Protein Kinase N1 Promotes Proliferation and Invasion of Liver Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Protein Kinase N1 Promotes Proliferation and Invasion of Liver Cancer EXPERIMENTAL AND THERAPEUTIC MEDICINE 21: 651, 2021 Protein kinase N1 promotes proliferation and invasion of liver cancer XIA WANG1, YANSONG GE2, MINGQI SHI2, HANHAN DAI2, WEI LIU2 and PEIYUAN WANG2 1Department of Pathology, Binzhou Medical University, Yantai, Shandong 264003; 2Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China Received March 11, 2020; Accepted March 22, 2021 DOI: 10.3892/etm.2021.10083 Abstract. Protein kinase (PK) N1, also called PKC‑related accounts for ~55%, with 110,000 deaths every year (1‑3). protein 1, participates in the proliferation, invasion and Currently, there are a variety of treatment options for liver metastasis of various malignant tumors. However, the role of cancer at different stages, including routine options (such PKN1 in liver cancer remains to be elucidated. The present as hepatectomy and transcatheter arterial chemoemboliza‑ study investigated the expression of PKN1 using immuno‑ tion), molecular targeted therapy (VEGF/VEGF monoclonal histochemistry in surgical specimens from 36 patients and antibody, EGF receptor inhibitors) and immunotherapy analyzed the correlation with VEGF, microvascular density (programmed death‑1/programmed death‑ligand 1), which can (MVD), cell proliferation index (Ki67) and clinicopatholog‑ prolong the survival time and prognosis of some patients (4‑6). ical parameters. PKN1 was highly expressed in hepatocellular However, due to the selection of indications, sensitivity to carcinoma (HCC) and was positively correlated with histo‑ treatment and other reasons, most patients have not received logical grading of HCC, Ki67 expression and MVD. PKN1 effective treatment. Therefore, it is important to explore the expression in moderately and poorly differentiated HCC was mechanism of proliferation, invasion and metastasis of liver significantly higher compared with highly differentiated HCC. cancer. In recent years, research on PKN1 in tumors has Expression of PKN1 was positively correlated with Ki67 attracted much attention and PKN1 has been reported as a and MVD, and Ki67 expression was positively correlated promising therapeutic target for prostate cancer (7,8). However, with MVD. The effects of PKN1 on proliferation, invasion the role of PKN1 in liver cancer remains to be elucidated. and apoptosis of liver cancer cells were detected in vitro. PKN1, also known as PKC‑related protein 1, is a Cell viability, migration and invasion were reduced and the serine/threonine protein kinase belonging to the PKC apoptosis rate was significantly improved when PKN1 expres‑ superfamily (9). It is reported that PKN1 may participate sion was silenced in liver cancer cells. Thus, PKN1 serves an in cytoskeletal reconstruction, cell adhesion, apoptosis, important role in the development and progression of liver tumor cells and other life processes (10‑12). Overexpression cancer. Inhibition of PKN1 activity may provide a promising of PKN1 serves an important role in the development of therapeutic target for liver cancer. neurodegenerative diseases, prostate cancer, ovarian cancer, endometrial cancer and other tumors (9,13‑16). PKN1 contains Introduction a unique regulatory domain in the amino terminus, which presents a loop of serine/threonine protein kinase that serves Liver cancer is one of the commonest malignant tumors world‑ a key role in activation of PKN1. PKN1 can act upstream of wide. In 2018, the estimated global incidence was ~841,000, mitogen‑activated PKs, C‑Jun N‑terminal kinase and p38, with ~782,000 related deaths, while the incidence in China or downstream of EGF signaling and TGF‑β (12,16,17). Activated PKN1 regulates the invasion of prostate cancer cells and phosphorylation of p38, which further regulates a signaling cascade of invasion‑related genes PXN, NEDD9 and NT5E/CD73 (8). Yang et al (18) demonstrated that PKN1, as Correspondence to: Professor Xia Wang, Department of Pathology, Binzhou Medical University, 346 Guanhai Road, Yantai, an important member of PI3K/AKT/mTOR signaling pathway, Shandong 264003, P.R. China affects the differentiation of prostate adenocarcinoma cells E‑mail: [email protected] and is closely associated with Gleason score. Inhibition of PKN1 blocks transcriptional activation in androgen‑dependent Professor Peiyuan Wang, Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Road, Yantai, cancer cells (7). In endometrial cancer cells, PKN1 modulates Shandong 264100, P.R. China TGF‑β and EGF‑dependent regulation of cell proliferation, E‑mails: [email protected] migration and invasiveness and therefore is a component of the network signaling downstream of TGF‑β and EGF (15). Key words: protein kinase N1, liver cancer, microvascular density, James et al (19) demonstrated that inhibition of PKN1 expres‑ proliferation sion stimulates apoptosis in malignant melanoma cells by regulating the WNT/β‑catenin pathway. 