Preparation and Crystal Structure of a New Lithium Vanadium Fluoride Li2vf6 with Trirutile-Type Structure

Total Page:16

File Type:pdf, Size:1020Kb

Preparation and Crystal Structure of a New Lithium Vanadium Fluoride Li2vf6 with Trirutile-Type Structure Preparation and Crystal Structure of a New Lithium Vanadium Fluoride Li2VF6 with Trirutile-type Structure Suliman Nakhal, Dominik Weber and Martin Lerch Institut fur¨ Chemie, Technische Universitat¨ Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany Reprint requests to Dr. Suliman Nakhal. Fax: +49 30 314 79656. E-mail: [email protected] Z. Naturforsch. 2013, 68b, 121 – 126 / DOI: 10.5560/ZNB.2013-2303 Received November 22, 2012 A new lithium vanadium fluoride Li2VF6 was prepared by reacting lithium fluoride LiF with ◦ vanadium tetrafluoride VF4 in a monel capsule at 500 C. The crystal structure has been deter- mined by means of powder X-ray diffraction. Trirutile-type dilithium hexafluorovanadate(IV) crys- tallizes in the tetragonal space group P42=mnm with lattice parameters a = 459.99(1), b = 459:99(1), c = 896.64(2) pm. The presence of a Jahn-Teller effect is discussed. Key words: Lithium Metal Fluoride, Synthesis, Crystal Structure Introduction as compared to the corresponding oxides for the same redox pair [6]. Numerous ternary fluorides of the formula type For lithium vanadium fluorides the following phases A2MF6 (A = alkali metal, M = main group element or have been reported in literature: cryolite type-related (III) transition metal) with larger alkali ions are known. The orthorhombic a- and monoclinic b-Li3V F6 [7], crystal chemistry of these compounds, often crystal- (II=III) LiV2 F6 (tetragonal, a mixed-valence trirutile (V) lizing in several modifications, has been discussed for structure) [8], and LiV F6 (rhombohedral, LiSbF6 more than 60 years [1–3]. There were only few re- type) [9]. In this contribution we report on the synthe- ports on compounds containing the small alkali ion sis and the crystal structure of the new lithium vana- (IV) lithium. For most of the oxidation states of d-transition dium fluoride Li2V F6. metal ions the ratio of the ionic radii rM=rF is within the range 0.41 – 0.73 [4]. Most of the reported com- Experimental Section pounds with A2MF6 composition crystallize in the fol- lowing structure types or are closely related to them: For the synthesis of Li2VF6 710 mg vanadium tetraflu- Li2ZrF6, Na2SiF6, trirutile. Differences arise from the oride powder (ABCR, 95%) and 290 mg lithium fluoride type of atom sharing between the coordination octa- (Alfa Aesar, 99:9%), which were used as starting materi- ◦ hedra: a) Li ZrF type (trigonal, space group P31¯ m): als, were dried under vacuum at 250 C for 24 h. The mix- 2 6 ◦ I IV ture of LiF and VF4 (2:1 molar ratio) was heated at 500 C solely corner-sharing between A F6 and M F6 octa- hedra. b) Na SiF type (trigonal, space group P321): for 12 h in a monel capsule and then slowly cooled to am- 2 6 bient temperature. The powder was chemically characterized SiF units share three edges with NaF octahedra. c) 6 6 using a Leco EF-TC 300 N =O analyzer (hot gas extrac- P =mnm 2 2 trirutile type (tetragonal, 42 ) and related struc- tion) for oxygen content determination. Detection of remain- tures (e. g. CuSb2O6 type, monoclinic, spacegroup ing capsule material was carried out by X-ray fluorescence P21=n)[5]: only two common edges. analysis (PANalytical Axios PW4400=24 X-ray fluorescence It should be mentioned that ternary lithium metal spectrometer with an Rh tube and a wavelength dispersive fluorides are of interest as cathodes for lithium ion bat- detector). A PANalytical X’Pert PRO MPD diffractome- teries. The voltage of batteries using transition metal ter (CuKa radiation, Bragg-Brentano (q-q) geometry) with fluoride-based cathode masses is expected to be higher a PIXcel detector was used for the powder XRD measure- © 2013 Verlag der Zeitschrift fur¨ Naturforschung, Tubingen¨ · http://znaturforsch.com 122 S. Nakhal et