Computer Vision Profiling of Neurite Outgrowth Dynamics Reveals Spatiotemporal Modularity of Rho Gtpase Signaling

Total Page:16

File Type:pdf, Size:1020Kb

Computer Vision Profiling of Neurite Outgrowth Dynamics Reveals Spatiotemporal Modularity of Rho Gtpase Signaling Published January 4, 2016 JCB: ArticleTools Computer vision profiling of neurite outgrowth dynamics reveals spatiotemporal modularity of Rho GTPase signaling Ludovico Fusco,1* Riwal Lefort,2* Kevin Smith,3* Fethallah Benmansour,3 German Gonzalez,3 Caterina Barillari,4 Bernd Rinn,4 Francois Fleuret,2 Pascal Fua,3 and Olivier Pertz1 1Department of Biomedicine, University of Basel, 4058 Basel, Switzerland 2Institut Dalla Molle d'Intelligence Artificielle Perceptive (IDI AP Research Institute), 1920 Martigny, Switzerland 3Computer Vision Laboratory, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland 4Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule, 4058 Basel, Switzerland Rho guanosine triphosphatases (GTPases) control the cytoskeletal dynamics that power neurite outgrowth. This process consists of dynamic neurite initiation, elongation, retraction, and branching cycles that are likely to be regulated by Downloaded from specific spatiotemporal signaling networks, which cannot be resolved with static, steady-state assays. We present Neu- riteTracker, a computer-vision approach to automatically segment and track neuronal morphodynamics in time-lapse datasets. Feature extraction then quantifies dynamic neurite outgrowth phenotypes. We identify a set of stereotypic neurite outgrowth morphodynamic behaviors in a cultured neuronal cell system. Systematic RNA interference perturba- tion of a Rho GTPase interactome consisting of 219 proteins reveals a limited set of morphodynamic phenotypes. As proof of concept, we show that loss of function of two distinct RhoA-specific GTPase-activating proteins (GAPs) leads to jcb.rupress.org opposite neurite outgrowth phenotypes. Imaging of RhoA activation dynamics indicates that both GAPs regulate differ- ent spatiotemporal Rho GTPase pools, with distinct functions. Our results provide a starting point to dissect spatiotempo- ral Rho GTPase signaling networks that regulate neurite outgrowth. on January 6, 2016 Introduction Neurite outgrowth is a prerequisite step to produce the axons (Nadarajah and Parnavelas, 2002). Specific spatiotemporal and dendrites that wire the adult brain. Neuronal cell migra- signaling networks control the cytoskeletal, trafficking, and tion is crucial for brain morphogenesis. In cell culture, neurite adhesion dynamics required for each MP to occur. Because outgrowth is highly dynamic and involves a series of dynamic neurite outgrowth and cell migration use overlapping cellular morphogenetic processes (MPs) such as neurite initiation, machineries, it is conceivable that some molecular components elongation, branching, growth cone motility, and collapse (da might regulate both processes. These MPs fluctuate on length Silva and Dotti, 2002). Cultured neuronal cells are also highly and time scales of tens of microns and minutes to hours, which THE JOURNAL OF CELL BIOLOGY motile, which might reflect the process of neuronal migration have been missed in steady-state neurite outgrowth measure- ments, most often at a late differentiation stage. Identification of MP-specific signaling networks thus requires the quantifica- *L. Fusco, R. Lefort, and K. Smith contributed equally to this paper. tion their morphodynamics. Correspondence to Olivier Pertz: [email protected] Rho GTPases are key regulators of the cytoskeletal dy- R. Lefort’s present address is Lab-STI CC (UMR CNRS 6285), ENS TA Bretagne (Universite Europeenne de Bretagne), 29806 Brest Cedex 9, France. namics that regulate neuronal cell morphogenesis (da Silva and K. Smith’s present address is SciLifeLab/KTH Royal Institute of Technology Dotti, 2002). Their activity is tightly controlled in time and School of Computer Science and Communication, 114 28 Stockholm, Sweden. space by guanine nucleotide-exchange factors (GEFs; Rossman F. Benmansour’s present address is F. Hoffmann-La Roche AG, 4070 Basel, et al., 2005) and GTPase-activating proteins (GAPs; Moon and Switzerland. Zheng, 2003) that activate and deactivate GTPases, respectively. G. Gonzalez’s present address is Dept. of Radiology, Brigham and Women’s This regulation, as well as coupling of Rho GTPases to specific Hospital, Boston, MA 02115. downstream effectors, dictates their cytoskeletal output at any