Copyright (c) American Society for Taxonomists. All rights reserved. Delivered by Ingenta to IP: 192.168.39.151 on: Tue, 28 Sep 2021 22:12:31 a solitary, pendulousovule ineachcarpel.With theexception that isoftenpinnate ratherthanpalmate,and thepresence of involucral bracts,areduction orlossofstipules,leafvenation of the (= DOI 10.1600/036364411X569589 © Copyright2011 bythe American SocietyofPlantTaxonomists Systematic Botany ance alongwith Bates (1968) includedthesegenerainthe sister totheendemicNewZealand (Hook.) Melvilleformawell-supportedmonophyleticgroup, suggest that G. Forst.(,). the NewZealandendemicgenus to studytheevolutionofsomethesedistinctivetraits in and Dawson2009 ). Here weuseaphylogeneticframework feature oftheNewZealandflora( Cockayne 1901 , 1912 ; Burns opment (leafheteroblasty) represent yetanotherdistinctive et al.2004 ). Abrupt changesinleafmorphologyduring devel- at awideangleandbearsmallleaves( Kelly 1994 ; McGlone acterized bycloselyinterlacingshortwirytwigsthatbranch oftenshare anunusual divaricategrowth habitchar- evergreen, butinterestingly thefewplantswithdeciduous The woodyplantsofNewZealandare alsooverwhelmingly ( Godley 1979 ; Lloyd 1985 white flowersthatare pollinated byunspecializedinsects ; Newstrom andRobertson2005 ). and theprevalence ofplants withsmall,simple,nonshowy, gender-dimorphic ( Godley 1979 ; particular,Webb theevolutionofarelatively large proportion etal.1999 of ), lution ofdistinctivefeatures oftheNewZealandflora;in establishment, anddiversificationwere criticalfortheevo- gested thattheinterplaybetweenlong-distancedispersal, and highlevelsofmorphologicaldiversity. Lloyd (1985) sug- endemic familyand65genera; de Langeetal.2006 ), 82% ofthespeciesfoundinarchipelago are endemic(one ation. Itiswellknownforitshighlevelofendemism,where The NewZealandfloraisanexcellentexampleofthissitu- characteristics ascompared totheircontinentalrelatives. on oceanicislandshavebeenappreciated fortheirunique taxa J. R.Forst&G.Forst.alongwiththemonotypic Australian Recent studiesof Wagstaff etal.(2010) and Tate etal.(2005) Since theearlydaysofbotanicalexploration,plantsfound Lawrencia Plagianthusdivaricatus with deciduousleavesandsmallinconspicuousdioeciousflowers.Juvenilevegetativemorphologysexualmaturationare decou after thelineagebecameestablishedinNewZealandandshowntobeapomorphic.Theinitial from andshowntobeplesiomorphic.Onlythedivaricatebranchingpatterncharacteristicof and thecrown radiationat3.9(1.9–8.2)Ma.Mostofthecharactersoptimizedontomolecularphylogenywere shared withsou era robust frameworktostudycharacterevolution.Ourfindingssuggesttheancestorof and montaneforests. Resultsfrom independentanalysesofITSand5 Abstract— Keywords— Plagianthus Asterotrichion 2

Massey University, InstituteofMolecularBiosciences,PrivateBag11222, PalmerstonNorth,NewZealand (2011), 36(2):pp.405–418 sect. ; heteroblastic vegetativedevelopmentiswelldocumentedin As presently circumscribed, Lawrencia aein nlss, dvrec tm etmts, ln-itne ipra ava e Zaad, Zealand, New Malveae, dispersal, long-distance estimates, time divergence analyses, Bayesian Selenothamnus allianceare characterizedbythelackof and (Willd.) Alef. and , adivaricateshrub, isadominantspeciesincoastalsalineshrub communities,whereas Gynatrix 1 Pyoey n Caatr vlto i te e Zealand New the in Evolution Character and Phylogeny Allan Herbarium,Landcare Research, POBox40, Lincoln 7640,NewZealand Hook.and Endemic Genus (Poit.)Hochr. and are presently distributed.Thestemageof 3 , fide Lander 1984 ). Members Author forcorrespondence ([email protected]) Plagianthus Selenothamnus tvn . Wagstaff J. Steven Asterotrichion discolor Plagianthus Hoheria Communicating Editor:LúciaLohmann Plagianthus J.R.Forst& P. divaricatus includestwomorphologicallydistinctspeciesthatare endemictoNewZealand. A Cunn. A. Plagianthus Melville alli- 1