al. · The Lithium Vanadium Fluoride Li2VF6 ments at ambient temperature, the program package FULL- isotypic to Li2CrF6. This hexafluorochromate(IV) was PROF 2006 [10, 11] for Rietveld refinements. Peak profiles structurally described for the first time by Siebert and were fitted with a pseudo-Voigt function. Hoppe [12] and reported to be of the Na2SnF6 type, a monoclinically distorted trirutile derivative. Later on Results and Discussion the crystal structure of Na2SnF6 was in the focus of discussion. Bournonville et al. pointed out the relation- Following the instructions described in the experi- ships between the monoclinic Na2SnF6 and the tetrag- mental section, a greenish-yellow powder can be pre- onal trirutile type [13], showing that they are identical pared. X-Ray fluorescence measurements give no indi- within the limits of a probable error. Some years later cation for Cu or Ni (capsule materials) to be present Benner and Hoppe [14] presented a structure redeter- in the obtained product. In addition, no significant mination of Na2SnF6 preferring the tetragonal triru- amount of oxygen was detected. Analyzing the pow- tile type. Recently also Li2CrF6 was reported to be der X-ray patterns depicted in Fig.1 , a yet unknown tetragonal [15]. A more detailed discussion of these phase together with b-Li3VF6 is observed. The crys- problems together with a deep insight into the crystal tal structure of the new phase was determined using chemistry of the rutile type and its derivatives, includ- conventional powder X-ray techniques and found to be ing the trirutile type, was presented by Baur [16]. Re- Table 1. Refined parameters for Li2VF6 at ambient tempera- ture (comparison between the monoclinic ‘Na2SnF6’ and the tetragonal trirutile model). Structure type ‘Na2SnF6’ Trirutile Space group P21=c (no. 14) P42=mnm (no. 136) Crystal system monoclinic tetragonal Mr 389.94 a, pm 459.91(2) 459.99(1) b, pm 459.76(3) 459.99(1) c, pm 1007.43(4) 896.64(2) b, deg 117.16(4) 90 V, pm3 189.54(2) × 106 189.72(1) × 106 Refined parameters 32 23 Z 2 2 2q range, deg 5 – 90 5 – 90 Rwp 0.0453 0.0473 RBragg 0.0481 0.0501 Rexp 0.0340 0.0340 S 1.33 1.39 Fig. 1. Powder X-ray diagram of Li2VF6 with the results of the Rietveld refinements (markers: Li2VF6, top; b-Li3VF6, bottom). Upper image: monoclinic model, below: tetragonal Fig. 2 (color online). VF6 polyhedron with the determined trirutile model. bond lengths (pm). S. Nakhal et al. · The Lithium Vanadium Fluoride Li2VF6 123 Table 2. Refined structural parameters for Li2VF6 at ambient temperature (comparison between the monoclinic ‘Na2SnF6’ (top) and the tetragonal trirutile (bottom) model). 2 Atom Wyckoff site x y z Biso (A˚ ) V 2a 0 0 0 0.66(9) Li 4e 0.340a −0.028a 0.336a 0.85 F1 4e 0.2878(5) 0.2787(4) −0.0011(2) 0.8(2) F2 4e −0.0153(6) 0.1998(2) 0.0011(2) 1.3(2) F3 4e 0.3304(3) 0.765(6) 0.1521(4) 1.9(2) a Not refined, data taken from Li2CrF6 [12]. 2 Atom Wyckoff site x y z Biso (A˚ ) V 2b 0 0 0.5 0.42(5) Li 4e 0 0 0.1646a 0.7 F1 8 j 0.1979(3) 0.1979(3) 0.3429(2) 0.41(7) F2 4 f −0.2868(4) 0.2868(4) 0.5 0.72(9) a Not refined, data taken from Li2CrF6 [15]. Fig. 3 (color online). Unit cell of trirutile-type Li2VF6, outlined by green lines, together with the VF6 polyhedra. 124 S. Nakhal et al. · The Lithium Vanadium Fluoride Li2VF6 specting these contributions, Rietveld refinements of with a tripled c cell parameter and an ordered arrange- the structural parameters of the new dilithium hexaflu- ment of the cations (same space group type), the crys- orovanadate(IV) were performed using the tetragonal tal structure of dilithium hexafluorovanadate(IV) can trirutile as well as the monoclinic ‘Na2SnF6’ model. be described in the following way: vanadium occu- The results of the Rietveld refinements are presented pies the 2b position, lithium the 4e, and fluorine the in Fig.1 as well as in Tables1 and2 . An amount positions 4 f and 8 j (see Table2 ). The crystal struc- of ≈ 41 wt-% b-Li3VF6 as a second phase is ob- ture is built up from