2 WANG et al: PROTEIN KINASE N1 IN LIVER CANCER In the present study, the expression of PKN1 in surgical The necrotic area and severe inflammatory area were specimens was investigated by immunohistochemistry and the avoided in the selection of liver cancer specimens and correlation with VEGF, MVD, Ki67 index and clinicopatho‑ significant areas of expression were selected for analysis. logical parameters was analyzed. At the same time, the effects The immunoreactivity of PKN1 and VEGF was evaluated of PKN1 on the proliferation, invasion and apoptosis of liver according to integral optical density (IOD) by Image‑Pro cancer cells were detected in vitro and the role of PKN1 in Plus 6.0 (Media Cybernetics, Inc.). Ki67 proliferation index liver cancer progression was further explored. was calculated with Image Pro Plus 6.0 as follows: Ki67 (%)=positive tumor cells/all tumor cells x100%. MVD was Materials and methods marked by CD34 (a classic endothelium marker). The mean number of stained microvessels was recorded from five undu‑ Patients and specimens. A total of 36 patients with hepa‑ plicated high‑power fields (magnification, x400) per specimen. tocellular carcinoma (HCC) who were treated at Binzhou Medical University Hospital were enrolled. Patients who had Cells culture and reagents. The human liver cancer cell lines received preoperative radiotherapy or chemotherapy or had (HepG2 and Hep3B) were purchased from the cell banks tumors of other sites were excluded. Complete clinical and of the Chinese Academy of Science and were cultured in pathological data were recorded and hepatectomy specimens Dulbecco's modified Eagle medium (DMEM) with high were collected by the Pathology Department of the Hospital. glucose (HyClone; Cytiva) and 10% fetal bovine serum (FBS; There were 27 males and 9 female patients, with a mean age of Gibco; Thermo Fisher Scientific, Inc.) at 37˚C in a humidified 58.8±9.6 years (range 36‑77 years). The study was approved by atmosphere with 5% CO2. Then, three siRNAs against PKN1 the Ethics Committee of Binzhou Medical University (Yantai, were designed (19) and synthesized by Shanghai GenePharma China; approval no. 2018‑012) as required by the Declaration Co., Ltd.: siPKN1‑1: 5'‑CCU CGA AGA UUU CAA GUU C‑3'; of Helsinki. Prior to sample collection, written consent to use siPKN1‑2: 5'‑GAA CAU GAU CCA GAC CUA CAG CAA U‑3'; their tissues was obtained from all patients. siPKN1‑3: 5'‑ACA GUA AGA CCA AGA UUG A‑3'; and Negative The present study is a retrospective study and all 36 patients control (NC) group 5'‑UUC UCC GAA CGU GUC ACG UTT‑3'. had single lesions, including 13 in the left hepatic lobe and 23 HepG2 and Hep3B cells were seeded in six‑well plates and in the right hepatic lobe, and adjacent normal tissue was also transfected with 100 pmol siRNA using Lipofectamine® 2000 obtained from the patients. The longest diameter ranged from (Thermo Fisher Scientific, Inc.). PKN1 expression was detected 2 cm to 13 cm, with an average of 6.6±3.4 cm (<6.6 cm in using western blotting to confirm transfection efficiency. Of 23 cases and ≥6.6 cm in 13 cases). Histological grading of HCC the three siRNAs, the two more efficient silencing sequences was divided into well‑differentiated (grade I; n=7), moderately were selected for the following assays. differentiated (grade II and III; n=21) and poorly differenti‑ ated (grade Ⅳ; n=8) according to Edmondson‑Steiner grading Reverse transcription‑quantitative (RT‑q) PCR. Total RNA (24 h system (20,21). after transfection) of liver cancer cells was isolated with RNAiso plus reagent (Takara Biotechnology Co., Ltd.) and cDNA was Immunohistochemistry. All samples of pathological speci‑ generated with a PrimeScript RT Reagent kit with gDNA Eraser mens were fixed in 4% paraformaldehyde for 24 h at room (Takara Biotechnology Co., Ltd.). Quantitative gene expression temperature, followed by gradient dehydration and paraffin was performed for PKN1 and GAPDH (internal control) by embedding; 4‑µm sections were prepared for immunohisto‑ LightCycler 480 SYBR‑Green I Master Mix Reagent kit and chemical staining. The sections were incubated with 0.01 mol/l the LightCycler 480 real‑time System (Roche Diagnostics). citrate buffer (pH 6.0) in a microwave oven at 98˚C, three Nucleotide sequences of specific primer for genes were as times for 5 min, for antigen retrieval. Endogenous peroxidase follows: PKN1 forward, 5'‑AAA GCA GAA GCC GAG AAC AC‑3' was blocked by treatment with 3% H2O2 for 20 min at room and reverse, 5'‑ACA CAG CCA ACT CCA GTT CC‑3'; GAPDH temperature. After pretreatment with normal goat serum forward, 5'‑GAA GGT GAA GGT CGG AGT C‑3' and reverse, (OriGene Technologies, Inc.) for 30 min at room temperature 5 ' ‑ G A A GAT GGT GAT GGG ATT TC‑3'. PCR amplification was to block nonspecific binding, the sections were incubated performed under the following conditions: Initial denaturation with rabbit anti‑PKN1 polyclonal antibody (cat. no. bs‑7478R; for 10 min at 96˚C, followed by 40 cycles at 95˚C for 15 sec BIOSS; 1:500), rabbit anti‑VEGF polyclonal antibody (cat. and 60˚C for 60 sec.