O. Pertz’s present address is Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland. given subcellular localization (Pertz, 2010). Current models Abbreviations used in this paper: CV, computer vision; FRET, Förster resonance energy transfer; GAP, GTPase-activating protein; GEF, guanine nucleotide-ex- © 2016 Fusco et al. This article is distributed under the terms of an Attribution–Noncommercial– change factor; HDS, hierarchical data structure; HS, high stringency; KD, knock- Share Alike–No Mirror Sites license for the first six months after the publication date (see down; LS, low stringency; MDS, morphodynamic signature; MLCK, myosin light http ://www .rupress .org /terms). After six months it is available under a Creative Commons chain kinase; MP, morphogenetic process; MRCK, myotonin-related dystrophyn License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at kinase myosin light chain kinase; pMLC, myosin light chain phosphorylation. http ://creativecommons .org /licenses /by -nc -sa /3 .0 /). Supplemental Material can be found at: http://jcb.rupress.org/content/suppl/2015/12/31/jcb.201506018.DC1.html The Rockefeller University Press $30.00 J. Cell Biol. Vol. 212 No. 1 91–111 www.jcb.org/cgi/doi/10.1083/jcb.201506018 JCB 91 Published January 4, 2016 state that Rac1 and Cdc42 regulate neurite outgrowth, whereas exhibiting a specific range in fluorescence intensities and cell RhoA controls neurite collapse (da Silva and Dotti, 2002). areas (Fig. S1, h–j). We then time-lapsed neurite outgrowth dy- However, multiple GEFs, GAPs, and effectors are ubiquitously namics in 10 fields of view per well across a 24-well plate with expressed by cells and outnumber their cognate Rho GTPases 12-min time resolution for a total of 19.6 h. (Moon and Zheng, 2003; Rossman et al., 2005). This raises the question of the significance of this signaling complexity. NeuriteTracker pipeline to quantify We present NeuriteTracker, a computer vision (CV) plat- neuronal dynamics form to track neuronal morphodynamics from high-content To analyze the time-lapse datasets, we engineered Neur- time-lapse imaging datasets. Automatic extraction of a large set iteTracker, an automated CV pipeline to segment and track of morphological and morphodynamic features, coupled with soma and neurite morphodynamics described in Materials and adequate statistical analysis, can then quantify the dynamics of methods (Fig. 1, b and c; and Video 2). First, mCherry-NLS– neuronal morphogenesis. Our pipeline identifies distinct, ste- labeled nuclei and their associated somata were identified reotyped morphodynamic phases during neuronal cell morpho- using maximally stable extremal regions and a fast marching genesis and quantifies a set of morphodynamic phenotypes in a region growing step (Fig. 1 c, steps 1 and 2). Second, a graph- siRNA screen targeting a candidate Rho GTPase interactome. association tracking method was applied over the time-lapse This provides insight into the spatiotemporal Rho GTPase sig- data to provide a unique label for each tracked cell over time naling networks regulating distinct MPs. As proof of concept for (Fig. 1 c, steps 3 and 4). Neurites were extracted for each cell our screen, we show that two RhoA-specific GAPs regulate two by applying a calibrated Hessian-based filter, computing a geo- distinct spatiotemporal RhoA signaling networks controlling desic distance combining intensity and geometric distance, different cytoskeletal outputs. Our data provide an initial re- and applying a threshold (Fig. 1 c, steps 5–7). Candidate ter- Downloaded from source to study the complex spatiotemporal Rho GTPase sig- minals were identified, and neurite filaments were detected by naling networks that regulate neuronal cell morphogenesis. backtracing and reconstruction with a minimal spanning tree (Fig. 1 c, step 8). Again applying the graph association to the neurites yielded automatic segmentation and tracking of indi- Results vidual cell nuclei, soma, and neurites (Fig. 2 a and Video 2). Our pipeline provided robust results across a wide variety of fluorescence intensities that result from transient transfection High-content live-cell imaging pipeline jcb.rupress.org To study neuronal dynamics, we used neuronal-like mouse and was evaluated against human annotated ground-truth data- N1E-115 neuroblastoma cells. To visualize cell morphology, sets (Fig. S2 and Videos 3 and 4). we used a bicistronic vector that expresses Lifeact-GFP, a fu- To describe the segmented cells, we