, 405 3 n enfr . Tate A. Jennifer and ′

trnK Plagianthus subspecies of or onlyweakly scented( Cockayne 1958 ; are sweetlyscented,butthefemaleflowersare unscented Allan 1961 ). Two and formconspicuous,compound cymes.Themaleflowers nate. Thesmallyellowishflowers mature intheearly spring ovate-lanceolate, 2.5–7cmlong, coarselytoothed,andacumi- on nutrient-richsoils( Figs. 1F–K ). Theleavesare ovateto upto15mthatiscommoninlowlandforests particularly ally hybridizeswith ( Fig. 2 ), butextendsinlandalongtidalriverswhere itoccasion- divaricatus duced inearlyspringfrom SeptembertoOctober. the maleflowersare sweetlyscented.Theflowersare pro- with paleyelloworwhitishpetalsedgedpurple.Only from muchreduced branchlets.Theflowersare dioecious ear tolinear-ovate leavesare slightlycoriaceousandemerge interlacing. Theinteriorbranchesare naked.Thesmall,lin- short wirytwigsthatdiverge atawideangleandare closely The lateralspassupwards andoutwards ultimatelyforming main stemisgenerallystout,withnumerous lateralbranches. appearance maybewiryandclose,ortwiggyopen.The ing growth habit( Cockayne 1958 ; a deciduousshrub withanunusualfiliramulatedivaricat- Allan 1961 ). Itsoutward small axillarycymes( Figs. 1A–E ear entire leaves,andflowers thatare solitaryorfoundin ). tinguished from alliance remain unknown ( Tate etal.2005 ). but chromosome numbers ofothermembersthe n and for juvenile leavesare markedly different from theadults,except genera exhibitheteroblastic leafdevelopmentinwhichthe Abutilon carpels, standsoutandmore closelyresembles generainthe with showybisexualflowers,capitatestigmasandfive–15 (varying from onetosix), andpartialseedabortion. form orclavatestylebranches,areduced numberofcarpels unisexual flowerswithstigmalobesthatare decurrent onfili- of Plagianthus =21( Groves andHair1971 ; Dawson andBeuzenberg 2000 ), (Malveae,Malvaceae) The typeofthegenus, / Hoheria P. regius matK Hoheria sequencesare congruent, andwhencombinedprovide a alliance ( Bates 1968 ). BothoftheendemicNewZealand andcloserelatives. Plagianthus iscommonlyfoundnearthecoastinsaltmarshes , membersofthe wasestimatedat7.3(4.0–14.0)millionyearsago(Ma) ssp. alsoshare ahaploidchromosome numberof P. regius chathamicus

P. regius Plagianthus originatedin Australia where thesistergen- P. regius 2

are known:ssp. Plagianthus divaricatus, byitsdivaricategrowth habit, lin- Plagianthus divaricatus founderswere orsmalltrees (Cockayne)deLange. . . Plagianthus Plagianthus regius Plagianthus. P. regius Plagianthus divaricatus isatree oflowland alliancehavesmall

regius wasacquired isadeciduous rce lineages isreadily dis- i widely is Plagianthus Plagianthus Plagianthus pled in Hoheria is ,

Copyright (c) American Society for Plant Taxonomists. All rights reserved. Delivered by Ingenta to IP: 192.168.39.151 on: Tue, 28 Sep 2021 22:12:31 0 SSEAI OAY [Volume 36 SYSTEMATIC BOTANY 406 for theflowersB, C, D,G,H,I,Jand1mmforthefruits E,K. stamens surrounded bypetals.J.Staminate floweratanthesiswithreflexed petals.K.Mature fruit. Thescale bar=1cmforh etative shootwith attachedfruits. G.Immature pistillate flowershowingsterileanthers. H.Mature pistillateflower. I.Imma fruits. B.Pistillateflower. C.Immature staminateflower. D.Staminate floweratanthesiswithreflexed petals.E.Mature fru Fig. 1 1. Comparison ofthemorphological characteristicsof Plagianthus divaricatus and P. regius . - A-E . P. divaricatus : A. Vegetative shootwithattached it. F-K abit illustrations A, F;1mm ture staminate flowerwith P. regius : F. Adult veg- Copyright (c) American Society for Plant Taxonomists. All rights reserved. Delivered by Ingenta to IP: 192.168.39.151 on: Tue, 28 Sep 2021 22:12:31 Plagianthusregius km eastoftheSouthIsland( Mueller 1864 ; de Lange2008 Islands, asmallisolatedarchipelago approximately 800 ). ( Fig. 2 ), whereas ssp. distributed ontheNorthandSouthIslandsofNewZealand 407 WAGSTAFF AND TATE: PHYLOGENY AND CHARACTEREVOLUTIONINPLAGIANTHUS 2011] Symbols represent specimensheldinthe Allan Herbarium(CHR). related genera, secondtoestimatethe age ofthelineagein genetic relationships within esis. Ourresearch aims were threefold: firsttoinferphylo- a phylogeneticframeworkcould beusedtotestthishypoth- persistence, andspeciationin island .Hesuggestedthat cies selectionbrought aboutbydifferential rates ofmigration, lishment ofplantswithdifferent characterswasaformofspe- and Dawson2009 ). the lackofadivaricatingjuvenilephase( de Lange2008 ; Burns Fig. Lloyd (1985) proposed thatnonrandomdispersalandestab- 2 2. Generalized distribution mapof ssp. chathamicus chathamicus Plagianthus isrestricted totheChatham differs from ssp. Plagianthus divaricatus andamongclosely regius and by P . . regius Gynatrixpulchella from the ChathamIslands).Outgroups included out NewZealand (includingtwosamplesof samples of To assesslevelsofintraspecific variationin tatives ofallsixgeneracomprising the ment theITSsequences.Oursample included28sequenceswithrepresen- et al.2010 ) withtheadditionofchloroplast-encoded sequencestocomple- ies ofNewZealandMalveae( Heenan etal.2005 ; Tate etal.2005 ; Wagstaff after ing traitscharacteristicofthesource from thosethatevolved of theinitialfoundingpopulation New Zealand,andthird toinfertheancestralcharacteristics . BoxshowsthepositionofNewZealandinrelationship to Australia. ao Sampling— Taxon Plagianthus P. divaricatus ( Tate etal.2005 ), andonerepresentative from theseven becameestablishedinNewZealand. aeil ad Methods and Materials This studybuildsuponourearlierphylogeneticstud- andninesamplesof Plagianthus Plagianthus Plagianthus P. regius P. regius allianceof Bates (1968) . Asterotrichion discolor cletd through- collected , weincluded five ssp. , distinguish- , chathamicus ,