Recommended publications
  • Supplementary Table 1
    SI Table S1. Broad protein kinase selectivity for PF-2771. Kinase, PF-2771 % Inhibition at 10 μM Service Kinase, PF-2771 % Inhibition at 1 μM Service rat RPS6KA1 (RSK1) 39 Dundee AURKA (AURA) 24 Invitrogen IKBKB (IKKb) 26 Dundee CDK2 /CyclinA 21 Invitrogen mouse LCK 25 Dundee rabbit MAP2K1 (MEK1) 19 Dundee AKT1 (AKT) 21 Dundee IKBKB (IKKb) 16 Dundee CAMK1 (CaMK1a) 19 Dundee PKN2 (PRK2) 14 Dundee RPS6KA5 (MSK1) 18 Dundee MAPKAPK5 14 Dundee PRKD1 (PKD1) 13 Dundee PIM3 12 Dundee MKNK2 (MNK2) 12 Dundee PRKD1 (PKD1) 12 Dundee MARK3 10 Dundee NTRK1 (TRKA) 12 Invitrogen SRPK1 9 Dundee MAPK12 (p38g) 11 Dundee MAPKAPK5 9 Dundee MAPK8 (JNK1a) 11 Dundee MAPK13 (p38d) 8 Dundee rat PRKAA2 (AMPKa2) 11 Dundee AURKB (AURB) 5 Dundee NEK2 11 Invitrogen CSK 5 Dundee CHEK2 (CHK2) 11 Invitrogen EEF2K (EEF-2 kinase) 4 Dundee MAPK9 (JNK2) 9 Dundee PRKCA (PKCa) 4 Dundee rat RPS6KA1 (RSK1) 8 Dundee rat PRKAA2 (AMPKa2) 4 Dundee DYRK2 7 Dundee rat CSNK1D (CKId) 3 Dundee AKT1 (AKT) 7 Dundee LYN 3 BioPrint PIM2 7 Invitrogen CSNK2A1 (CKIIa) 3 Dundee MAPK15 (ERK7) 6 Dundee CAMKK2 (CAMKKB) 1 Dundee mouse LCK 5 Dundee PIM3 1 Dundee PDPK1 (PDK1) (directed 5 Invitrogen rat DYRK1A (MNB) 1 Dundee RPS6KB1 (p70S6K) 5 Dundee PBK 0 Dundee CSNK2A1 (CKIIa) 4 Dundee PIM1 -1 Dundee CAMKK2 (CAMKKB) 4 Dundee DYRK2 -2 Dundee SRC 4 Invitrogen MAPK12 (p38g) -2 Dundee MYLK2 (MLCK_sk) 3 Invitrogen NEK6 -3 Dundee MKNK2 (MNK2) 2 Dundee RPS6KB1 (p70S6K) -3 Dundee SRPK1 2 Dundee AKT2 -3 Dundee MKNK1 (MNK1) 2 Dundee RPS6KA3 (RSK2) -3 Dundee CHEK1 (CHK1) 2 Invitrogen rabbit MAP2K1 (MEK1) -4 Dundee
    [Show full text]
  • Pancancer Progression Human Vjune2017
    Gene Symbol Accession Alias/Prev Symbol Official Full Name AAMP NM_001087.3 - angio-associated, migratory cell protein ABI3BP NM_015429.3 NESHBP|TARSH ABI family, member 3 (NESH) binding protein ACHE NM_000665.3 ACEE|ARACHE|N-ACHE|YT acetylcholinesterase ACTG2 NM_001615.3 ACT|ACTA3|ACTE|ACTL3|ACTSG actin, gamma 2, smooth muscle, enteric ACVR1 NM_001105.2 ACTRI|ACVR1A|ACVRLK2|ALK2|FOP|SKR1|TSRI activin A receptor, type I ACVR1C NM_145259.2 ACVRLK7|ALK7 activin A receptor, type IC ACVRL1 NM_000020.1 ACVRLK1|ALK-1|ALK1|HHT|HHT2|ORW2|SKR3|TSR-I activin A receptor type II-like 1 ADAM15 NM_207195.1 MDC15 ADAM metallopeptidase domain 15 ADAM17 NM_003183.4 ADAM18|CD156B|CSVP|NISBD|TACE ADAM metallopeptidase domain 17 ADAM28 NM_014265.4 ADAM 28|ADAM23|MDC-L|MDC-Lm|MDC-Ls|MDCL|eMDC II|eMDCII ADAM metallopeptidase domain 28 ADAM8 NM_001109.4 CD156|MS2 ADAM metallopeptidase domain 8 ADAM9 NM_001005845.1 CORD9|MCMP|MDC9|Mltng ADAM metallopeptidase domain 9 ADAMTS1 NM_006988.3 C3-C5|METH1 ADAM metallopeptidase with thrombospondin type 1 motif, 1 ADAMTS12 NM_030955.2 PRO4389 ADAM metallopeptidase with thrombospondin type 1 motif, 12 ADAMTS8 NM_007037.4 ADAM-TS8|METH2 ADAM metallopeptidase with thrombospondin type 1 motif, 8 ADAP1 NM_006869.2 CENTA1|GCS1L|p42IP4 ArfGAP with dual PH domains 1 ADD1 NM_001119.4 ADDA adducin 1 (alpha) ADM2 NM_001253845.1 AM2|dJ579N16.4 adrenomedullin 2 ADRA2B NM_000682.4 ADRA2L1|ADRA2RL1|ADRARL1|ALPHA2BAR|alpha-2BAR adrenoceptor alpha 2B AEBP1 NM_001129.3 ACLP AE binding protein 1 AGGF1 NM_018046.3 GPATC7|GPATCH7|HSU84971|HUS84971|VG5Q
