A Study of Lithium Precursors on Nanoparticle Quality
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
In-Depth Analysis by Co-Imaging of Periodically-Poled X-Cut Lithium Niobate Thin Films
crystals Article “Seeing Is Believing”—In-Depth Analysis by Co-Imaging of Periodically-Poled X-Cut Lithium Niobate Thin Films Sven Reitzig 1,* , Michael Rüsing 1, Jie Zhao 2,†, Benjamin Kirbus 1, Shayan Mookherjea 2 and Lukas M. Eng 1,3 1 Institut für Angewandte Physik, Technische Universität Dresden, 01062 Dresden, Germany; [email protected] (M.R.); [email protected] (B.K.); [email protected] (L.M.E.) 2 Department of Electrical and Computer Engineering, University of California, San Diego, CA 92161, USA; [email protected] (J.Z.); [email protected] (S.M.) 3 ct.qmat: Dresden-Würzburg Cluster of Excellence—EXC 2147, TU Dresden, 01062 Dresden, Germany * Correspondence: [email protected]; Tel.: +49-351-463-43354 † Since February 2021 affiliated with Nokia Bell Labs, Murray Hill, NJ 07974, USA. Abstract: Nonlinear and quantum optical devices based on periodically-poled thin film lithium niobate (PP-TFLN) have gained considerable interest lately, due to their significantly improved performance as compared to their bulk counterparts. Nevertheless, performance parameters such as conversion efficiency, minimum pump power, and spectral bandwidth strongly depend on the quality of the domain structure in these PP-TFLN samples, e.g., their homogeneity and duty cycle, as well as on the overlap and penetration depth of domains with the waveguide mode. Hence, in order to propose improved fabrication protocols, a profound quality control of domain structures is needed that allows quantifying and thoroughly analyzing these parameters. In this paper, we Citation: Reitzig, S.; Rüsing, M.; propose to combine a set of nanometer-to-micrometer-scale imaging techniques, i.e., piezoresponse Zhao, J.; Kirbus, B.; Mookherjea, S.; force microscopy (PFM), second-harmonic generation (SHG), and Raman spectroscopy (RS), to access Eng, L.M. -
High Temperature Ultrasonic Transducers: a Review
sensors Review High Temperature Ultrasonic Transducers: A Review Rymantas Kazys * and Vaida Vaskeliene Ultrasound Research Institute, Kaunas University of Technology, Barsausko st. 59, LT-51368 Kaunas, Lithuania; [email protected] * Correspondence: [email protected] Abstract: There are many fields such as online monitoring of manufacturing processes, non-destructive testing in nuclear plants, or corrosion rate monitoring techniques of steel pipes in which measure- ments must be performed at elevated temperatures. For that high temperature ultrasonic transducers are necessary. In the presented paper, a literature review on the main types of such transducers, piezoelectric materials, backings, and the bonding techniques of transducers elements suitable for high temperatures, is presented. In this review, the main focus is on ultrasonic transducers with piezoelectric elements suitable for operation at temperatures higher than of the most commercially available transducers, i.e., 150 ◦C. The main types of the ultrasonic transducers that are discussed are the transducers with thin protectors, which may serve as matching layers, transducers with high temperature delay lines, wedges, and waveguide type transducers. The piezoelectric materi- als suitable for high temperature applications such as aluminum nitride, lithium niobate, gallium orthophosphate, bismuth titanate, oxyborate crystals, lead metaniobate, and other piezoceramics are analyzed. Bonding techniques used for joining of the transducer elements such as joining with glue, soldering, -
Arxiv:2002.06594V2 [Physics.Optics] 26 Oct 2020 Tives to the Metallic Nanostructures