Copyright (c) American Society for Plant Taxonomists. All rights reserved. Delivered by Ingenta to IP: 192.168.39.151 on: Tue, 28 Sep 2021 22:12:31 shrubs included in 1,000 generations. Theaveragestandard deviation ofthesplitfrequencies Tree diagnosticsandthechain samplefrequency were calculatedevery value of0.2to0.05 toimprove theacceptance ratebetweenchainswaps. chain discarded asburn-in.Thetemperature wasreduced from the default assure stationarity, andthendiscarded 25%ofthesamplesfrom thecold chains: three heatedandonecold.We monitored thelikelihoodvaluesto MCMC samplingofthetarget distribution.Eachanalysisconsisted offour and Huelsenbeck2003 ). Metropolis couplingwasusedtoimprove the ing from adifferent randomtree ( Huelsenbeck andRonquist2001 ; Ronquist Carlo (MCMC)analysesfor10million generations,witheachsearch start- character data. gap datapartitions,andthestandard discrete modelwasappliedtothe parameter. Thebinarymodelwithvariablecodingbiaswasusedforthe uniform priorsfortheproportion ofinvariablesiteswithagammashape partitions withflatpriorsfortheratematrixandnucleotidefrequency and most appropriate modelof sequenceevolutionforthetwodata Buckley 2004 ). Thegeneraltimereversible (GTR)wasidentifiedasthe implemented inModeltest3.06( Posada andCrandall1998 ; Posada and Criterion (AIC)andBayesianInformation(BIC),which are and parameterestimateswere determinedbythe Akaike Information tition ( Nylander etal.2004 ). Appropriate maximumlikelihoodmodel we applieddifferent evolutionarymodelsandparameterstoeachpar- are describedin Appendix 2.Sincethefive datapartitionswere unlinked, form. Characterstatesandtheirdistributionforthislatterdatapartition butes of character datasetcomprisedofsometheecologicallyimportantattri- regions (ITSand5 swapping, andMULPARS ineffect. ADDITION withonereplication foreachbootstrapreplicate, TBRbranch excluding uninformativesites;startingtrees were obtained byRANDOM clades wasestimatedbybootstrap( Felsenstein 1985 ) with1,000replicates results, wecombinedthesequenceandgapdatapartitions.Supportfor (2006) . IntheabsenceofsignificantconflictasindicatedbyILDtest ing uninformativesitesaswassuggestedby Hipp etal.(2004) and Ramirez ILD test( Farris etal.1994 , 1995 ) with100datapartitionreplicates exclud- weighted. Congruence ofthemoleculardatamatriceswasassessedby with amaximumlengthofzero. Characterswere unordered andequally were eliminatedusingthecondensetrees optionand collapsingbranches effect, andRANDOM ADDITION with1,000replicates. Duplicatetrees [Volume 36 ( Swofford 2002 ). Searches usedTBRbranchswapping,MULPARS in mony (MP)analysesofthetwosequencedatasetsusingPAUP* 4.0b10 difficult tomodelthisdifference insubstitutionrateadequately. tions differs from thenucleotidesubstitutionrateandfeltthatitwouldbe time estimates.We assumedthatthemutationrateforinsertionsordele- the parsimonyandBayesiananalyses,butexcludedfrom thedivergence The presence andabsenceofindelswere codedseparatelyandincludedin fered in length,sequence,orpositionwere treated asdifferent characters. binary charactersfollowing Simmons andOchoterena (2000 ). Gapsthatdif- logenetic analyses.Gapsinthesamepositionwere treated ashomologous and gapsinsertedmanuallytoensure positionalhomologypriortothephy- ( Thompson etal.1997 ). Theresulting alignments were visuallyinspected Corporation, AnnArbor,Michigan). strands were sequencedandeditedusingSequencher4.8(GeneCodes North, NewZealand.Inallinstances,bothforward andreverse DNA SYSTEMATIC BOTANY Allan Wilson Centre GenomeServiceatMasseyUniversity, Palmerston an ABI3730 sequencer(AppliedBiosystems,FosterCity, California)bythe Burlington, OntarioCanada)treatment. Sequencingreactions were run on Giles, UnitedKingdom)/ExonucleaseI(FermentaseInternationalInc, Alkaline Phosphatase(GEHealthcare, GlobalHeadquarters,CahlfontSt. corporated nucleotideswere removed from PCRproducts byaShrimp and 5 ommended protocols. Amplification andsequencingprocedures forITS Inc., CliftonHill,Victoria, rec- Australia) followingthemanufacturer’s barium specimens,usingaQiagenDNeasyextractionkit(QIAGENPty extracted from fresh leaves,leavesdriedwithsilicagel,orfrom her- author andfrom TreeBASE (studynumberS10541). Appendix 1.Thecompletedatasetsare availableonrequest from thefirst information, alongwithGenBankaccessionnumbersare presented in rooted ouranalysisalongthelong-branchleadingtothesetaxa.Voucher two herbaceousrepresentatives of species currently includedin 408 Using MrBayes3.1.2,werantwoindependentMarkovChainMonte We defined fivedatapartitionsthatcorresponded tothetwoDNA Analyses— Phylogenetic Alignment— Sequence DNA Extraction,AmplificationandSequencing— ′