    [Show full text]
  • Supplementary Table 1. in Vitro Side Effect Profiling Study for LDN/OSU-0212320. Neurotransmitter Related Steroids
    Supplementary Table 1. In vitro side effect profiling study for LDN/OSU-0212320. Percent Inhibition Receptor 10 µM Neurotransmitter Related Adenosine, Non-selective 7.29% Adrenergic, Alpha 1, Non-selective 24.98% Adrenergic, Alpha 2, Non-selective 27.18% Adrenergic, Beta, Non-selective -20.94% Dopamine Transporter 8.69% Dopamine, D1 (h) 8.48% Dopamine, D2s (h) 4.06% GABA A, Agonist Site -16.15% GABA A, BDZ, alpha 1 site 12.73% GABA-B 13.60% Glutamate, AMPA Site (Ionotropic) 12.06% Glutamate, Kainate Site (Ionotropic) -1.03% Glutamate, NMDA Agonist Site (Ionotropic) 0.12% Glutamate, NMDA, Glycine (Stry-insens Site) 9.84% (Ionotropic) Glycine, Strychnine-sensitive 0.99% Histamine, H1 -5.54% Histamine, H2 16.54% Histamine, H3 4.80% Melatonin, Non-selective -5.54% Muscarinic, M1 (hr) -1.88% Muscarinic, M2 (h) 0.82% Muscarinic, Non-selective, Central 29.04% Muscarinic, Non-selective, Peripheral 0.29% Nicotinic, Neuronal (-BnTx insensitive) 7.85% Norepinephrine Transporter 2.87% Opioid, Non-selective -0.09% Opioid, Orphanin, ORL1 (h) 11.55% Serotonin Transporter -3.02% Serotonin, Non-selective 26.33% Sigma, Non-Selective 10.19% Steroids Estrogen 11.16% 1 Percent Inhibition Receptor 10 µM Testosterone (cytosolic) (h) 12.50% Ion Channels Calcium Channel, Type L (Dihydropyridine Site) 43.18% Calcium Channel, Type N 4.15% Potassium Channel, ATP-Sensitive -4.05% Potassium Channel, Ca2+ Act., VI 17.80% Potassium Channel, I(Kr) (hERG) (h) -6.44% Sodium, Site 2 -0.39% Second Messengers Nitric Oxide, NOS (Neuronal-Binding) -17.09% Prostaglandins Leukotriene,
    [Show full text]
  • Rho小g蛋白相关激酶的结构与功能 闫慧娟 勿呢尔 莫日根 范丽菲* (内蒙古大学生命科学学院, 呼和浩特 010021)
    网络出版时间:2014-07-02 10:44 网络出版地址:http://www.cnki.net/kcms/doi/10.11844/cjcb.2014.07.0007.html 中国细胞生物学学报 Chinese Journal of Cell Biology 2014, 36(7): DOI: 10.11844/cjcb.2014.07.0007 Rho小G蛋白相关激酶的结构与功能 闫慧娟 勿呢尔 莫日根 范丽菲* (内蒙古大学生命科学学院, 呼和浩特 010021) 摘要 Rho小G蛋白家族是Ras超家族成员之一, 人类Rho小G蛋白包括20个成员, 研究最 清楚的有RhoA、Rac1和Cdc42。Rho小G蛋白参与了诸如细胞骨架调节、细胞移动、细胞增 殖、细胞周期调控等重要的生物学过程。在这些生物学过程的调节中, Rho小G蛋白的下游效应 蛋白质如蛋白激酶(p21-activated kinase, PAK)、 ROCK(Rho-kinase)、PKN(protein kinase novel)和 MRCK(myotonin-related Cdc42-binding kinase)发挥了不可或缺的作用。迄今研究发现, PAK可调节 细胞骨架动力学和细胞运动, 另外, PAK通过MAPK(mitogen-activated protein kinases)参与转录、细 胞凋亡和幸存通路及细胞周期进程; ROCK与肌动蛋白应力纤维介导黏附复合物的形成及与细胞 周期进程的调节有关; 哺乳动物的PKN与RhoA/B/C相互作用介导细胞骨架调节; MRCK与细胞骨 架重排、细胞核转动、微管组织中心再定位、细胞移动和癌细胞侵袭等有关。该文简要介绍Rho 小G蛋白下游激酶PAK、ROCK、PKN和MRCK的结构及其在细胞骨架调节中的功能, 重点总结它 们在真核细胞周期调控中的作用, 尤其是在癌细胞周期进程中所发挥的作用, 为寻找癌症治疗的新 靶点提供理论依据。 