isolated slightly compressed VF6 served. This may be explained by partial decomposi- octahedra (V–F: 2 × 186.6(2) pm, 4 × 190.8(2) pm, tion of VF4 and significant amounts of VF3 in the start- Fig.2 ) connected by lithium atoms also coordinated ing material. In our refinement procedure the atomic by six fluorine atoms (see Figs.3 ,4 ). The polyhedra positions of lithium were not refined but taken from share two opposing edges leading to straight chains Li2CrF6 [12, 15]. Comparing the results of both mod- along the tetragonal c axis, each of them surrounded by els it is evident that the monoclinic description leads to four other chains sharing common vertices. The aver- slightly better R values. Nevertheless, respecting the age bond length between vanadium and the surround- limitations of powder methods and the presence of ing anions, dV−F, is 189 pm, which is slightly longer such large amounts of a second phase with low sym- compared to the reported V–F bond length in VF4 metry (monoclinic) the use of the tetragonal trirutile (dV−F = 185 pm) [17]. To answer the question whether model seemed to be more reasonable. In the following the compression of the VF6 octahedra is mainly caused we discuss the crystal structure of Li2VF6 in the light by next nearest neighbors connecting the polyhedra of the structure type with higher symmetry. to the above-described framework or by a relatively In respect to the well-known trirutile type, which weak Jahn-Teller effect (keep in mind that V4+ has can be understood as superstructure of the rutile type a d1 configuration), a short look at the crystal struc- Fig.
Recommended publications
  • Direct Preparation of Some Organolithium Compounds from Lithium and RX Compounds Katashi Oita Iowa State College
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1955 Direct preparation of some organolithium compounds from lithium and RX compounds Katashi Oita Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Oita, Katashi, "Direct preparation of some organolithium compounds from lithium and RX compounds " (1955). Retrospective Theses and Dissertations. 14262. https://lib.dr.iastate.edu/rtd/14262 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Ionic Compound Ratios Time: 1 -2 Class Periods
    Collisions Lesson Plan Ionic Compound Ratios Time: 1 -2 class periods Lesson Description In this lesson, students will use Collisions to explore the formation of ionic compounds and compound ratios. Key Essential Questions 1. What makes up an ionic compound? 2. Are ionic compounds found in common ratios? Learning Outcomes Students will be able to determine the ionic compound ratio of an ionic compound. Prior Student Knowledge Expected Cations are postiviely charged ions and anions are negatively charged ions. Lesson Materials • Individual student access to Collisions on tablet, Chromebook, or computer. • Projector / display of teacher screen • Accompanying student resources (attached) Standards Alignment NGSS Alignment Science & Enginnering Practices Disciplinary Core Ideas Crosscutting Concepts • Developing and using • HS-PS-12. Construct and • Structure and Function models revise an explanation for the • Construcing explanations outcome of a simple chemical and designing solutions rection based on the outermost electron states of atoms, trends int he periodic table, and knowl- edge of the partterns of chemi- cal properties. www.playmadagames.com ©2018 PlayMada Games LLC. All rights reserved. 1 PART 1: Explore (15 minutes) Summary This is an inquiry-driven activity where students will complete the first few levels of the Collisions Ionic Bonding game to become introduced to the concept of ionic bonding and compound ratios. Activity 1. Direct students to log into Collisions with their individual username and password. 2. Students should enter the Ionic Bonding game and play Levels 1-6 levels. 3. Have your students answer the following questions during gameplay: 1. What combination of ions did you use to successfully match a target? 2.