Resonantly tunable second harmonic generation from lithium niobate metasurfaces Junjun Ma,1 Fei Xie,1 Weijin Chen,2 Jiaxin Chen,1 Wei Wu,1 Wei Liu,3 Yuntian Chen,2 Wei Cai,1 Mengxin Ren,1, 4, a) and Jingjun Xu1, b) 1)The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300071, P.R. China 2)School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R.China 3)College for Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, Hunan 410073, P.R.China 4)Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, P.R. China (Dated: 27 October 2020) Second harmonic generation (SHG) is a coherent nonlinear phenomenon that plays an important role in laser color conversion. Lithium niobate (LN), which features both a large band gap and outstanding second-order nonlinearities, acts as an important optical material for nonlinear frequency conversion covering a wide spectral range from ultraviolet to mid-infrared. Here we experimentally demonstrate LN metasurfaces with controllable SHG properties. Distinct enhancements for the SHG efficiency are observed at Mie-resonances. And by changing the geometric parameters thus the resonances of the metasurfaces, we manage to selectively boost the SHG efficiency at different wavelengths. Our results would pave a way for developing with high flexibility the novel compact nonlinear light sources for applications, such as biosensing and optical communications. Keywords: Lithium niobate, Metasurface, Second harmonic generation, Resonance Second harmonic generation (SHG) plays a key role diffraction limit. -
SAFETY DATA SHEET Electrolyte Licl 1 Mol/L in Ethanol
SAFETY DATA SHEET according to Regulation (EU) No. 453/2010 Electrolyte LiCl 1 mol/l in ethanol 1. Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Product code 51350088, 51343183 Synonyms None. 1.2. Relevant identified uses of the substance or mixture and uses advised against Use of the Laboratory chemicals Substance/Preparation 1.3. Details of the supplier of the safety data sheet Company/Undertaking Mettler-Toledo AG Identification ANALYTICAL Sonnenbergstrasse 74 CH-8603 Schwerzenbach Schweiz Tel: +41-44-806-77-11 Fax: +41-44-806-73-50 Email: [email protected] 1.4. Emergency telephone +41-44-251 51 51 (Tox Center) number Revision Date 07.03.2014 Version GHS 1 2. Hazards identification 2.1. Classification of the substance or mixture Electrolyte LiCl 1 mol/l in ethanol (9830) V. GHS 1 / 07.03.2014 Print Date 28.03.2014 Page 1/10 Classification according to Flammable liquids, Cat. 2, H225 Regulation (EC) No. 1272/2008 (GHS/CLP) The product is classified and labelled according to Regulation (EC) No. 1272/2008 (GHS/CLP). Classification according to EU F; R11 Directives 67/548/EEC or 1999/45/EC Additional information For the full text of the phrases mentioned in this Section, see Section 16. 2.2. Label elements F Signal Word Danger Hazard Statements H225: Highly flammable liquid and vapour. Precautionary statements P210b: Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. P243: Take precautionary measures against static discharge. P280: Wear protective gloves/ protective clothing/ eye protection/ face protection. -
Optical Properties of KTP Crystals and Their Potential for Terahertz Generation
crystals Article Optical Properties of KTP Crystals and Their Potential for Terahertz Generation Alexander Mamrashev 1,* ID , Nazar Nikolaev 1 ID , Valery Antsygin 1, Yury Andreev 2,3, Grigory Lanskii 2,3 and Arkady Meshalkin 4 1 Institute of Automation & Electrometry, SB RAS, 1, Ac. Koptyug Ave., Novosibirsk 630090, Russia; [email protected] (N.N.); [email protected] (V.A.) 2 Institute of Monitoring of Climatic and Ecological Systems, SB RAS, 10/3, Akademicheskii Ave., Tomsk 634055, Russia; [email protected] (Y.A.); [email protected] (G.L.) 3 Siberian Physical Technical Institute of Tomsk State University, 1 Novosobornaya Sq., Tomsk 634050, Russia 4 Institute of Thermophysics, SB RAS, 1, Ac. Lavrent’ev Ave., Novosibirsk 630090, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-383-330-8378 Received: 30 June 2018; Accepted: 28 July 2018; Published: 31 July 2018 Abstract: High nonlinearity, wide transparency range and optical quality allowed potassium titanyl phosphate (KTiOPO4, KTP) crystals to be used in a wide range of nonlinear applications. The success of KTP usage in the visible and infrared (IR) ranges drives interest in applying it at longer wavelengths, that is, in the terahertz (THz) range. We use THz optical properties of KTP crystals measured by terahertz time-domain spectrometer (THz-TDS) and refractive index approximated in the form of Sellmeier equations to investigate KTP application possibilities for IR-to-THz and THz-to-THz wave conversion. As a result, phase matching for s − f ! f and s − f ! s types of difference frequency generation (DFG) of Ti:Sapphire laser (at the wavelengths of 0.65, 0.8 and 1.1 µm) is found possible, as well as second harmonic generation (SHG) of THz waves by f + s ! f type of interaction in the XZ principle plane of the crystal. -