关键词 Rho小G蛋白; 激酶; 细胞周期调控; 癌症 The Structure and Functions of Small Rho GTPase Associated Kinases _ x±s Yan Huijuan,Wunier, Morigen, Fan Lifei* (School of Life Sciences, Inner Mongolia University, Hohhot 010021, China) Abstract Small Rho GTPase protein family is a member of the Ras superfamily. The human Rho family of small GTPase is comprised of 20 members, of which RhoA, Rac1 and Cdc42 are best-studied. Small Rho GTPases are involved in many important biological processes, such as cell cytoskeleton regulation, cell migration, cell proliferation and cell cycle regulation. The downstream effectors (PAK, ROCK, PKN and MRCK) of small Rho GTPases play indispensible roles during the regulation of these biological
    [Show full text]
  • Supplementary Table 2
    Supplementary Table 2. Differentially Expressed Genes following Sham treatment relative to Untreated Controls Fold Change Accession Name Symbol 3 h 12 h NM_013121 CD28 antigen Cd28 12.82 BG665360 FMS-like tyrosine kinase 1 Flt1 9.63 NM_012701 Adrenergic receptor, beta 1 Adrb1 8.24 0.46 U20796 Nuclear receptor subfamily 1, group D, member 2 Nr1d2 7.22 NM_017116 Calpain 2 Capn2 6.41 BE097282 Guanine nucleotide binding protein, alpha 12 Gna12 6.21 NM_053328 Basic helix-loop-helix domain containing, class B2 Bhlhb2 5.79 NM_053831 Guanylate cyclase 2f Gucy2f 5.71 AW251703 Tumor necrosis factor receptor superfamily, member 12a Tnfrsf12a 5.57 NM_021691 Twist homolog 2 (Drosophila) Twist2 5.42 NM_133550 Fc receptor, IgE, low affinity II, alpha polypeptide Fcer2a 4.93 NM_031120 Signal sequence receptor, gamma Ssr3 4.84 NM_053544 Secreted frizzled-related protein 4 Sfrp4 4.73 NM_053910 Pleckstrin homology, Sec7 and coiled/coil domains 1 Pscd1 4.69 BE113233 Suppressor of cytokine signaling 2 Socs2 4.68 NM_053949 Potassium voltage-gated channel, subfamily H (eag- Kcnh2 4.60 related), member 2 NM_017305 Glutamate cysteine ligase, modifier subunit Gclm 4.59 NM_017309 Protein phospatase 3, regulatory subunit B, alpha Ppp3r1 4.54 isoform,type 1 NM_012765 5-hydroxytryptamine (serotonin) receptor 2C Htr2c 4.46 NM_017218 V-erb-b2 erythroblastic leukemia viral oncogene homolog Erbb3 4.42 3 (avian) AW918369 Zinc finger protein 191 Zfp191 4.38 NM_031034 Guanine nucleotide binding protein, alpha 12 Gna12 4.38 NM_017020 Interleukin 6 receptor Il6r 4.37 AJ002942
    [Show full text]
  • Androgen Receptor
    RALTITREXED Dihydrofolate reductase BORTEZOMIB IsocitrateCannabinoid dehydrogenase CB1EPIRUBICIN receptor HYDROCHLORIDE [NADP] cytoplasmic VINCRISTINE SULFATE Hypoxia-inducible factor 1 alpha DOXORUBICINAtaxin-2 HYDROCHLORIDENIFENAZONEFOLIC ACID PYRIMETHAMINECellular tumor antigen p53 Muscleblind-likeThyroidVINBURNINEVINBLASTINETRIFLURIDINE protein stimulating 1 DEQUALINIUM SULFATEhormone receptor CHLORIDE Menin/Histone-lysine N-methyltransferasePHENELZINE MLLLANATOSIDE SULFATE C MELATONINDAUNORUBICINBETAMETHASONEGlucagon-like HYDROCHLORIDEEndonuclease peptide 4 1 receptor