trnK Plagianthus, / matK follow Wagstaff etal.(2010) . Excessprimersandunin- ′

trnK/matK Lawrencia suchasgeographicdistribution,habitat,andlife Sequences were initiallyalignedusingClustalX We conductedindependent maximumparsi- ), gapdatasetsforeachDNA region, anda sect. Hoheria Selenothamnus Lawrencia (Wgtf e a. 00) W included We 2010). al. et (Wagstaff sect. ( Tate etal.2005 ); we Lawrencia oa DA was DNA Total , andtwo intervals tothedivergence estimatesatdesignatednodesinthe ML tree. description. We thenused theprofile commandto summarizeconfidence withbranchlengthsandtaxonlabelsasanintegralpart ofthetree in an ALNEXUS format(withoutatranslationtable). Thisoptionsaves search, and100rooted bootstraptrees withML branchlengthswere saved 2003 ). TheinitialML tree wasusedasaconstraintduringbootstrap with thedivergence dates were calculatedusingbootstrapping( Sanderson cross-validation usingr8s ( Sanderson 2002b ). Confidencelimitsassociated divergence estimateswas drawnusingFigTree ( Rambaut 2006– 2008 ). 95% highestposteriordensity(HPD)confidenceintervalsonthebranch summarize theinformationintree outputfiles;asummarytree with TreeAnnotator ( Drummond andRambaut2007 ) were usedtocombineand (files are availableuponrequest from thefirstauthor).LogCombinerand Drummond 2007 ) tooptimizepriorsand assesseffective samplessizes 1,000 generations.Logfileswere examinedusingTracer 1.4( Rambaut and chain wasrun forthree milliongenerations, loggingparametersevery mated. Thetree priorwas settoa Yule speciationprocess. TheMCMC and invariantsites,fourgammacategories,thebasefrequencies esti- molecular clockmodel.We usedtheGTRsubstitutionmodelwithgamma ( Drummond andRambaut2007 ) witharelaxed, uncorrelated, log-normal means withconfidencelimitssurrounding themeanvalues. gence timesatthree well-supportednodes.Theresults are presented as applied Bayesianandmaximumlikelihoodapproaches toestimatediver- 1994 ; Trewick etal.2007 ; of theChathamIslandsbetween1and3millionyearsago( Landis etal.2008 Campbell etal. ; Wallis andTrewick 2009 ). We Plagianthusregius Island endemic and anupperboundof3.0,wasplacedonthenodeseparatingChatham 2007 ; Byrne etal.2008 ). A third uniformprior, withalowerboundof1.0 the NullarborPlainsduringMiocene( Crisp etal.2004 ; Crisp andCook Australian endemicsaccompaniedincreased aridityandtheexpansionof distributed across southern Australia. DiversificationofmanyWestern Australian endemic intervals of12.4–14.6,wasplacedonthenodeseparatingwestern ond prior, withalog-normaldistributionof13.5Ma95%confidence et al.2004 ; Wilf etal.2005 ; 1990 Barreda etal.2007 ; ; Barreda 1993 Iglesias etal.2007 ; ). A sec- Macphail 1997 and South America ( ; Mildenhall 1980 ; Dettmann andClifford 2000 Pocknall 1982 ; ; Mautino Zamaloa andRomero appearance offossilsattributedtotheMalveaein Australia, NewZealand, Hoheriaangustifolia. 60 Maforthemostrecent commonancestor(mrca) of 44.7 millionyearsago(Ma)withaprobability distributionthattailsoff to 2009 ). We placedanexponentialpriordistributionof3withazero offset of divergence timeestimatesonthree calibrationpoints (see Ho andPhillips approaches toaccommodaterateheterogeneity across lineages. and Rambaut2007 ) andpenalizedlikelihood( Sanderson 1997 1988 , ). Intheabsenceofamolecularclock,weusedBayesian( Drummond 2002a ) tree, withandwithoutenforcing amolecularclockandthe −2 logLR;where LRisthedifference betweenthe–lnlikelihoodof whether thedatasatisfiedassumptionsofamolecularclockusingLR= Maddison 2004 ). 