Integrated RF Power Amplifier Design in Silicon-Based Technologies
Total Page:16
File Type:pdf, Size:1020Kb
Integrated RF Power Ampli¯er Design in Silicon-Based Technologies Von der FakultÄatfÄurMathematik, Naturwissenschaften und Informatik der Brandenburgischen Technischen UniversitÄatCottbus zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften (Dr.-Ing.) genehmigte Dissertation vorgelegt von Magister Andriy Vasylyev geboren am 04.08.1977 in Wassylkiw (Ukraine) Gutachter: Prof. Dr. Heinrich Klar (TU Berlin) Gutachter: Prof. Dr. Georg BÄock (TU Berlin) Gutachter: Prof. Dr. Peter Weger (BTU Cottbus) Tag der mÄundlichen PrÄufung: 17 Juli 2006 Acknowledgements I would like to express sincere appreciation to my advisor Prof. Dr. Peter Weger for his guidance and support over this work. I am also grateful to Volodymyr Slobodyanyuk, Oleksiy Gerasika, Wojciech Debski and Valentyn Solomko from BTU Design Group(Chair of Circuit Design), Winfried Bakalski, Werner SimbÄurger,Ronald ThÄuringer,Daniel Kehrer, Marc Tiebout, Hans-Dieter Wohlmuth, Herbert Knapp and Mirjana Rest from INFI- NEON Technologies AG, Corporate Research, Department for High Frequency Circuits, Munich for their informative discussions and help during this work. Finally, I would like to take this opportunity to thank my wife Iryna, my daughter Kateryna, my in-laws and my parents, my brother Sergey for their valuable support and indefatigable faith throughout my life. The work presented is done within INTRINSYK research project which is pursued in cooperation with INFINEON Technologies AG, SIEMENS AG, and University of Bochum. ii Abstract This thesis presents the design and implementation of the RF power ampli¯ers in modern silicon based technologies. The main challenge is to include power ampli¯er on a single chip with output power level in watts, operating at high frequencies where the transit frequency (fT ) is just a few times higher than the operating frequency. This work describes the design procedure for bipolar and CMOS transformer- based Class-A, Class-AB and Class-B power ampli¯ers. The design procedure is based on the HICUM for bipolar and BSIM4 for CMOS transistor models and is divided in four parts: ² Building a one transistor prototype power ampli¯er which is based on the analytical analysis of the output characteristics and transistor model. ² Load-pull simulation to de¯ne the ¯nal input and output impedances. ² Derivation of the analytical equations for the transformer-based matching network. ² Design of the ¯nal transformer-based push-pull power ampli¯er. A good agreement between the proposed analytical analysis and large-signal (harmonic balance) simulation results proofs usefulness of the proposed power ampli¯er design approach. Additionally, it shows the contribution of the separated devices at the ¯nal design that helps to ¯nd a technology limits in the current circuit design. The main achievements include: ² A 2.4 GHz power ampli¯er in 0.13 ¹m CMOS technology. An output power of 28 dBm is achieved with a power added e±ciency of 48 % at a supply voltage of 1.2 V [Vasylyev 04]. ² Two 17 GHz power ampli¯ers in 0.13 ¹m CMOS technology (one fully integrated while the other with external matching network) with output power exceeding 50 mW. The former exhibits a power added e±ciency of 9.3 % while the latter a 15.6 % power added e±ciency [Vasylyev 06]. ² A fully integrated K and Ka bands power ampli¯er in 0.13 ¹m