NICLOSAMIDEDIGITOXINIRINOTECAN HYDROCHLORIDE HYDRATE BISACODYL METHOTREXATEPaired boxAZITHROMYCIN protein Pax-8 ATPase family AAA domain-containing proteinLIPOIC 5 ACID, ALPHA Nuclear receptorCLADRIBINEDIGOXIN ROR-gammaTRIAMTERENE CARMUSTINEEndoplasmic reticulum-associatedFLUOROURACIL amyloid beta-peptide-binding protein OXYPHENBUTAZONEORLISTAT IDARUBICIN HYDROCHLORIDE 6-phospho-1-fructokinaseHeat shockSIMVASTATIN protein beta-1 TOPOTECAN HYDROCHLORIDE AZACITIDINEBloom syndromeNITAZOXANIDE protein Huntingtin Human immunodeficiency virus typeTIPRANAVIR 1 protease VitaminCOLCHICINE D receptorVITAMIN E FLOXURIDINE TAR DNA-binding protein 43 BROMOCRIPTINE MESYLATEPACLITAXEL CARFILZOMIBAnthrax lethalFlap factorendonucleasePrelamin-A/C 1 CYTARABINE Vasopressin V2 receptor AMITRIPTYLINEMicrotubule-associated HYDROCHLORIDERetinoidTRIMETHOPRIM proteinMothers X receptor tau against alpha decapentaplegic homolog 3 Histone-lysine N-methyltransferase-PODOFILOX H3 lysine-9OXYQUINOLINE
    [Show full text]
  • Activation of Diverse Signalling Pathways by Oncogenic PIK3CA Mutations
    ARTICLE Received 14 Feb 2014 | Accepted 12 Aug 2014 | Published 23 Sep 2014 DOI: 10.1038/ncomms5961 Activation of diverse signalling pathways by oncogenic PIK3CA mutations Xinyan Wu1, Santosh Renuse2,3, Nandini A. Sahasrabuddhe2,4, Muhammad Saddiq Zahari1, Raghothama Chaerkady1, Min-Sik Kim1, Raja S. Nirujogi2, Morassa Mohseni1, Praveen Kumar2,4, Rajesh Raju2, Jun Zhong1, Jian Yang5, Johnathan Neiswinger6, Jun-Seop Jeong6, Robert Newman6, Maureen A. Powers7, Babu Lal Somani2, Edward Gabrielson8, Saraswati Sukumar9, Vered Stearns9, Jiang Qian10, Heng Zhu6, Bert Vogelstein5, Ben Ho Park9 & Akhilesh Pandey1,8,9 The PIK3CA gene is frequently mutated in human cancers. Here we carry out a SILAC-based quantitative phosphoproteomic analysis using isogenic knockin cell lines containing ‘driver’ oncogenic mutations of PIK3CA to dissect the signalling mechanisms responsible for oncogenic phenotypes induced by mutant PIK3CA. From 8,075 unique phosphopeptides identified, we observe that aberrant activation of PI3K pathway leads to increased phosphorylation of a surprisingly wide variety of kinases and downstream signalling networks. Here, by integrating phosphoproteomic data with human protein microarray-based AKT1 kinase assays, we discover and validate six novel AKT1 substrates, including cortactin. Through mutagenesis studies, we demonstrate that phosphorylation of cortactin by AKT1 is important for mutant PI3K-enhanced cell migration and invasion. Our study describes a quantitative and global approach for identifying mutation-specific signalling events and for discovering novel signalling molecules as readouts of pathway activation or potential therapeutic targets. 1 McKusick-Nathans Institute of Genetic Medicine and Department of Biological Chemistry, Johns Hopkins University School of Medicine, 733 North Broadway, BRB 527, Baltimore, Maryland 21205, USA.