defined a series of pa- sion of GFP with the F-actin binding peptide Lifeact (Riedl rameters that describe nucleus, soma, and neurite morphology, et al., 2008), and a nuclear localization NLS-mCherry fusion, the neurite being modeled as a tree arborescence (Figs. 2 b and which labels the nucleus for cell detection (Fig. 1 a). This con- S3; also see Materials and methods, Definition of nuclei and on January 6, 2016 struct can be expressed at a high level without affecting neurite soma parameters and Definition of neurite parameters). These outgrowth (Fig. S1, a and b) and provides homogeneous high data were then organized in a hierarchical data structure (HDS) contrast on neurites and somata for imaging with air objectives
Recommended publications
  • GSK3 Is a Negative Regulator of the Thermogenic Program in Brown Adipocytes
    GSK3 is a negative regulator of the thermogenic program in brown adipocytes Markussen, Lasse K.; Winther, Sally; Wicksteed, Barton; Hansen, Jacob B. Published in: Scientific Reports DOI: 10.1038/s41598-018-21795-y Publication date: 2018 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Markussen, L. K., Winther, S., Wicksteed, B., & Hansen, J. B. (2018). GSK3 is a negative regulator of the thermogenic program in brown adipocytes. Scientific Reports, 8, 1-12. [3469]. https://doi.org/10.1038/s41598- 018-21795-y Download date: 01. okt.. 2021 www.nature.com/scientificreports OPEN GSK3 is a negative regulator of the thermogenic program in brown adipocytes Received: 16 January 2017 Lasse K. Markussen1, Sally Winther1, Barton Wicksteed2 & Jacob B. Hansen 1 Accepted: 9 February 2018 Brown adipose tissue is a promising therapeutic target in metabolic disorders due to its ability to Published: xx xx xxxx dissipate energy and improve systemic insulin sensitivity and glucose homeostasis. β-Adrenergic stimulation of brown adipocytes leads to an increase in oxygen consumption and induction of a thermogenic gene program that includes uncoupling protein 1 (Ucp1) and fbroblast growth factor 21 (Fgf21). In kinase inhibitor screens, we have identifed glycogen synthase kinase 3 (GSK3) as a negative regulator of basal and β-adrenergically stimulated Fgf21 expression in cultured brown adipocytes. In addition, inhibition of GSK3 also caused increased Ucp1 expression and oxygen consumption. β-Adrenergic stimulation triggered an inhibitory phosphorylation of GSK3 in a protein kinase A (PKA)- dependent manner. Mechanistically, inhibition of GSK3 activated the mitogen activated protein kinase (MAPK) kinase 3/6-p38 MAPK-activating transcription factor 2 signaling module.
    [Show full text]
  • MAP2K3 (Human) Recombinant Protein (Q01)
    MAP2K3 (Human) Recombinant phosphorylates and thus activates MAPK14/p38-MAPK. Protein (Q01) This kinase can be activated by insulin, and is necessary for the expression of glucose transporter. Expression of Catalog Number: H00005606-Q01 RAS oncogene is found to result in the accumulation of the active form of this kinase, which thus leads to the Regulation Status: For research use only (RUO) constitutive activation of MAPK14, and confers oncogenic transformation of primary cells. The inhibition Product Description: Human MAP2K3 partial ORF ( of this kinase is involved in the pathogenesis of Yersina AAH32478, 1 a.a. - 100 a.a.) recombinant protein with pseudotuberculosis. Multiple alternatively spliced GST-tag at N-terminal. transcript variants that encode distinct isoforms have been reported for this gene. [provided by RefSeq] Sequence: MESPASSQPASMPQSKGKSKRKKDLRISCMSKPPAP NPTPPRNLDSRTFITIGDRNFEVEADDLVTISELGRGAY GVVEKVRHAQSGTIMAVKRIRATVN Host: Wheat Germ (in vitro) Theoretical MW (kDa): 36.63 Applications: AP, Array, ELISA, WB-Re (See our web site product page for detailed applications information) Protocols: See our web site at http://www.abnova.com/support/protocols.asp or product page for detailed protocols Preparation Method: in vitro wheat germ expression system Purification: Glutathione Sepharose 4 Fast Flow Storage Buffer: 50 mM Tris-HCI, 10 mM reduced Glutathione, pH=8.0 in the elution buffer. Storage Instruction: Store at -80°C. Aliquot to avoid repeated freezing and thawing. Entrez GeneID: 5606 Gene Symbol: MAP2K3 Gene Alias: MAPKK3, MEK3, MKK3, PRKMK3 Gene Summary: The protein encoded by this gene is a dual specificity protein kinase that belongs to the MAP kinase kinase family. This kinase is activated by mitogenic and environmental stress, and participates in the MAP kinase-mediated signaling cascade.