2004 ). We alsomappedcharactersusingMacClade4.08( Maddison and and mappinguncertaintywheninferringcharacterevolution( Ronquist acter statesateachnode.Thisapproach accountsforbothphylogenetic of thesenodestomonophylythenestimatedthePP oftheancestralchar- and Cshownin Fig. 4 ). Insubsequentanalyses,wefirstconstrainedeach selected three cladeswith100%posteriorprobability support(Nodes A, B, are listedin Appendix 2.Baseduponthepreliminary molecularresults, we literature. All charactersandtheirrespective characterstateassignments were baseduponfieldstudies,examinationofherbariumspecimens,and for eachtaxonincludedinthephylogeny. Characterstateassignments patterns, habitat,breeding systemsanddispersalscored thesetraits attributes of parameters. was Results from theITSand5 with We usedalikelihoodapproach toestimateasmoothingparameterby Two independentMCMCsearches were undertakenusingBEAST1.4.8 Because ofthepaucityfossilrecord ofMalveae,webasedour Dvrec Tm Estimates— Time Divergence Reconstructions— State Ancestral Analyses oftheITSand 5 < n 0.01,andthepotentialscalereduction factorapproached 1.0forall –2 degrees offreedom, where Plagianthus Plagianthus regius ssp. Inouranalysesthispriorcorresponds totheEocene Lawrencia helmsii regius thatdescribedcurrent geographicdistribution 8.42.Thispriorcorresponds totheemergence We usedalikelihoodratiotesttodetermine Results ssp. ′

′ trnK/matK trnK/matKData Partitions— n from We chose10ecologicallyimportant chathamicus isthenumberoftaxa( Felsenstein L. squamata, datapartitions were 1.52from themainland Lawrencia spicata whichiswidely χ

2 distribution, and Copyright (c) American Society for Plant Taxonomists. All rights reserved. Delivered by Ingenta to IP: 192.168.39.151 on: Tue, 28 Sep 2021 22:12:31 Bootstrap valuesare provided above nodes. eight datacellswere codedasmissing,andgap which wassubsequentlyexcludedfrom theanalyses.Eighty- gap inapolyA region spanningnucleotidepositions139–156, one to13bp.However, wecouldnotconfidentlyalignthe were inferred inthe5 tive, and25were parsimonyinformative( Table 1 ). Ten gaps of which848were constant,16were parsimony-uninforma- 27 trees isshownin Fig. 3 . a retention index(RI)of0.980.Thestrictconsensusthe of 90steps,eachwithaconsistencyindex(CI)0.909and addition replicates recovered asingleislandof27MP trees three bpwere inferred. A heuristicsearch with1,000random 409 ITS datamatrix).Eightgapswithsizesvaryingfrom oneto symbols were placedin279characterpositions(1.2%ofthe ( Table 1 mony-uninformative, and44were parsimony-informative WAGSTAFF AND TATE:). Noneofthedatawere PHYLOGENY codedasmissing,butgap AND CHARACTEREVOLUTIONINPLAGIANTHUS 762 charactersofwhich683were constant,35were parsi- largely congruent ( Fig. 3 ). ThealignedITSdatasetincluded 2011] Fig. The aligned5 3 3. Comparison ofthestrictconsensustrees recovered from theITSand5 ′