    [Show full text]
  • The Kinesin Spindle Protein Inhibitor Filanesib Enhances the Activity of Pomalidomide and Dexamethasone in Multiple Myeloma
    Plasma Cell Disorders SUPPLEMENTARY APPENDIX The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma Susana Hernández-García, 1 Laura San-Segundo, 1 Lorena González-Méndez, 1 Luis A. Corchete, 1 Irena Misiewicz- Krzeminska, 1,2 Montserrat Martín-Sánchez, 1 Ana-Alicia López-Iglesias, 1 Esperanza Macarena Algarín, 1 Pedro Mogollón, 1 Andrea Díaz-Tejedor, 1 Teresa Paíno, 1 Brian Tunquist, 3 María-Victoria Mateos, 1 Norma C Gutiérrez, 1 Elena Díaz- Rodriguez, 1 Mercedes Garayoa 1* and Enrique M Ocio 1* 1Centro Investigación del Cáncer-IBMCC (CSIC-USAL) and Hospital Universitario-IBSAL, Salamanca, Spain; 2National Medicines Insti - tute, Warsaw, Poland and 3Array BioPharma, Boulder, Colorado, USA *MG and EMO contributed equally to this work ©2017 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2017.168666 Received: March 13, 2017. Accepted: August 29, 2017. Pre-published: August 31, 2017. Correspondence: [email protected] MATERIAL AND METHODS Reagents and drugs. Filanesib (F) was provided by Array BioPharma Inc. (Boulder, CO, USA). Thalidomide (T), lenalidomide (L) and pomalidomide (P) were purchased from Selleckchem (Houston, TX, USA), dexamethasone (D) from Sigma-Aldrich (St Louis, MO, USA) and bortezomib from LC Laboratories (Woburn, MA, USA). Generic chemicals were acquired from Sigma Chemical Co., Roche Biochemicals (Mannheim, Germany), Merck & Co., Inc. (Darmstadt, Germany). MM cell lines, patient samples and cultures. Origin, authentication and in vitro growth conditions of human MM cell lines have already been characterized (17, 18). The study of drug activity in the presence of IL-6, IGF-1 or in co-culture with primary bone marrow mesenchymal stromal cells (BMSCs) or the human mesenchymal stromal cell line (hMSC–TERT) was performed as described previously (19, 20).
    [Show full text]
  • PRODUCTS and SERVICES Target List
    PRODUCTS AND SERVICES Target list Kinase Products P.1-11 Kinase Products Biochemical Assays P.12 "QuickScout Screening Assist™ Kits" Kinase Protein Assay Kits P.13 "QuickScout Custom Profiling & Panel Profiling Series" Targets P.14 "QuickScout Custom Profiling Series" Preincubation Targets Cell-Based Assays P.15 NanoBRET™ TE Intracellular Kinase Cell-Based Assay Service Targets P.16 Tyrosine Kinase Ba/F3 Cell-Based Assay Service Targets P.17 Kinase HEK293 Cell-Based Assay Service ~ClariCELL™ ~ Targets P.18 Detection of Protein-Protein Interactions ~ProbeX™~ Stable Cell Lines Crystallization Services P.19 FastLane™ Structures ~Premium~ P.20-21 FastLane™ Structures ~Standard~ Kinase Products For details of products, please see "PRODUCTS AND SERVICES" on page 1~3. Tyrosine Kinases Note: Please contact us for availability or further information. Information may be changed without notice. Expression Protein Kinase Tag Carna Product Name Catalog No. Construct Sequence Accession Number Tag Location System HIS ABL(ABL1) 08-001 Full-length 2-1130 NP_005148.2 N-terminal His Insect (sf21) ABL(ABL1) BTN BTN-ABL(ABL1) 08-401-20N Full-length 2-1130 NP_005148.2 N-terminal DYKDDDDK Insect (sf21) ABL(ABL1) [E255K] HIS ABL(ABL1)[E255K] 08-094 Full-length 2-1130 NP_005148.2 N-terminal His Insect (sf21) HIS ABL(ABL1)[T315I] 08-093 Full-length 2-1130 NP_005148.2 N-terminal His Insect (sf21) ABL(ABL1) [T315I] BTN BTN-ABL(ABL1)[T315I] 08-493-20N Full-length 2-1130 NP_005148.2 N-terminal DYKDDDDK Insect (sf21) ACK(TNK2) GST ACK(TNK2) 08-196 Catalytic domain
    [Show full text]
  • Protein Kinase