    [Show full text]
  • A Study of Lithium Precursors on Nanoparticle Quality
    Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2021 Electronic Supplementary Information Elucidating the role of precursors in synthesizing single crystalline lithium niobate nanomaterials: A study of lithium precursors on nanoparticle quality Rana Faryad Ali, Byron D. Gates* Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive Burnaby, BC, V5A 1S6, Canada * E-mail: [email protected] This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC; Grant No. RGPIN-2020-06522), and through the Collaborative Health Research Projects (CHRP) Partnership Program supported in part by the Canadian Institutes of Health Research (Grant No. 134742) and the Natural Science Engineering Research Council of Canada (Grant No. CHRP 462260), the Canada Research Chairs Program (B.D. Gates, Grant No. 950-215846), CMC Microsystems (MNT Grant No. 6345), and a Graduate Fellowship (Rana Faryad Ali) from Simon Fraser University. This work made use of 4D LABS (www.4dlabs.com) and the Center for Soft Materials shared facilities supported by the Canada Foundation for Innovation (CFI), British Columbia Knowledge Development Fund (BCKDF), Western Economic Diversification Canada, and Simon Fraser University. S1 Experimental Materials and supplies All chemicals were of analytical grade and were used as received without further purification. Niobium ethoxide [Nb(OC2H5)5, >90%] was obtained from Gelest Inc., and benzyl alcohol (C7H7OH, 99%) and triethylamine [N(C2H5)3, 99.0%] were purchased from Acros Organics and Anachemia, respectively. Lithium chloride (LiCl, ~99.0%) was obtained from BDH Chemicals, and lithium bromide (LiBr, ≥99.0%), lithium fluoride (LiF, ~99.9%), and lithium iodide (LiI, 99.0%) were purchased from Sigma Aldrich.
    [Show full text]
  • Molecular Orbital Theory to Predict Bond Order • to Apply Molecular Orbital Theory to the Diatomic Homonuclear Molecule from the Elements in the Second Period
    Skills to Develop • To use molecular orbital theory to predict bond order • To apply Molecular Orbital Theory to the diatomic homonuclear molecule from the elements in the second period. None of the approaches we have described so far can adequately explain why some compounds are colored and others are not, why some substances with unpaired electrons are stable, and why others are effective semiconductors. These approaches also cannot describe the nature of resonance. Such limitations led to the development of a new approach to bonding in which electrons are not viewed as being localized between the nuclei of bonded atoms but are instead delocalized throughout the entire molecule. Just as with the valence bond theory, the approach we are about to discuss is based on a quantum mechanical model. Previously, we described the electrons in isolated atoms as having certain spatial distributions, called orbitals, each with a particular orbital energy. Just as the positions and energies of electrons in atoms can be described in terms of atomic orbitals (AOs), the positions and energies of electrons in molecules can be described in terms of molecular orbitals (MOs) A particular spatial distribution of electrons in a molecule that is associated with a particular orbital energy.—a spatial distribution of electrons in a molecule that is associated with a particular orbital energy. As the name suggests, molecular orbitals are not localized on a single atom but extend over the entire molecule. Consequently, the molecular orbital approach, called molecular orbital theory is a delocalized approach to bonding. Although the molecular orbital theory is computationally demanding, the principles on which it is based are similar to those we used to determine electron configurations for atoms.