Separation of Water out of Highly Concentrated Electrolyte Solutions Using Multistage Vacuum Membrane Distillation
Separation of water out of highly concentrated electrolyte solutions using multistage vacuum membrane distillation Bin Jiang Master of Science Thesis KTH School of Industrial Engineering and Management Energy Technology EGI-2013-082MSC EKV967 Division of Heat and Power SE-100 44 STOCKHOLM Master of Science Thesis EGI-2013-082MSC EKV967 Separation of water out of highly concentrated electrolyte solutions using multistage vacuum membrane distillation Bin Jiang Approved Examiner Supervisor 26.09.2013 Andrew Martin Daniel Minilu Woldemariam Commissioner Contact person Abstract Absorption dehumidification requires regeneration system to regenerate diluted desiccant solutions, which are still highly concentrated. A novel multi-stage vacuum membrane distillation system was applied for separating water out of the highly concentrated solution. The performance of this novel membrane distillation system with high concentration solution is studied, as well as the effect of solution concentration, heating temperature and feed flow rate on concentration increase, permeate flux and specific energy consumption was studied. Feed solutions are LiCl solution (22-30 wt%) and CH3COOK solution (50-60 wt%).Other experimental parameters studied were: heating temperature, 70-80 °C, feed flow rate, 1.2-2.0 l/min. Response surface method is applied for model building, in order to provide a better understanding of the interactions between different parameters. Compared with pure water, high concentration solution has lower vapor pressure, which leads to lower permeate flux. The highest concentration the system can reach is 36.5 wt% for LiCl solution and over 70 wt% for CH3COOK solution, when the heating temperature is 80 °C. Lower concentration and higher heating temperature will result in larger increase in concentration, higher permeate flux and also lower specific energy consumption. -
Ionic Compound Ratios Time: 1 -2 Class Periods
Collisions Lesson Plan Ionic Compound Ratios Time: 1 -2 class periods Lesson Description In this lesson, students will use Collisions to explore the formation of ionic compounds and compound ratios. Key Essential Questions 1. What makes up an ionic compound? 2. Are ionic compounds found in common ratios? Learning Outcomes Students will be able to determine the ionic compound ratio of an ionic compound. Prior Student Knowledge Expected Cations are postiviely charged ions and anions are negatively charged ions. Lesson Materials • Individual student access to Collisions on tablet, Chromebook, or computer. • Projector / display of teacher screen • Accompanying student resources (attached) Standards Alignment NGSS Alignment Science & Enginnering Practices Disciplinary Core Ideas Crosscutting Concepts • Developing and using • HS-PS-12. Construct and • Structure and Function models revise an explanation for the • Construcing explanations outcome of a simple chemical and designing solutions rection based on the outermost electron states of atoms, trends int he periodic table, and knowl- edge of the partterns of chemi- cal properties. www.playmadagames.com ©2018 PlayMada Games LLC. All rights reserved. 1 PART 1: Explore (15 minutes) Summary This is an inquiry-driven activity where students will complete the first few levels of the Collisions Ionic Bonding game to become introduced to the concept of ionic bonding and compound ratios. Activity 1. Direct students to log into Collisions with their individual username and password. 2. Students should enter the Ionic Bonding game and play Levels 1-6 levels. 3. Have your students answer the following questions during gameplay: 1. What combination of ions did you use to successfully match a target? 2. -
Integrated Photonics on Thin-Film Lithium Niobate