    [Show full text]
  • Identifying Novel Actionable Targets in Colon Cancer
    biomedicines Review Identifying Novel Actionable Targets in Colon Cancer Maria Grazia Cerrito and Emanuela Grassilli * Department of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; [email protected] * Correspondence: [email protected] Abstract: Colorectal cancer is the fourth cause of death from cancer worldwide, mainly due to the high incidence of drug-resistance toward classic chemotherapeutic and newly targeted drugs. In the last decade or so, the development of novel high-throughput approaches, both genome-wide and chemical, allowed the identification of novel actionable targets and the development of the relative specific inhibitors to be used either to re-sensitize drug-resistant tumors (in combination with chemotherapy) or to be synthetic lethal for tumors with specific oncogenic mutations. Finally, high- throughput screening using FDA-approved libraries of “known” drugs uncovered new therapeutic applications of drugs (used alone or in combination) that have been in the clinic for decades for treating non-cancerous diseases (re-positioning or re-purposing approach). Thus, several novel actionable targets have been identified and some of them are already being tested in clinical trials, indicating that high-throughput approaches, especially those involving drug re-positioning, may lead in a near future to significant improvement of the therapy for colon cancer patients, especially in the context of a personalized approach, i.e., in defined subgroups of patients whose tumors carry certain mutations. Keywords: colon cancer; drug resistance; target therapy; high-throughput screen; si/sh-RNA screen; CRISPR/Cas9 knockout screen; drug re-purposing; drug re-positioning Citation: Cerrito, M.G.; Grassilli, E.
    [Show full text]
  • PDF Download
    MEK-7 Polyclonal Antibody Catalog No : YT2725 Reactivity : Human,Mouse,Rat Applications : WB,ELISA Gene Name : MAP2K7 Protein Name : Dual specificity mitogen-activated protein kinase kinase 7 Human Gene Id : 5609 Human Swiss Prot O14733 No : Mouse Gene Id : 26400 Mouse Swiss Prot Q8CE90 No : Rat Gene Id : 363855 Rat Swiss Prot No : Q4KSH7 Immunogen : The antiserum was produced against synthesized peptide derived from human MAP2K7. AA range:241-290 Specificity : MEK-7 Polyclonal Antibody detects endogenous levels of MEK-7 protein. Formulation : Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide. Source : Rabbit Dilution : Western Blot: 1/500 - 1/2000. ELISA: 1/20000. Not yet tested in other applications. Purification : The antibody was affinity-purified from rabbit antiserum by affinity- chromatography using epitope-specific immunogen. Concentration : 1 mg/ml 1 / 3 Storage Stability : -20°C/1 year Molecularweight : 47485 Observed Band : 47 Cell Pathway : MAPK_ERK_Growth,MAPK_G_Protein,ErbB_HER,Toll_Like,T_Cell_Receptor, Fc epsilon RI,Neurotrophin,GnRH, Background : mitogen-activated protein kinase kinase 7(MAP2K7) Homo sapiens The protein encoded by this gene is a dual specificity protein kinase that belongs to the MAP kinase kinase family. This kinase specifically activates MAPK8/JNK1 and MAPK9/JNK2, and this kinase itself is phosphorylated and activated by MAP kinase kinase kinases including MAP3K1/MEKK1, MAP3K2/MEKK2,MAP3K3/MEKK5, and MAP4K2/GCK. This kinase is involved in the signal transduction mediating the cell
    [Show full text]
  • Application of a MYC Degradation