trnK/matK ′

trnK/matK datasetincluded899characters datasetvaryinginsizefrom symbols were 5 T as831810 1.00 1.00 8 1 3 8 5 ITS gaps Combined sequences ITS Data partition trees; CI=consistencyindex;RIretention index. from theconsistencyindexcalculation.MPTs =maximumparsimony tions includinggaps.Parsimony-uninformativecharacterswere excluded homoplasy inthemoleculardatasets,asindicatedby each withaCIof0.893andRI0.963.There waslittle licates recovered 15MP trees inasingleislandof45steps, matrix. A heuristicsearch with1,000randomadditionrep- placed in472positions,constitutingabout2.1%ofthedata ′ ′

trnK/matK trnK/matK Table and gaps ′

trnK/matK . 1. Summary statisticsfortheITSand5 gp 0711 .01.00 1.00 10 1 7 10 gaps 892 54 .9 0.963 0.893 45 15 25 889 datapartitions. Thetree topologiesare largely congruent. characters 1,669 Total 762 Informative characters 79 44 MPTs 70 27 ′

trnK/matK length 158 Tree 90 0.876 0.909 CI dataparti- 0.955 0.980 RI Copyright (c) American Society for Plant Taxonomists. All rights reserved. Delivered by Ingenta to IP: 192.168.39.151 on: Tue, 28 Sep 2021 22:12:31 aeld A–C. labelled provided aboveeachnode.Divergence timeestimatesandposterior probabilities ofancestral stateswere estimated atthree wel 1 SSEAI OAY [Volume 36 SYSTEMATIC BOTANY three groups: group 1included make themidentical.Theredundant sequencesfellinto as aresolution ofthemissingorambiguousdatacould tical, thesequenceswere considered redundant aslong Even thoughtheirsequencecharacterstateswere notiden- sidered redundant bythemerge taxaoptioninMacClade. bining thetwodatasets,11 and/or aslownucleotidesubstitutionrate.Evenaftercom- sequences were similar, suggestingeitherarecent radiation hence, thesequenceandgapdatasetswere combined. test failedtoreveal significantconflictinthedata( high consistencyandretention indices( Table 1 ). An ILD 410 Fig. Within thetwo 4 4. Majority rule consensustree from Bayesiananalysisof thecombinedITSand5 Plagianthus Plagianthus species,thecpDNA andITS Plagianthus divaricatus sequenceswere con- p =0.24) 1.50, P. regius P. divaricatus chathamicus 3 included in our dataisthebranchseparating in supported groups were recovered. Themostprominent split sented asamajority-rule consensusin Fig. 4 . Fourwell- outgroups haduniquesequencesinthecombineddataset. each ofthesegroups insubsequentanalyses.Notablyall redundant sequences,includingonlyoneexemplarfrom lengths inourdivergence timeestimates,weremoved nine and The trees recovered from theBayesiananalysisare pre- P. regius

×

divaricatus ′

9.23and P. regius trnK/matK 8.42.To avoidincludingtaxawithzero branch 9.37, 2.153, datapartitions.Posteriorprobability valuesare P. regius P. divaricatus 472686;group 2included P. regius ssp. chathamicus 0.8, Lawrencia 446878, P. divaricatus (100%posterior 1.52;andgroup l-supported nodes P. regius P. regius 2.152, 9.38, ssp. Copyright (c) American Society for Plant Taxonomists. All rights reserved. Delivered by Ingenta to IP: 192.168.39.151 on: Tue, 28 Sep 2021 22:12:31 Asterotrichion 01 WGTF N AE HLGN N HRCE VLTO NPAINHS 411 with either and for relationships withinthisgroup. also formawell-supportedclade,butthere islittlesupport WAGSTAFF AND TATE: PHYLOGENY AND CHARACTEREVOLUTIONINPLAGIANTHUS Hoheria, probability, hereafter PP)from 2011] Asterotrichion sent more conservativeestimates thanML estimates. the Bayesianestimates,indicatingthatvaluesrepre- tainty surrounding thedivergence estimateswasgreater in Only theBayesianestimatesare presented in Fig. 5 . Theuncer- ity distributions,andtheuncertaintywasgivenasa95%PP. calibration pointsinBEAST; thesewere assigned probabil- a bootstrappingprocedure. Incontrast,wedesignatedthree surrounding thedivergence estimateswascalculated using maximum andminimumageconstraints.Theuncertainty Only onefixedcalibrationpointwasdesignatedinr8swith and estimatinguncertaintyimplementedinr8sBEAST. difference mayreflect thedifferent methodsofcalibration mates ( Table 2 divergence timeare consistentlyyoungerthanthe ML esti- ), buttheconfidenceintervalsoverlap.This ratio test=2(3,254.54–3267.94)26.794,d.f.17, data failedtheassumptionsofamolecularclock(Likelihood though there were noexceptionallylongorshortbranches, the P (100% PP).Monophylyof . . Fig. Etmts f iegne Times— Divergence of Estimates divaricatus Plagianthus 5 5. A chronogram depictingdivergence estimatesinthe and and Asterotrichion Plagianthus (81%PP)isonlymoderatelysupported.Even and Gynatrix formathird well-supportedclade(100%PP) Gynatrix (Node A), thestemageof . Similarly, thesevenspeciesof or emerging assisterto Plagianthus regius Gynatrix The Bayesianestimatesof Asterotrichion oracladecomprisedby Asterotrichion Plagianthus (90%PP)and , , p Plagianthus , ,