CMOS technology. A 13 dBm output power along with power added e±ciency iii iv of 13 % is achieved at an operating frequency of 25.7 GHz with 1.2 V supply [Vasylyev 05,a]. ² A fully integrated power ampli¯er based on a novel power combining trans- former structure in 28 GHz-fT SiGe-bipolar technology. A 32 dBm output power along with power added e±ciency of 30 % is achieved at an operating frequency of 2.12 GHz with 3.5 V supply [Vasylyev 05,b]. Zusammenfassung Diese Doktorarbeit beschÄaftigtsich mit dem Entwurf und der AusfÄuhrungvon Hochfrequenz-LeistungsverstÄarkern in modernen Silizium Technologien. Die Her- ausforderung ist, HF-LeistungsverstÄarker mit mehreren Watt Ausgangsleistung vollstÄandigmonolithisch zu integrieren; wobei die Betriebsfrequenz bereits 25 % der Transitfrequenz (fT ) betrÄagt. Diese Arbeit beschreibt das Entwurfverfahren fÄurbipolar und CMOS Leis- tungsverstÄarker der Klasse-A, Klasse-AB und Klasse-B mit monolithisch integri- erten Transformatoren. Das Entwurfverfahren verwendet fÄurbipolar das HICUM Transistor-Modell und fÄurCMOS das BSIM4 Transistor-Modell und lÄasstsich in vier Teile gliedern: ² Analyse eines Ein-Transistor-VerstÄarkers, basierend auf der analytischen Analyse der Ausgangcharakteristiken und der Transistor-Modelle. ² Simulation mit Lastvariation, zur Ermittlung der optimalen Ein-und Aus- gangsimpedanzen. ² Ableitung der analytischen Gleichungen fÄurdas Transformator Anpassungsnetz. ² Entwurf vom optimierten GegentaktleistungsverstÄarker mit monolithischen Transformatoren. Eine gute UbereinstimmungÄ zwischen der vorgeschlagenen analytischen Analy- se und dem Gro¼signal-Simulationenergebnis beweist die NÄutzlichkeit der vorgeschla- genen VerstÄarker-EntwurfannÄaherung.ZusÄatzlich zeigt es den Beitrag der einzel- nen Komponenten, was das optimale Ausreizen der Technologie ermÄoglicht. Die Hauptergebnisse: ² Ein 2.4 GHz LeistungsverstÄarker in einer 0.13 ¹m CMOS Technologie mit einer Ausgangsleistung von 28 dBm und einem VerstÄarkerwirkungsgrad von 48 % an einer Versorgungsspannung von 1.2 V [Vasylyev 04]. ² Zwei 17 GHz LeistungsverstÄarker in einer 0.13 ¹m CMOS Technologie (eine Variante enthÄaltein monolithisch integriertes Anpassungsnetzwerk, die an- dere Variante enthÄaltein externes Anpassungsnetzwerk) mit einer Aus- gangsleistung Äuber 50 mW. Der VerstÄarkerwirkungsgrad betrÄagt9.3 % fÄur Variante 1 und 15.6 % fÄurVariante 2 [Vasylyev 06]. v vi ² Ein vÄolligintegrierter K und Ka Band-LeistungsverstÄarker in einer 0.13 ¹m CMOS Technologie. Bei einer Betriebsfrequenz von 25.7 GHz wird eine Ausgangsleistung von 13 dBm und ein VerstÄarkerwirkungsgrad von 13 % erreicht (1.2 V Versorgungsspannung) [Vasylyev 05,a]. ² Ein vÄolligintegrierter LeistungsverstÄarker basierend auf einer neuartigen Transformator-Struktur in einer 28 GHz-fT SiGe Bipolar Technologie. Eine Ausgangsleistung von 32 dBm und ein VerstÄarkerwirkungsgrad von 30 % werden bei einer Betriebsfrequenz von 2.12 GHz und 3.5 V Versorgungss- pannung erreicht [Vasylyev 05,b]. Contents 1 Introduction 1 1.1 State of the Art . 4 2 Power Ampli¯er Basics 6 2.1 Main Characteristics . 6 2.1.1 Power . 6 2.1.2 Power Gain . 7 2.1.3 E±ciency . 8 2.1.4 Bandwidth . 8 2.1.5 Nonlinearity . 9 2.1.6 Error Vector Magnitude and Power Complementary Cumu- lative Distribution Function (OFDM Modulation) . 15 2.1.7 Adjacent Channel Power Ratio . 17 2.1.8 Ruggedness . 18 2.2 Basic Tuned Ampli¯er Classes . 