    SCIENCE SIGNALING | RESEARCH ARTICLE CANCER Copyright © 2019 The Authors, some rights reserved; Application of a MYC degradation screen identifies exclusive licensee American Association sensitivity to CDK9 inhibitors in KRAS-mutant for the Advancement of Science. No claim pancreatic cancer to original U.S. Devon R. Blake1, Angelina V. Vaseva2, Richard G. Hodge2, McKenzie P. Kline3, Thomas S. K. Gilbert1,4, Government Works Vikas Tyagi5, Daowei Huang5, Gabrielle C. Whiten5, Jacob E. Larson5, Xiaodong Wang2,5, Kenneth H. Pearce5, Laura E. Herring1,4, Lee M. Graves1,2,4, Stephen V. Frye2,5, Michael J. Emanuele1,2, Adrienne D. Cox1,2,6, Channing J. Der1,2* Stabilization of the MYC oncoprotein by KRAS signaling critically promotes the growth of pancreatic ductal adeno- carcinoma (PDAC). Thus, understanding how MYC protein stability is regulated may lead to effective therapies. Here, we used a previously developed, flow cytometry–based assay that screened a library of >800 protein kinase inhibitors and identified compounds that promoted either the stability or degradation of MYC in a KRAS-mutant PDAC cell line. We validated compounds that stabilized or destabilized MYC and then focused on one compound, Downloaded from UNC10112785, that induced the substantial loss of MYC protein in both two-dimensional (2D) and 3D cell cultures. We determined that this compound is a potent CDK9 inhibitor with a previously uncharacterized scaffold, caused MYC loss through both transcriptional and posttranslational mechanisms, and suppresses PDAC anchorage- dependent and anchorage-independent growth. We discovered that CDK9 enhanced MYC protein stability 62 through a previously unknown, KRAS-independent mechanism involving direct phosphorylation of MYC at Ser .
    [Show full text]
  • MAP3K4/CBP-Regulated H2B Acetylation Controls Epithelial-Mesenchymal Transition in Trophoblast Stem Cells
    Cell Stem Cell Article MAP3K4/CBP-Regulated H2B Acetylation Controls Epithelial-Mesenchymal Transition in Trophoblast Stem Cells Amy N. Abell,1,2,7,* Nicole Vincent Jordan,1,2,7 Weichun Huang,6 Aleix Prat,2,4 Alicia A. Midland,5 Nancy L. Johnson,1,2 Deborah A. Granger,1,2 Piotr A. Mieczkowski,2,3 Charles M. Perou,2,4 Shawn M. Gomez,5 Leping Li,6 and Gary L. Johnson1,2,* 1Department of Pharmacology 2Lineberger Comprehensive Cancer Center 3Department of Genetics and Carolina Center for Genome Sciences 4Department of Genetics 5Department of Biomedical Engineering and Curriculum in Bioinformatics and Computational Biology University of North Carolina School of Medicine, Chapel Hill, NC 27599-7365, USA 6Biostatistics Branch, National Institute of Environmental Health Sciences RTP, NC 27709, USA 7These authors contributed equally to this work *Correspondence: [email protected] (A.N.A.), [email protected] (G.L.J.) DOI 10.1016/j.stem.2011.03.008 SUMMARY berg, 2008). During development, EMT is responsible for proper formation of the body plan and for differentiation of many tissues Epithelial stem cells self-renew while maintaining and organs. Examples of EMT in mammalian development multipotency, but the dependence of stem cell prop- include implantation, gastrulation, and neural crest formation erties on maintenance of the epithelial phenotype is (Thiery et al., 2009). Initiation of placenta formation regulated unclear. We previously showed that trophoblast by trophoectoderm differentiation is the first, and yet most poorly stem (TS) cells lacking the protein kinase MAP3K4 defined, developmental EMT. maintain properties of both stemness and epithelial- The commitment of stem cells to specialized cell types requires extensive reprogramming of gene expression, involving, in part, mesenchymal transition (EMT).