    Flexi® ORF Clone www.promega.co.jp/flexiclone/ Protein Kinase 355個 (2012/4/1 現在) 遺伝子シンボル 説明 FXC_PID 価格 FHC_PID 価格 AAK1 AP2 associated kinase 1 FXC00722 ¥40,000 FHC00722 ¥50,000 AATK apoptosis-associated tyrosine kinase FXC04004 ¥40,000 FHC04004M ¥60,000 ABL1 c-abl oncogene 1, receptor tyrosine kinase FXC01406 ¥40,000 FHC01406 ¥50,000 ACTR2 ARP2 actin-related protein 2 homolog (yeast) FXC02146 ¥40,000 FHC02146 ¥50,000 Activin receptor type-1 Precursor (EC 2.7.11.30)(Activin receptor type I)(ACTR-I)(Serine/threonine-protein kinase ACVR1 FXC03971 ¥40,000 FHC03971 ¥50,000 receptor R1)(SKR1)(Activin receptor-like kinase 2)(ALK- 2)(TGF-B superfamily receptor type I)(TSR-I) ACVR1B activin A receptor, type IB FXC01408 ¥40,000 FHC01408 ¥50,000 ACVR1C activin A receptor, type IC FXC09109M ¥50,000 FHC09109 ¥50,000 ACVRL1 activin A receptor type II-like 1, transcript variant 1 FXC28135M ¥50,000 FHC28135 ¥50,000 ADRBK1 adrenergic, beta, receptor kinase 1 FXC09648M ¥50,000 FHC09648 ¥50,000 ADRBK2 adrenergic, beta, receptor kinase 2 FXC27231M ¥50,000 FHC27231 ¥50,000 AKT1 v-akt murine thymoma viral oncogene homolog 1 FXC02215 ¥40,000 FHC02215 ¥50,000 AKT2 v-akt murine thymoma viral oncogene homolog 2 FXC26633 ¥40,000 FHC26633 ¥50,000 v-akt murine thymoma viral oncogene homolog 3 (protein AKT3 FXC02812 ¥40,000 FHC02812 ¥50,000 kinase B, gamma) ALK anaplastic lymphoma receptor tyrosine kinase FXC00337 ¥40,000 FHC00337 ¥50,000 A-Raf proto-oncogene serine/threonine-protein kinase (EC ARAF FXC08066 ¥40,000 FHC08066 ¥50,000 2.7.11.1)(A-raf-1)(Proto-oncogene
    [Show full text]
  • Supporting Information Copyright Wiley-VCH Verlag Gmbh & Co
    Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2013 Structure–Activity Relationship Study Reveals ML240 and ML241 as Potent and Selective Inhibitors of p97 ATPase Tsui-Fen Chou,*[a, c] Kelin Li,[b] Kevin J. Frankowski,[b] Frank J. Schoenen,[b] and Raymond J. Deshaies*[a] cmdc_201200520_sm_miscellaneous_information.pdf cmdc_201200520_sm_supporting_information.xls Contents Figure S1: ODD-Luc degradation western blot assays for select compounds ...................... S-3 Figure S2: Results from the NCI 60 cell line tumor growth screen for ML240 .................. S-4 Figure S3: Results from the NCI 60 cell line tumor growth screen for ML241 .................. S-5 Table S1: Commercial analogues of N-benzyl-2-(2-fluorophenyl)quinazolin-4-amine ........ S-6 Table S2: Analogues of N2, N4-disubstitued quinazoline-2,4-diamine .................................. S-7 Table S3: Analogues of N2, N4-diphenylquinazoline-2,4-diamine ....................................... S-9 Table S4: Analogues of N4-benzyl-N2-phenylquinazoline-2,4-diamine ................................ S-10 Table S5: Analogues of N4-benzyl-N2-(3-chlorophenyl)quinazoline-2,4-diamine ................ S-11 Table S6: Analogues of N2,N4-dibenzylquinazoline-2,4-diamine (DBeQ) ........................... S-12 Table S7: Analogues of N2,N4-dibenzylquinazoline-2,4-diamine (DBeQ) ............................ S-13 Table S8: N2 Constrained DBeQ analogues ........................................................................... S-14 Table S9: Alternatives
    [Show full text]
  • Anti-PKN1 Antibody (ARG42775)
    Product datasheet [email protected] ARG42775 Package: 100 μl anti-PKN1 antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes PKN1 Tested Reactivity Hu, Ms, Rat Tested Application WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name PKN1 Antigen Species Human Immunogen Synthetic peptide of Human PKN1. Conjugation Un-conjugated Alternate Names Protein-kinase C-related kinase 1; DBK; Protein kinase C-like PKN; PKN-ALPHA; EC 2.7.11.13; Protease- activated kinase 1; Protein kinase PKN-alpha; PRK1; Protein kinase C-like 1; Serine-threonine protein kinase N; PRKCL1; PAK-1; PKN; PAK1; Serine/threonine-protein kinase N1 Application Instructions Application table Application Dilution WB 1:1000 - 1:5000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Positive Control C6 Calculated Mw 104 kDa Observed Size ~ 110 kDa Properties Form Liquid Purification Affinity purified. Buffer 50 nM Tris-Glycine (pH 7.4), 0.15 M NaCl, 0.01% Sodium azide, 40% Glycerol and 0.05% BSA. Preservative 0.01% Sodium azide Stabilizer 40% Glycerol and 0.05% BSA Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. www.arigobio.com 1/2 Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol PKN1 Gene Full Name protein kinase N1 Background The protein encoded by this gene belongs to the protein kinase C superfamily.
    [Show full text]