    [Show full text]
  • Introduction to Molecular Orbital Theory
    Chapter 2: Molecular Structure and Bonding Bonding Theories 1. VSEPR Theory 2. Valence Bond theory (with hybridization) 3. Molecular Orbital Theory ( with molecualr orbitals) To date, we have looked at three different theories of molecular boning. They are the VSEPR Theory (with Lewis Dot Structures), the Valence Bond theory (with hybridization) and Molecular Orbital Theory. A good theory should predict physical and chemical properties of the molecule such as shape, bond energy, bond length, and bond angles.Because arguments based on atomic orbitals focus on the bonds formed between valence electrons on an atom, they are often said to involve a valence-bond theory. The valence-bond model can't adequately explain the fact that some molecules contains two equivalent bonds with a bond order between that of a single bond and a double bond. The best it can do is suggest that these molecules are mixtures, or hybrids, of the two Lewis structures that can be written for these molecules. This problem, and many others, can be overcome by using a more sophisticated model of bonding based on molecular orbitals. Molecular orbital theory is more powerful than valence-bond theory because the orbitals reflect the geometry of the molecule to which they are applied. But this power carries a significant cost in terms of the ease with which the model can be visualized. One model does not describe all the properties of molecular bonds. Each model desribes a set of properties better than the others. The final test for any theory is experimental data. Introduction to Molecular Orbital Theory The Molecular Orbital Theory does a good job of predicting elctronic spectra and paramagnetism, when VSEPR and the V-B Theories don't.
    [Show full text]
  • Paul B. Tomascak Tomáš Magna Ralf Dohmen Advances in Lithium Isotope Geochemistry Advances in Isotope Geochemistry
    Advances in Isotope Geochemistry Paul B. Tomascak Tomáš Magna Ralf Dohmen Advances in Lithium Isotope Geochemistry Advances in Isotope Geochemistry Series editor Jochen Hoefs, Göttingen, Germany More information about this series at http://www.springer.com/series/8152 Paul B. Tomascak • Tomáš Magna Ralf Dohmen Advances in Lithium Isotope Geochemistry 123 Paul B. Tomascak Ralf Dohmen State University of New York at Oswego Institute of Geology, Mineralogy Oswego, NY and Geophysics USA Ruhr-University Bochum Bochum, Nordrhein-Westfalen Tomáš Magna Germany Czech Geological Survey Prague Czech Republic ISSN 2364-5105 ISSN 2364-5113 (electronic) Advances in Isotope Geochemistry ISBN 978-3-319-01429-6 ISBN 978-3-319-01430-2 (eBook) DOI 10.1007/978-3-319-01430-2 Library of Congress Control Number: 2015953806 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication.
    [Show full text]
  • Inorganic Chemistry/Chemical Bonding/MO Diagram 1
    Inorganic Chemistry/Chemical Bonding/MO Diagram 1 Inorganic Chemistry/Chemical Bonding/MO Diagram A molecular orbital diagram or MO diagram for short is a qualitative descriptive tool explaining chemical bonding in molecules in terms of molecular orbital theory in general and the Linear combination of atomic orbitals molecular orbital method (LCAO method) in particular [1] [2] [3] . This tool is very well suited for simple diatomic molecules such as dihydrogen, dioxygen and carbon monoxide but becomes more complex when discussing polynuclear molecules such as methane. It explains why some molecules exist and not others, how strong bonds are, and what electronic transitions take place. Dihydrogen MO diagram The smallest molecule, hydrogen gas exists as dihydrogen (H-H) with a single covalent bond between two hydrogen atoms. As each hydrogen atom has a single 1s atomic orbital for its electron, the bond forms by overlap of these two atomic orbitals. In figure 1 the two atomic orbitals are depicted on the left and on the right. The vertical axis always represents the orbital energies. The atomic orbital energy correlates with electronegativity as a more electronegative atom holds an electron more tightly thus lowering its energy. MO treatment is only valid when the atomic orbitals have comparable energy; when they differ greatly the mode of bonding becomes ionic. Each orbital is singly occupied with the up and down arrows representing an electron. The two AO's can overlap in two ways depending on their phase relationship. The phase of an orbital is a direct consequence of the oscillating, wave-like properties of electrons.