Integrated photonics on thin-film lithium niobate DI ZHU,1,* LINBO SHAO,1 MENGJIE YU,1 REBECCA CHENG,1 BORIS DESIATOV,1 C. J. XIN,1 YAOWEN HU,1 JEFFREY HOLZGRAFE,1 SOUMYA GHOSH,1 AMIRHASSAN SHAMS-ANSARI,1 ERIC PUMA,1 NEIL SINCLAIR,1,2 CHRISTIAN REIMER,3 MIAN ZHANG,3 AND MARKO LONČAR1,* 1John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, USA 2Division of Physics, Mathematics and Astronomy, and Alliance for Quantum Technologies (AQT), California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA 3HyperLight Corporation, 501 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA [email protected], [email protected] Lithium niobate (LN), an outstanding and versatile material, has influenced our daily life for decades: from enabling high-speed optical communications that form the backbone of the Internet to realizing radio-frequency filtering used in our cell phones. This half-century-old material is currently embracing a revolution in thin-film LN integrated photonics. The success of manufacturing wafer-scale, high-quality, thin films of LN on insulator (LNOI), accompanied with breakthroughs in nanofabrication techniques, have made high-performance integrated nanophotonic components possible. With rapid development in the past few years, some of these thin-film LN devices, such as optical modulators and nonlinear wavelength converters, have already outperformed their legacy counterparts realized in bulk LN crystals. Furthermore, the nanophotonic integration enabled ultra-low-loss resonators in LN, which unlocked many novel applications such as optical frequency combs and quantum transducers. In this Review, we cover—from basic principles to the state of the art—the diverse aspects of integrated thin- film LN photonics, including the materials, basic passive components, and various active devices based on electro-optics, all-optical nonlinearities, and acousto-optics. -
Lithium Isotope Effects Upon Electrochemical Release from Lithium Manganese Oxide
Available online at www.sciencedirect.com ScienceDirect Energy Procedia 71 ( 2015 ) 140 – 148 The Fourth International Symposium on Innovative Nuclear Energy Systems, INES-4 Lithium isotope effects upon electrochemical release from lithium manganese oxide Koji OKANOa, Yuta TAKAMIa, Satoshi YANASEa, Takao OIa,* a Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, Tokyo, 102-8554 Japan Abstract Lithium was electrochemically released from lithium manganese oxide (LiMn2O4) to an electrolyte solution, a 1:2 v/v mixed solution of ethylene carbonate (EC) and ethylmethyl carbonate (EMC) containing 1 M lithium perchlorate or sodium perchlorate (EC/EMC/LiClO4 or EC/EMC/NaClO4) to observe the lithium isotope effects that accompanied the lithium release. The lighter isotope of lithium, 6Li, was preferentially fractionated to the electrolyte solution phase, with the value of the lithium isotope separation factor ranging from 0.989 to 0.971 at 25 ºC. The degree of the lithium isotope fractionation was slightly smaller in the LiMn2O4-EC/EMC/NaClO4 system than in the LiMn2O4-EC/EMC/LiClO4 system. The present systems are in great contrast with the lithium cobalt oxide (LiCoO2)-the electrolyte solution systems concerning the direction and magnitude of the lithium isotope effects, which seems mostly ascribable to the structural difference between LiMn2O4 and LiCoO2ࠋ © 20152014 TheThe Authors. Authors. Published Published by Elsevierby Elsevier Ltd. Ltd.This is an open access article under the CC BY-NC-ND license Selection(http://creativecommons.org/licenses/by-nc-nd/3.0/ and peer-review under responsibility). of the Tokyo Institute of Technology. Selection and peer-review under responsibility of the Tokyo Institute of Technology Keywords: lithium isotopes; isotope effects; lithium manganese oxide; separation factor; lithium ion secondary batteries; ethylene carbonate 1. -
Lithium Sulfate
SIGMA-ALDRICH sigma-aldrich.com Material Safety Data Sheet Version 4.1 Revision Date 09/14/2012 Print Date 03/12/2014 1. PRODUCT AND COMPANY IDENTIFICATION Product name : Lithium sulfate Product Number : 203653 Brand : Aldrich Supplier : Sigma-Aldrich 3050 Spruce Street SAINT LOUIS MO 63103 USA Telephone : +1 800-325-5832 Fax : +1 800-325-5052 Emergency Phone # (For : (314) 776-6555 both supplier and manufacturer) Preparation Information : Sigma-Aldrich Corporation Product Safety - Americas Region 1-800-521-8956 2. HAZARDS IDENTIFICATION Emergency Overview OSHA Hazards Target Organ Effect, Harmful by ingestion. Target Organs Central nervous system, Kidney, Cardiovascular system. GHS Classification Acute toxicity, Oral (Category 4) GHS Label elements, including precautionary statements Pictogram Signal word Warning Hazard statement(s) H302 Harmful if swallowed. Precautionary none statement(s) HMIS Classification Health hazard: 1 Chronic Health Hazard: * Flammability: 0 Physical hazards: 0 NFPA Rating Health hazard: 1 Fire: 0 Reactivity Hazard: 0 Potential Health Effects Inhalation May be harmful if inhaled. May cause respiratory tract irritation. Aldrich - 203653 Page 1 of 7 Skin Harmful if absorbed through skin. May cause skin irritation. Eyes May cause eye irritation. Ingestion Harmful if swallowed. 