Cationic Exchange Reactions Involving Dilithium Phthalocyanine
Total Page:16
File Type:pdf, Size:1020Kb
CATIONIC EXCHANGE REACTIONS INVOLVING DILITHIUM PHTHALOCYANINE A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By MORGAN M. HART B.C.E., University of Dayton, 1998 M.S., University of Dayton, 2004 2009 Wright State University WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES December 11, 2009 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Morgan M. Hart ENTITLED Cationic Exchange Reactions Involving Dilithium Phthalocyanine BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science . ______________________________ William A. Feld, Ph.D. Thesis Director ______________________________ Kenneth Turnbull, Ph.D. Department Chair Committee on Final Examination _________________________________ Vladimir Katovic, Ph.D. _________________________________ David Grossie, Ph.D. _________________________________ William A. Feld, Ph.D. _________________________________ Joseph F. Thomas, Jr., Ph.D. Dean, School of Graduate Studies ABSTRACT Hart, Morgan M. M.S., Department of Chemistry, Wright State University, 2009. Cationic Exchange Reactions Involving Dilithium Phthalocyanine. Dilithium phthalocyanine (Li2Pc) consists of an aromatic macrocycle possessing a doubly negative charge and two Li+ counterions. One Li+ ion is easily displaceable while the other remains coordinated to the phthalocyanine ring. The displaceable Li+ cation can be exchanged with other cations, such as a singly charged tetra-alkyl ammonium cation, by using several variations of a general procedure. It has been demonstrated that tetraalkylammonium lithium phthalocyanines (TAA-LiPcs) can be successfully and reproducibly synthesized with yields ranging from 54.5% up to 64.3%. All TAA-LiPcs demonstrated poor solubilities from approximately <0.2 mg/mL to 5 mg/ml in the solvents tested (with the exception of tetrapropylammonium lithium phthalocyanine and tetrahexylammonium lithium phthalocyanine). All of the TAA-LiPcs synthesized were dark-purple in color, with the exception of tetraheptylammonium lithium phthalocyanine and tetraoctylammonium lithium phthalocyanine. These two compounds were dark –blue in color. Melting points varied greatly from >370.4°C to 157.9°C and depended greatly upon the alkyl-chain length of the exchanged cation. iii TABLE OF CONTENTS Page ABSTRACT.............................................................................................................. iii TABLE OF CONTENTS ...........................................................................................iv LIST OF FIGURES...................................................................................................vii LIST OF TABLES ..................................................................................................... x DEDICATION...........................................................................................................xi ACKNOWLEDGMENTS .........................................................................................xii INTRODUCTION...................................................................................................... 1 HISTORICAL............................................................................................................ 2 Phthalocyanines: History and Structure ...................................................................... 2 Phthalocyanines: Crystal Structure ............................................................................. 5 Phthalocyanines: Synthesis......................................................................................... 5 Phthalocyanines: Derivatives...................................................................................... 8 Phthalocyanines: Polymers......................................................................................... 9 Phthalocyanines: Current Uses .................................................................................. 10 Dilithium Phthalocyanine: Synthesis and Characteristics........................................... 10 Dilithium phthalocyanine: Crystal Structure.............................................................. 12 Lithium Phthalocyanine: Radical and Polymorphism................................................. 14 Tetraalkylammonium Lithium Phthalocyanines......................................................... 15 Tetraalkylammonium Salts: Synthesis and Structure.................................................. 16 iv TABLE OF CONTENTS (CONTINUED) Page Tetralkylammonium Salts: Uses ................................................................................ 17 Tetramethylammonium Lithium Phthalocyanine: Hydrogen Storage ......................... 17 1,3-Bis(1-adamantyl)imidazolium Lithium Phthalocyanine: Crystal Structure........... 19 EXPERIMENTAL .................................................................................................... 23 Chemicals and Instrumentation............................................................................ 23 Tetramethylammonium Lithium Phthalocyanine 29............................................. 23 Tetraethylammonium Lithium Phthalocyanine 32................................................ 24 1,3-Bis(1-adamantyl)imidazolium Lithium Phthalocyanine 31............................. 24 General Preparation of Tetraalkylammonium Lithium Phthalocyanines ............... 24 Tetrapropylammonium Lithium Phthalocyanine 33.............................................. 25 Tetrabutylammonium Lithium Phthalocyanine 23................................................ 25 Tetrahexylammonium Lithium Phthalocyanine 34............................................... 26 Tetraheptylammonium Lithium Phthalocyanine 35.............................................. 26 Tetraoctylammonium Lithium Phthalocyanine 36................................................ 27 RESULTS AND DISCUSSION ................................................................................ 28 Overview................................................................................................................... 28 Elemental Analysis.................................................................................................... 29 Melting Points........................................................................................................... 30 Solubilities ................................................................................................................ 31 1H-NMR Spectroscopy .............................................................................................. 32 13C-NMR Spectroscopy ............................................................................................. 41 IR Spectroscopy ........................................................................................................ 49 v TABLE OF CONTENTS (CONTINUED) Page UV-Vis Spectroscopy................................................................................................ 53 Powder Diffraction (XRD) Studies ........................................................................... 55 Conclusions............................................................................................................... 55 References................................................................................................................. 58 Vita ........................................................................................................................... 60 vi LIST OF FIGURES Figure Page 1. Top down view of 5a and side view of 5b ........................................................ 4 2. Pictorial representation of 2 based on ab initio computer calculations.............. 11 3. Proposed model for Li ion conducting channels............................................... 12 4. Unit cell of 20, viewed looking down the a axis............................................... 13 5. Diagram depicting ILD and IMD of 30............................................................ 19 6. Pictorial representation of crystal lattice of 31 demonstrating 10.10 Å separation between 17 ..................................................................................... 20 7. Crystal packing of 31 demonstrating stair-step stacking of 17.......................... 21 8. Simple packing view (a) rods and (b) space-filling model demonstrating steric hindrance within crystal lattice............................................................... 22 9. Trend showing decreasing melting point with growing alkyl chain substituents ..................................................................................................... 31 1 10. H-NMR spectra of Pr4NLiPc 33 in (a) acetone-d6 and (b) CDCl3…………….33 11. Pr4NLiPc 33 with the location of unique protons HA – HE shown.…………….34 1 12. H-NMR spectra of Bu4NLiPc 23 in (a) acetone-d6 and (b) CDCl3…………….35 13. Bu4NLiPc 23 with the location of unique protons HA – HF shown…………….36 1 14. H-NMR spectra for Hex4NLiPc 34 in (a) acetone-d6 and (b) CDCl3………….37 15. Hex4NLiPc 34 with the location of unique protons HA – HH shown…………...38 1 16. H-NMR spectra for Hept4NLiPc 35 in acetone-d6……………………………..39 17. Hept4NLiPc 35 with the location of unique protons HA – HI shown…………...40 1 18. H-NMR spectra for Oct4NLiPc 36 in acetone-d6………………………………40 vii LIST OF FIGURES (CONTINUED) Figure Page 19. Oct4NLiPc with the location of unique protons HA – HJ shown……………….41 20. The four unique carbon atoms (labeled a, b, c, and d) of LiPc-1 17……………42 13 21. C-NMR spectrum of Pr4NLiPc 33 in CDCl3………………………………….42