    [Show full text]
  • S41467-020-19206-W.Pdf
    ARTICLE https://doi.org/10.1038/s41467-020-19206-w OPEN Unravelling the room-temperature atomic structure and growth kinetics of lithium metal Chao Liang 1, Xun Zhang1, Shuixin Xia1, Zeyu Wang1, Jiayi Wu1, Biao Yuan 1, Xin Luo1, Weiyan Liu1, ✉ Wei Liu 1 &YiYu 1 Alkali metals are widely studied in various fields such as medicine and battery. However, limited by the chemical reactivity and electron/ion beam sensitivity, the intrinsic atomic 1234567890():,; structure of alkali metals and its fundamental properties are difficult to be revealed. Here, a simple and versatile method is proposed to form the alkali metals in situ inside the transmission electron microscope. Taking alkali salts as the starting materials and electron beam as the trigger, alkali metals can be obtained directly. With this method, atomic resolution imaging of lithium and sodium metal is achieved at room temperature, and the growth of alkali metals is visualized at atomic-scale with millisecond temporal resolution. Furthermore, our observations unravel the ambiguities in lithium metal growth on garnet-type solid electrolytes for lithium-metal batteries. Finally, our method enables a direct study of physical contact property of lithium metal as well as its surface passivation oxide layer, which may contribute to better understanding of lithium dendrite and solid electrolyte interphase issues in lithium ion batteries. ✉ 1 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China. email: [email protected] NATURE COMMUNICATIONS | (2020) 11:5367 | https://doi.org/10.1038/s41467-020-19206-w | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19206-w t has been a long history for the research on alkali metals1, the to control the dose-rate of the electron beam.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.209,487 B2 Scanlon, Jr
    US0092094.87B2 (12) United States Patent (10) Patent No.: US 9.209,487 B2 Scanlon, Jr. et al. (45) Date of Patent: Dec. 8, 2015 (54) SOLD-STATE ELECTROLYTES FOR HO1 M 4/134 (2010.01) RECHARGEABLE LITHIUM BATTERIES HOIM 4/40 (2006.01) (52) U.S. C. (71) Applicant: The United States of America, as CPC ............ H0IM 10/0564 (2013.01); H01 M 4/60 Represented by the Secretary of the (2013.01); H0 IM 4/62 (2013.01); H0IM Air Force, Washington, DC (US) 10/0525 (2013.01); H01 M 4/134 (2013.01); H01 M 4/405 (2013.01); HOIM 2300/0065 (72) Inventors: Lawrence G Scanlon, Jr., Fairborn, OH (2013.01); HOIM 2300/0091 (2013.01); Y02E (US); Joseph P Fellner, Kettering, OH 60/122 (2013.01) (US); William A. Feld, Beavercreek, OH (58) Field of Classification Search (US); Leah R. Lucente, Beavercreek, None OH (US); Jacob W. Lawson, See application file for complete search history. Springfield, OH (US); Andrew M. Beauchamp, Lancaster, CA (US) (56) References Cited U.S. PATENT DOCUMENTS (73) Assignee: The United States of America as represented by the Secretary of the Air 5,932,133 A 8/1999 Scanlon, Jr. Force, Washington, DC (US) 6,010,805 A 1/2000 Scanlon, Jr. et al. 6,541,161 B1 4/2003 Scanlon, Jr. (*) Notice: Subject to any disclaimer, the term of this 2013/0309561 A1 11/2013 Chen et al. patent is extended or adjusted under 35 (Continued) U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS (21) Appl. No.: 14/333,836 L.