19 2.2.1 Linear Tuned Power Ampli¯ers . 20 2.2.2 Switched Mode Tuned Power Ampli¯ers . 25 3 Silicon Based Technologies for Power Ampli¯er Design 35 3.1 Active Components . 35 3.1.1 Bipolar Transistors . 35 3.1.2 MOSFET Transistors . 41 3.2 Passive Components . 47 3.2.1 Capacitors . 48 3.2.2 Transformers . 50 3.2.3 Bond Wires . 54 4 Power Ampli¯er Design Guide 55 4.1 Prototype Design . 57 4.1.1 CMOS Power Ampli¯er . 57 4.1.2 Bipolar Power Ampli¯er . 66 4.2 Load-Pull Analysis . 77 4.3 Transformer-Based Matching Network Design . 80 4.3.1 Analysis of Bond Wires . 80 4.3.2 Analysis of Transformer as Matching Network . 87 vii Contents viii 4.4 Final Design . 94 5 Experimental Results 98 5.1 2 GHz CMOS Transformer-Based Power Ampli¯er . 103 5.2 5 GHz CMOS Transformer-Based Power Ampli¯er . 107 5.3 17 GHz CMOS Transformer-Based Power Ampli¯er . 114 5.4 26 GHz CMOS Transformer-Based Power Ampli¯er . 119 5.5 2 GHz Bipolar Power Ampli¯er Using the Power Combining Trans- former . 124 6 Conclusion and Outlook 130 A Power Ampli¯er State of the Art 132 B I-V characteristic in the BSIM4 model 137 Bibliography 141 List of Abbreviations AC Alternating Current ACPR Adjacent Channel P ower Ratio BALUN BALanced to UNbalanced BICMOS Bipolar Complementary Metal Oxide Semiconductor BJT Bipolar Junction T ransistor BSIM Berkley Short-Channel IGFET Model BPSK Binary P hase Shift Keying BW Bond W ire CBGA Ceramic Ball Grid Array CCDF Complementary Cumulative Distribution F unction CDF Cumulative Distribution F unction CLM Channel Length Modulation CMOS Complementary Metal Oxide Semiconductor CPP Complementary P ush-P ull DECT Digital Enhanced Cordless T elecommunications DFDA Dual-F ed Distributed Ampli¯er DHBT Double-Heterostructure Bipolar T ransistor DIBL Drain Induced Barrier Lowering DITS Drain Induced T hreshold Shift DUT Device Under T est dc direct current EDGE Enhanced Data rates for Global Evolution E Drain (Collector) E±ciency EVM Error V ector Magnitude FDMA F requency Division Multiple Access FET F ield E®ect T ransistor FI F ully Integrated fmax Maximum oscillation frequency in [Hz] fT Transit frequency in [Hz] GaAs Gallium Arsenide GaN Gallium Nitride GMSK Gaussian Minimum Shift Keying GPRS General P acket Radio Services GSM Global System for Mobile Communications HEMT High Electron Mobility T ransistor HBT Heterojunction Bipolar T ransistor HICUM HIgh-CUrrent Model HPP Horizontal P arallel P late IC Integrated Circuit IGFET Isolated-Gate F ield-E®ect T ransistor ix IMD InterModulation Distance InP Indium P hosphite IP3 Third order intermodulation point ISM Industrial Scienti¯c Medical LDMOS Laterally Di®used Metal Oxide Semiconductor LTCC Low T emperature Co¯red Ceramics MEMS Micro-Electro-Mechanical System MIM Metal-Insulator-Metal MMIC Monolithic Millimeter-wave Integrated Circuit MN Matching Network MSAG Multifunction Self-Aligned Gate MSI Micromachined Solenoid Inductor MOS Metal Oxide Semiconductor OFDM Orthogonal F requency Division Multiplexing OCM O®-Chip Matching PA P ower Ampli¯er PAE P ower Added E±ciency PCB P rinted Circuit Board PSK P hase Shift Keying RFC Radio-F requency Choke SCBE Substrate Current Induced Body E®ect SiGe Silicium Germanium SHF Super High F requency (3 .. 30 GHz) SPICE Simultion P rogram with Integrated Circuit Emphasis SW Switch TDMA T ime Division Multiple Access TRADICA T RAnsistor DImensioning and CAlculation Tranceiver T ransmitter and receiver UHF Ultra High F requency (300 .