    [Show full text]
  • Supplementary Information Method CLEAR-CLIP. Mouse Keratinocytes
    Supplementary Information Method CLEAR-CLIP. Mouse keratinocytes of the designated genotype were maintained in E-low calcium medium. Inducible cells were treated with 3 ug/ml final concentration doxycycline for 24 hours before performing CLEAR-CLIP. One 15cm dish of confluent cells was used per sample. Cells were washed once with cold PBS. 10mls of cold PBS was then added and cells were irradiated with 300mJ/cm2 UVC (254nM wavelength). Cells were then scraped from the plates in cold PBS and pelleted by centrifugation at 1,000g for 2 minutes. Pellets were frozen at -80oC until needed. Cells were then lysed on ice with occasional vortexing in 1ml of lysis buffer (50mM Tris-HCl pH 7.4, 100mM NaCl, 1mM MgCl2, 0.1 mM CaCl2, 1% NP-40, 0.5% Sodium Deoxycholate, 0.1% SDS) containing 1X protease inhibitors (Roche #88665) and RNaseOUT (Invitrogen #10777019) at 4ul/ml final concentration. Next, TurboDNase (Invitrogen #AM2238, 10U), RNase A (0.13ug) and RNase T1 (0.13U) were added and samples were incubated at 37oC for 5 minutes with occasional mixing. Samples were immediately placed on ice and then centrifuged at 16,160g at 4oC for 20 minutes to clear lysate. 25ul of Protein-G Dynabeads (Invitrogen #10004D) were used per IP. Dynabeads were pre-washed with lysis buffer and pre- incubated with 3ul of Wako Anti-Mouse-Ago2 (2D4) antibody. The dynabead/antibody mixture was added to the lysate and rocked for 2 hours at 4oC. All steps after the IP were done on bead until samples were loaded into the polyacrylamide gel.
    [Show full text]
  • Supplementary Table 1
    SI Table S1. Broad protein kinase selectivity for PF-2771. Kinase, PF-2771 % Inhibition at 10 μM Service Kinase, PF-2771 % Inhibition at 1 μM Service rat RPS6KA1 (RSK1) 39 Dundee AURKA (AURA) 24 Invitrogen IKBKB (IKKb) 26 Dundee CDK2 /CyclinA 21 Invitrogen mouse LCK 25 Dundee rabbit MAP2K1 (MEK1) 19 Dundee AKT1 (AKT) 21 Dundee IKBKB (IKKb) 16 Dundee CAMK1 (CaMK1a) 19 Dundee PKN2 (PRK2) 14 Dundee RPS6KA5 (MSK1) 18 Dundee MAPKAPK5 14 Dundee PRKD1 (PKD1) 13 Dundee PIM3 12 Dundee MKNK2 (MNK2) 12 Dundee PRKD1 (PKD1) 12 Dundee MARK3 10 Dundee NTRK1 (TRKA) 12 Invitrogen SRPK1 9 Dundee MAPK12 (p38g) 11 Dundee MAPKAPK5 9 Dundee MAPK8 (JNK1a) 11 Dundee MAPK13 (p38d) 8 Dundee rat PRKAA2 (AMPKa2) 11 Dundee AURKB (AURB) 5 Dundee NEK2 11 Invitrogen CSK 5 Dundee CHEK2 (CHK2) 11 Invitrogen EEF2K (EEF-2 kinase) 4 Dundee MAPK9 (JNK2) 9 Dundee PRKCA (PKCa) 4 Dundee rat RPS6KA1 (RSK1) 8 Dundee rat PRKAA2 (AMPKa2) 4 Dundee DYRK2 7 Dundee rat CSNK1D (CKId) 3 Dundee AKT1 (AKT) 7 Dundee LYN 3 BioPrint PIM2 7 Invitrogen CSNK2A1 (CKIIa) 3 Dundee MAPK15 (ERK7) 6 Dundee CAMKK2 (CAMKKB) 1 Dundee mouse LCK 5 Dundee PIM3 1 Dundee PDPK1 (PDK1) (directed 5 Invitrogen rat DYRK1A (MNB) 1 Dundee RPS6KB1 (p70S6K) 5 Dundee PBK 0 Dundee CSNK2A1 (CKIIa) 4 Dundee PIM1 -1 Dundee CAMKK2 (CAMKKB) 4 Dundee DYRK2 -2 Dundee SRC 4 Invitrogen MAPK12 (p38g) -2 Dundee MYLK2 (MLCK_sk) 3 Invitrogen NEK6 -3 Dundee MKNK2 (MNK2) 2 Dundee RPS6KB1 (p70S6K) -3 Dundee SRPK1 2 Dundee AKT2 -3 Dundee MKNK1 (MNK1) 2 Dundee RPS6KA3 (RSK2) -3 Dundee CHEK1 (CHK1) 2 Invitrogen rabbit MAP2K1 (MEK1) -4 Dundee
    [Show full text]
  • MAP3K12 (Human) Recombinant Protein