≤ Gynatrix, Gynatrix 0.05). Plagianthus (NodeB),andthe crown ageof Hoheria ,

alliance. Divergence estimates are summarizedforthe stemageof Stem ageof Crown ageof Stem ageof 2007). Rambaut probability fortheBayesianestimatesusingBEAST1.4.8( Drummond and using r8svers.1.71( Sanderson 2002b ), andthemeans±95%posterior (Ma) are presented asmeans±SDforthemaximumlikelihoodestimates and maximumlikelihoodapproaches. Thevaluesgivenasmillionyears Zealand endemicgenera, crown radiationsoccurred ataboutthesametimein theNew whereas thestemageof Asterotrichion, divaricatus important elementoftheNewZealandflora. Hoheria Table The Bayesianestimateforthestemageof Plagianthus Plagianthus Plagianthus and Asterotrichion Plagianthus Lineage Gynatrix [4.7(2.7–10.0)Ma]( Fig. 5 ; Table 2 ). . oprsn f iegne siae drvd rm Bayesian from derived estimates divergence of Comparison 2. isdominantinestuarineshrub communities,

, isasmallgenusthatrepresents anecologically

and

Plagianthus . 401.)M 9.0±2.4Ma(valuecalculated 7.3 (4.0–14.0)Ma 3.9 (1.9–8.2)Ma 17.4 (8.0–23.0)Ma Gynatrix Bayesian (oe ) n Tbe 2. Table in C) (Node Discussion Plagianthus Plagianthus lineageis17.4(8.0–23.0)Ma, 5.4 ±2.2Ma 12.5 ±2.7Ma(valuecalculated is7.3(4.0–14.0)Ma.The [3.9(1.9–8.2)Ma]and from 85bootstraptrees) node collapsedin3trees) from 97bootstraptrees; Maximum likelihood Plagianthus, Plagianthus Plagianthus , Copyright (c) American Society for Plant Taxonomists. All rights reserved. Delivered by Ingenta to IP: 192.168.39.151 on: Tue, 28 Sep 2021 22:12:31 1 SSEAI OAY [Volume 36 SYSTEMATIC BOTANY unresolved. ( Fig. 6A Australian endemicgenera ). However, thesistergroup of became establishedinNewZealand. few apomorphiccharacterswere acquired afterthe founders the ancestralmorphologicalcharacteristicswere retained and their progenitor dispersedtoNewZealandrecently. Mostof forests. We tracetheirancestryto Australia andsuggestthat whereas 412 tribution’ withinthe obtained asingleMP resolution ofthecharacter‘current dis- an Australian originatnode A ( Fig. 4 ) is0.80( found bothinTasmaniaTable andSouth 3 Australia. ThePP for Asterotrichion ). We two generawere equallylikelysisterto endemic genera, ing independent Australian originsforthetwoNewZealand dispersal of 1991 ), whereas in coastalsalineshrub communities( Cockayne 1958 ; Wardle 0.41 atNode A ( Table 3 ). coastal salineenvironment of0.59oraforest environment of habitat of hybridization occursonlyinrare instances.Theancestral Zealand ( Fig. 2 ), butare ecologicallyisolated;interspecific genus becameestablishedinNewZealand. characteristic of eages in Australia. Onlythedivaricatebranching pattern tional traitsthatwemappedare shared withthesource lin- appears tobethecasewith biome followingtransoceanicdispersalsuccessfully. This (2009) suggestedthatimmigrantsseldom shiftedintoanew phological traits. consequences forspeciesrichnessandtheevolutionofmor- fied around thesametime as ing that (1.9–8.2) Maand5.4±2.2forthecrown age.Itisinterest- Ma and9.0±2.4forthestemage,respectively, and3.9 mates ledtooverlappingagesfor ( McQueen 1954 ). Bayesianandmaximumlikelihoodesti- Wanganui series, whichonlydatestoPliocene–Pleistocene species et al.2007 ). However, fossilleavescloselyalliedtotheextant from themid-Eoceneof Argentina ( Wilf etal.2005 ; Barreda 2007 ). Fossilfruits andleavesofMalvaceaeare alsoreported Dettmann andClifford 2000 ; Mautino etal.2004 ; Iglesias etal. 1982 ; Zamaloa andRomero 1990 ; Barreda 1993 ; Macphail 1997 ; New Zealand,andSouth America ( Mildenhall 1980 ; Pocknall allied toMalveaefirstappearsinEocenedeposits Australia, ( Manchester 1992 , 1994 to theupperCretaceous (CampanianandMaastrichtian) ; Muller 1984 ); however, fossilpollen ( Fig. 5 ; Table 2 ). TheearliestfossilsofMalvaceaeextendback sification withinthe Eocene andpossiblyearlier, ourresults suggestthatdiver- in Fig. 1 ). offshore islandarchipelagos, theChathamIslands(seemap ment hasoccurred atleasttwiceinthe evolutionary history land forests, oftencoexistingwithspeciesof u o Australia— of Out Species of Ancestral vs.NewlyAcquired Characteristics— While fossilsattributedtoMalveaedatebackatleastthe Our results suggestthatadaptation toasalineenviron- Plagianthus regius Hoheria P. regius Plagianthus Asterotrichion Plagianthus regius isendemictoTasmania, while Plagianthus P. regius [4.7(2.7–10.0)Ma]appearstohavediversi- Plagianthus divaricatus isaconspicuouscomponentoflowland Plagianthus isequivocal( Fig. 6B ); withaPP fora Plagianthus Plagianthus Plagianthus isa conspicuous componentoflow- , , are widelydistributedinNew firstappearintheNewZealand Plagianthus divaricatus Gynatrix Plagianthus and ssp. Plagianthus Asterotrichion alliance( Fig. 6A ), suggest- alliancewasmore recent shares ancestrywiththe , oracladecomposedofthe Hoheria, Plagianthus chathamicus wasacquired afterthe Plagianthus , asmostofthefunc- Plagianthus , butwithdifferent withsubsequent Hoheria and : 7.3(4.0–14.0) tooneofthe isdominant Gynatrix (Fg. 4–6). (Figs. Cip t al. et Crisp . remains Gynatrix is

