veterinary Medicine Department of Pathology, Bacteriology and Avian Diseases Table of contents LIST OF ABBREVIATIONS 7 GENERAL INTRODUCTION 9 Introduction 11 1. The micro-organism 11 1.1. Taxonomic position 11 1.2. Characteristics of Y. ruckeri 12 1.3. Typing of Y. ruckeri strains 12 2. The disease 14 2.1. Pathogenesis 14 2.1.1. Transmission 14 2.1.2. Portal of entry 15 2.1.3. Virulence factors 19 2.1.3.1. Extracellular toxins: Yrp1 and YhlA 19 2.1.3.2. Adhesins and invasions 20 2.1.3.3. Ruckerbactin 22 2.1.3.4. Plasmids 23 2.1.3.5. Type three secretion system 24 2.1.3.6. Type four secretion system 24 2.1.4. Importance of environmental factors 25 2.2. Clinical signs 25 2.3. Immune response 27 2.4. Diagnosis 30 2.5. Control and prevention 31 2.5.1. Antimicrobial compounds 31 2.5.2. Vaccines 31 2.5.3. Immunostimulants 32 2.5.4. Probiotics 33 References 34 3 SCIENTIFIC AIMS 47 EXPERIMENTAL STUDIES 51 1. Route of entry and tissue distribution of Yersinia ruckeri in experimentally infected rainbow trout ( Oncorhynchus mykiss , Walbaum) 53 2. Interactions of virulent and avirulent Yersinia ruckeri strains with isolated gill arches and intestinal explants of rainbow trout ( Oncorhynchus mykiss , Walbaum) 75 3.
    [Show full text]
  • Flagellar Regulation Mediated by the Rcs Pathway Is Required for Virulence in the fish Pathogen Yersinia Ruckeri T
    Fish and Shellfish Immunology 91 (2019) 306–314 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Flagellar regulation mediated by the Rcs pathway is required for virulence in the fish pathogen Yersinia ruckeri T ∗ Anna K.S. Jozwicka, Scott E. LaPatrab, Joerg Grafc, Timothy J. Welchd, a Center for Natural Science, Goucher College, Baltimore, MD, USA b Clear Springs Foods, Inc., Research Division, Buhl, ID, USA c Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA dNational Center for Cool and Cold Water Aquaculture, Agricultural Research Service/U.S. Department of Agriculture, Kearneysville, West Virginia, USA ARTICLE INFO ABSTRACT Keywords: The flagellum is a complex surface structure necessary for a number of activities including motility, chemotaxis, Yersinia ruckeri biofilm formation and host attachment. Flagellin, the primary structural protein making up the flagellum, is an Flagella regulation abundant and potent activator of innate and adaptive immunity and therefore expression of flagellin during Rcs pathway infection could be deleterious to the infection process due to flagellin-mediated host recognition. Here, we use Rainbow trout quantitative RT-PCR to demonstrate that expression of the flagellin locus fliC is repressed during the course of Oncorhynchus mykiss (walbaum) infection and subsequently up-regulated upon host mortality in a motile strain of Yersinia ruckeri. The kinetics of Aquaculture fl Virulence iC repression during the infection process is relatively slow as full repression occurs 7-days after the initiation of infection and after approximately 3-logs of bacterial growth in vivo. These results suggests that Y.
    [Show full text]
  • Genome Wide Identification of Bacterial Genes Required for Plant
    bioRxiv preprint doi: https://doi.org/10.1101/126896; this version posted April 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Full Title: 2 Genome wide identification of bacterial genes required for plant 3 infection by Tn-seq 4 5 Kevin Royet1, Nicolas Parisot2, Agnès Rodrigue1, Erwan Gueguen1* and Guy Condemine1* 6 * Both authors share co-last authorship 7 8 Corresponding author: [email protected] 9 10 Short title: Dickeya dadantii virulence genes in chicory 11 12 1 Univ Lyon, Université Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie 13 Adaptation et Pathogénie, F-69622 Villeurbanne, France. 14 2 Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France 15 16 ABSTRACT 17 Soft rot enterobacteria (Dickeya and Pectobacterium) are major pathogens that cause diseases 18 on plants of agricultural importance such as potato and ornamentals. Long term studies to 19 identify virulence factors of these bacteria focused mostly on plant cell wall degrading 20 enzymes secreted by the type II secretion system and the regulation of their expression. To 21 identify new virulence factors we performed a Tn-seq genome-wide screen of a transposon 22 mutant library during chicory infection followed by high-throughput sequencing. This 23 allowed the detection of mutants with reduced but also increased fitness in the plant. 24 Virulence factors identified differed from those previously known since diffusible ones bioRxiv preprint doi: https://doi.org/10.1101/126896; this version posted April 30, 2018.
    [Show full text]
  • Yersinia Ruckeri Isolates Recovered from Diseased Atlantic Salmon
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Enlighten crossmark Yersinia ruckeri Isolates Recovered from Diseased Atlantic Salmon (Salmo salar) in Scotland Are More Diverse than Those from Rainbow Trout (Oncorhynchus mykiss) and Represent Distinct Subpopulations Michael J. Ormsby,a Thomas Caws,a Richard Burchmore,b Tim Wallis,c David W. Verner-Jeffreys,d Robert L. Daviesa Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdoma; Glasgow Downloaded from Polyomics, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdomb; Ridgeway Biologicals Ltd., Compton, Berkshire, United Kingdomc; Cefas Weymouth Laboratory, The Nothe, Weymouth, Dorset, United Kingdomd ABSTRACT Yersinia ruckeri is the etiological agent of enteric redmouth (ERM) disease of farmed salmonids. Enteric redmouth disease is traditionally associated with rainbow trout (Oncorhynchus mykiss, Walbaum), but its incidence in Atlantic salmon (Salmo salar) is increasing. Yersinia ruckeri isolates recovered from diseased Atlantic salmon have been poorly characterized, and very little is known about the relationship of the isolates associated with these two species. Phenotypic approaches were used to char- http://aem.asm.org/ acterize 109 Y. ruckeri isolates recovered over a 14-year period from infected Atlantic salmon in Scotland; 26 isolates from in- fected rainbow trout were also characterized. Biotyping, serotyping, and comparison of outer membrane protein profiles identi- fied 19 Y. ruckeri clones associated with Atlantic salmon but only five associated with rainbow trout; none of the Atlantic salmon clones occurred in rainbow trout and vice versa.
    [Show full text]