3. COMPOSITION/INFORMATION ON INGREDIENTS Formula : Li2O4S Molecular Weight : 109.94 g/mol Component Concentration Lithium sulphate CAS-No. 10377-48-7 - EC-No. 233-820-4 4. FIRST AID MEASURES General advice Move out of dangerous area.Consult a physician. Show this safety data sheet to the doctor in attendance. If inhaled If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician. -
Synthesis, Reactivity, and Catalysis of Group 3 and Lanthanide Alkyl Complexes
Synthesis, Reactivity, and Catalysis of Group 3 and Lanthanide Alkyl Complexes By Daniel Steven Levine A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor T. Don Tilley, Co-Chair Professor Richard A. Andersen, Co-Chair Professor Alexis T. Bell Summer 2016 Abstract Synthesis, Reactivity, and Catalysis of Group 3 and Lanthanide Alkyl Complexes by Daniel Steven Levine Doctor of Philosophy in Chemistry University of California, Berkeley Professor T. Don Tilley, Co-Chair Professor Richard A. Andersen, Co-Chair Chapter 1. A series of scandium dialkyl complexes, (PNP)ScR2 (R = neopentyl, trimethylsilylmethyl), supported by the monoanionic, chelating PNP ligand (2,5- bis(dialkylphosphinomethyl)pyrrolide; alkyl = cyclohexyl, tert-butyl) was synthesized and the reactivities of these complexes toward simple hydrocarbons was investigated. The scandium– carbon bonds undergo σ-bond metathesis reactions with hydrogen and these complexes are catalysts for the hydrogenation of alkenes. Reactions with primary amines led to formation of amido complexes that undergo cyclometalation via σ-bond metathesis, without involvement of an imido complex intermediate. A variety of carbon-hydrogen bonds are also activated, including sp-, sp2-, and sp3-C–H bonds (intramolecularly in the latter case). Levine, D. S.; Tilley, T. D.; Andersen, R. A. Organometallics 2015, 34 (19), 4647. Chapter 2. Terminal group 3 methylidene complexes are generated by thermolysis of monoanionic PNP-supported scandium and yttrium dialkyl complexes. The reaction mechanism has been probed by deuterium-labeling experiments and DFT calculations. Abstraction of a γ- hydrogen from one alkyl group by the other affords a metallacyclobutane that undergoes [2+2] cycloreversion, analogous to a key step in the olefin metathesis reaction, to generate a methylidene complex and isobutene. -
S41467-020-19206-W.Pdf
ARTICLE https://doi.org/10.1038/s41467-020-19206-w OPEN Unravelling the room-temperature atomic structure and growth kinetics of lithium metal Chao Liang 1, Xun Zhang1, Shuixin Xia1, Zeyu Wang1, Jiayi Wu1, Biao Yuan 1, Xin Luo1, Weiyan Liu1, ✉ Wei Liu 1 &YiYu 1 Alkali metals are widely studied in various fields such as medicine and battery. However, limited by the chemical reactivity and electron/ion beam sensitivity, the intrinsic atomic 1234567890():,; structure of alkali metals and its fundamental properties are difficult to be revealed. Here, a simple and versatile method is proposed to form the alkali metals in situ inside the transmission electron microscope. Taking alkali salts as the starting materials and electron beam as the trigger, alkali metals can be obtained directly. With this method, atomic resolution imaging of lithium and sodium metal is achieved at room temperature, and the growth of alkali metals is visualized at atomic-scale with millisecond temporal resolution. Furthermore, our observations unravel the ambiguities in lithium metal growth on garnet-type solid electrolytes for lithium-metal batteries. Finally, our method enables a direct study of physical contact property of lithium metal as well as its surface passivation oxide layer, which may contribute to better understanding of lithium dendrite and solid electrolyte interphase issues in lithium ion batteries. ✉ 1 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China. email: [email protected] NATURE COMMUNICATIONS | (2020) 11:5367 | https://doi.org/10.1038/s41467-020-19206-w | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19206-w t has been a long history for the research on alkali metals1, the to control the dose-rate of the electron beam.