    MAP3K12 (Human) Recombinant Gene Alias: DLK, MUK, ZPK, ZPKP1 Protein Gene Summary: The protein encoded by this gene is a member of serine/threonine protein kinase family. This Catalog Number: P5535 kinase contains a leucine-zipper domain, and is predominately expressed in neuronal cells. The Regulation Status: For research use only (RUO) phosphorylation state of this kinase in synaptic terminals Product Description: Human MAP3K12 (NP_006292.3, was shown to be regulated by membrane depolarization 1 a.a. - 520 a.a.) partial recombinant protein with GST via calcineurin. This kinase forms heterodimers with tag expressed in baculovirus infected Sf21 cells. leucine zipper containing transcription factors, such as cAMP responsive element binding protein (CREB) and Host: Insect MYC, and thus may play a regulatory role in PKA or retinoic acid induced neuronal differentiation. [provided Theoretical MW (kDa): 86 by RefSeq] Applications: Func, SDS-PAGE (See our web site product page for detailed applications information) Protocols: See our web site at http://www.abnova.com/support/protocols.asp or product page for detailed protocols Form: Liquid Preparation Method: Baculovirus infected insect cell (Sf21) expression system Purification: Glutathione sepharose chromatography Purity: 55 % by SDS-PAGE/CBB staining Activity: The activity was determined by ELISA. The enzyme was incubated with GST-fused substrate protein, and after stopping kinase reaction by EDTA, the reaction solution was transferred into glutathione-coated plate. Phosphorylation was detected by anti-phospho antibody and HRP-labeled anti-rabbit IgG (or HRP-labeled anti-mouse IgG). Substrate: MAP2K7 [inactive mutant]. ATP: 100 uM. Storage Buffer: In 50 mM Tris-HCl, 150 mM NaCl, pH 7.5 (0.1% CHAPS, 1 mM DTT, 10% glycerol) Storage Instruction: Store at -80°C.
    [Show full text]
  • Targeting the CDK4/6-Rb Pathway Enhances Response to PI3K
    Published OnlineFirst August 9, 2018; DOI: 10.1158/1078-0432.CCR-18-0717 Translational Cancer Mechanisms and Therapy Clinical Cancer Research Targeting the CDK4/6-Rb Pathway Enhances Response to PI3K Inhibition in PIK3CA-Mutant Lung Squamous Cell Carcinoma Ruoshi Shi1,2, Ming Li1, Vibha Raghavan1, Shirley Tam1, Michael Cabanero1, Nhu-An Pham1, Frances A. Shepherd1,3, Nadeem Moghal1,2, and Ming-Sound Tsao1,2,4 Abstract Purpose: Lung squamous cell carcinoma (LUSC) is a major of LUSC PDX models identified PI3K pathway alterations in subtype of non–small cell lung cancer characterized by mul- over 50% of the models. In vivo screening using PI3K tiple genetic alterations, particularly PI3K pathway alterations inhibitors in 12 of these models identified PIK3CA mutation which have been identified in over 50% of LUSC cases. Despite as a predictive biomarker of response (<20% tumor growth being an attractive target, single-agent PI3K inhibitors have compared with baseline/vehicle). Combined inhibition of demonstrated modest response in LUSC. Thus, novel combi- PI3K and CDK4/6 in models with PIK3CA mutation resulted nation therapies targeting LUSC are needed. in greater antitumor effects compared with either mono- Experimental Design: PI3K inhibitors alone and in com- therapy alone. In addition, the combination of the two bination with CDK4/6 inhibitors were evaluated in previously drugs achieved targeted inhibition of the PI3K and cell-cycle established LUSC patient-derived xenografts (PDX) using an pathways. in vivo screening method. Screening results were validated with Conclusions: PIK3CA mutations predict response to PI3K in vivo expansion to 5 to 8 mice per arm.