    [Show full text]
  • Ionic Conductivity of Solid Mixtures
    NASA TECHNICAL NOTE NASA-- TN D-4606 d./ *o 0 *o nP LOAN COPY: RRURN TO AFWL (WLIL-2) KIRTLAND AFB, N MEX IONIC CONDUCTIVITY OF SOLID MIXTURES by William L. Fielder Lewis Research Celzter 3 ._i _... Cleveland, Ohio r I t , 1 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. MAY 1968 ,/ I I TECH LIBRARY KAFB, NM ,lllllllllll__ .llllllllll I1111 lllllllllllllllll I 023L03b NASA TN D-4606 IONIC CONDUCTIVITY OF SOLID MIXTURES By William L. Fielder Lewis Research Center Cleveland, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and Technicol Information Springfield, Virginia 22151 - CFSTI price $3.00 IONIC CONDUCTIVITY OF SOLID MIXTURES by William L. Fielder Lewis Research Center SUMMARY The conductivities of four solid mixtures were determined as a function of tempera­ ture: (1) the lithium fluoride - lithium chloride eutectic, (2) the lithium chloride - potassium chloride eutectic, (3) the lithium fluoride - sodium chloride eutectic, and (4) a 50-mole-percent mixture of sodium chloride and potassium chloride. Two conductivity regions were obtained for each of the four mixtures. The activation energies for the conductivity for the lower-temperature regions ranged from 14 to 27 kilocalories per mole (59 to 114 kJ/mole). These energies were similar to the cation migration energies for the single crystals of the alkali halides. The conductivity of the mixtures in the lower-temperature regions is best explained by the following mechanism: (1) formation of cation vacancies primarily by multivalent impurities, and (2) migration of the cations through these vacancies. The activation energies for the conductivity of the solid mixtures in the upper- temperature regions ranged from 5 to 9 kilocalories per mole (20 to 39 kJ/mole).
    [Show full text]
  • Cationic Exchange Reactions Involving Dilithium Phthalocyanine
    CATIONIC EXCHANGE REACTIONS INVOLVING DILITHIUM PHTHALOCYANINE A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By MORGAN M. HART B.C.E., University of Dayton, 1998 M.S., University of Dayton, 2004 2009 Wright State University WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES December 11, 2009 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Morgan M. Hart ENTITLED Cationic Exchange Reactions Involving Dilithium Phthalocyanine BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science . ______________________________ William A. Feld, Ph.D. Thesis Director ______________________________ Kenneth Turnbull, Ph.D. Department Chair Committee on Final Examination _________________________________ Vladimir Katovic, Ph.D. _________________________________ David Grossie, Ph.D. _________________________________ William A. Feld, Ph.D. _________________________________ Joseph F. Thomas, Jr., Ph.D. Dean, School of Graduate Studies ABSTRACT Hart, Morgan M. M.S., Department of Chemistry, Wright State University, 2009. Cationic Exchange Reactions Involving Dilithium Phthalocyanine. Dilithium phthalocyanine (Li2Pc) consists of an aromatic macrocycle possessing a doubly negative charge and two Li+ counterions. One Li+ ion is easily displaceable while the other remains coordinated to the phthalocyanine ring. The displaceable Li+ cation can be exchanged with other cations, such as a singly charged tetra-alkyl ammonium cation, by using several variations of a general procedure. It has been demonstrated that tetraalkylammonium lithium phthalocyanines (TAA-LiPcs) can be successfully and reproducibly synthesized with yields ranging from 54.5% up to 64.3%. All TAA-LiPcs demonstrated poor solubilities from approximately <0.2 mg/mL to 5 mg/ml in the solvents tested (with the exception of tetrapropylammonium lithium phthalocyanine and tetrahexylammonium lithium phthalocyanine).
    [Show full text]