    [Show full text]
  • HCC and Cancer Mutated Genes Summarized in the Literature Gene Symbol Gene Name References*
    HCC and cancer mutated genes summarized in the literature Gene symbol Gene name References* A2M Alpha-2-macroglobulin (4) ABL1 c-abl oncogene 1, receptor tyrosine kinase (4,5,22) ACBD7 Acyl-Coenzyme A binding domain containing 7 (23) ACTL6A Actin-like 6A (4,5) ACTL6B Actin-like 6B (4) ACVR1B Activin A receptor, type IB (21,22) ACVR2A Activin A receptor, type IIA (4,21) ADAM10 ADAM metallopeptidase domain 10 (5) ADAMTS9 ADAM metallopeptidase with thrombospondin type 1 motif, 9 (4) ADCY2 Adenylate cyclase 2 (brain) (26) AJUBA Ajuba LIM protein (21) AKAP9 A kinase (PRKA) anchor protein (yotiao) 9 (4) Akt AKT serine/threonine kinase (28) AKT1 v-akt murine thymoma viral oncogene homolog 1 (5,21,22) AKT2 v-akt murine thymoma viral oncogene homolog 2 (4) ALB Albumin (4) ALK Anaplastic lymphoma receptor tyrosine kinase (22) AMPH Amphiphysin (24) ANK3 Ankyrin 3, node of Ranvier (ankyrin G) (4) ANKRD12 Ankyrin repeat domain 12 (4) ANO1 Anoctamin 1, calcium activated chloride channel (4) APC Adenomatous polyposis coli (4,5,21,22,25,28) APOB Apolipoprotein B [including Ag(x) antigen] (4) AR Androgen receptor (5,21-23) ARAP1 ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 1 (4) ARHGAP35 Rho GTPase activating protein 35 (21) ARID1A AT rich interactive domain 1A (SWI-like) (4,5,21,22,24,25,27,28) ARID1B AT rich interactive domain 1B (SWI1-like) (4,5,22) ARID2 AT rich interactive domain 2 (ARID, RFX-like) (4,5,22,24,25,27,28) ARID4A AT rich interactive domain 4A (RBP1-like) (28) ARID5B AT rich interactive domain 5B (MRF1-like) (21) ASPM Asp (abnormal
    [Show full text]
  • The PRKCI and SOX2 Oncogenes Are Coamplified and Cooperate to Activate Hedgehog Signaling in Lung Squamous Cell Carcinoma
    Cancer Cell Article The PRKCI and SOX2 Oncogenes Are Coamplified and Cooperate to Activate Hedgehog Signaling in Lung Squamous Cell Carcinoma Verline Justilien,1 Michael P. Walsh,1 Syed A. Ali,1 E. Aubrey Thompson,1 Nicole R. Murray,1 and Alan P. Fields1,* 1Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL 32224, USA *Correspondence: fi[email protected] http://dx.doi.org/10.1016/j.ccr.2014.01.008 SUMMARY We report that two oncogenes coamplified on chromosome 3q26, PRKCI and SOX2, cooperate to drive a stem-like phenotype in lung squamous cell carcinoma (LSCC). Protein kinase Ci (PKCi) phosphorylates SOX2, a master transcriptional regulator of stemness, and recruits it to the promoter of Hedgehog (Hh) acyltransferase (HHAT) that catalyzes the rate-limiting step in Hh ligand production. PKCi-mediated SOX2 phosphorylation is required for HHAT promoter occupancy, HHAT expression, and maintenance of a stem-like phenotype. Primary LSCC tumors coordinately overexpress PKCi, SOX2, and HHAT and require PKCi-SOX2-HHAT signaling to maintain a stem-like phenotype. Thus, PKCi and SOX2 are genetically, biochemically, and functionally linked in LSCC, and together they drive tumorigenesis by establishing a cell-autonomous Hh signaling axis. INTRODUCTION Similar cell populations exist in several cancer types (Chen et al., 2012; Driessens et al., 2012; Schepers et al., 2012). Line- Lung cancer is the major cause of cancer death, with a 5-year- age tracing reveals these cells clonally expand to give rise to survival rate of 16% (Siegel et al., 2012). Non-small cell lung malignant and nonmalignant, differentiated cell types.
    [Show full text]