Plagianthus is welldocumentedinthe 1912 ). Thisphenomenon,knownasheteroblasty ( Jones 1999 ), mature plantforanumber ofyears( Hooker 1852 ; Cockayne tinct divaricatejuvenileformisretained inareproductively ductive phasesofdevelopment.Insomeinstancesadis- often differs markedlybetween thejuvenileandadultrepro- ance topossessthorns. In Chatham Islandendemic late growth phaseisabsentoronlyweaklyexpressed inthe mature tree ( Wardle 1991 ). However, aprolonged filiramu- is retained inshootsemerging atthebaseofareproductively tantly spaced.Insomecases,thefiliramulategrowth phase minute apicalbuds.Theleavesare typicallysmallanddis- mulate juvenilestagewithslenderinterlacingshootsand The juvenilesof PP forthepresence ofheteroblasty atnode A is0.71( Table 3 ). but hasnotbeenreported, in catus A divaricatebranchinghabitisanautapomorphyof the probability onlyincreases to0.11 atnodeC( Table 3 ). the presence ofadivaricatehabitatnode A isonly0.01,and became establishedinNewZealand( Fig. 6G ). ThePP for Dawson 2009 ). in terns, leafshapeandsize,pubescenceare highlyvariable likely anadaptationtoaridenvironments. Thebranchingpat- pendently in species of form in accompanied bytheevolutionofafullyarborescent growth leaves ( Fig. 6B–D ). Adaptation toaforest environment was or smalltree withmoderately sized(mesophyll) Province ofWestern Australia. gypsum ridgesandlarge margins intheEremaean Botanical saline flats,anddepressions, whereas populations foundonthemargins ofinlandplayalakebasins, a widespread speciescomprisingmanyfragmentedallopatric are shrubs withxerophytic tendencies. sions. spreading inlandnearplayalakebasinsandsalinedepres- occurring inandaround coastalinletsandestuaries,but ( Greenwood and Atkinson 1977 ; trees that characteristically haveawide branching-angle McGlone andWebb 1981 ; development. New Zealandandwasfacilitated bychangesinthetimingof It hasapparently evolvedinseveralindependentlineages in Lawrencia spicata the inlandlakessystemsinCentralandWestern Australia. may havebeendrivenbytheexpansionandcontractionof gins ofinlandsalinelakes.Diversificationwithinthegenus tats, butwiththeonsetofaridificationdispersedalongmar- that the Australian genus of the (sect. estuaries, andstream banks( Lander 1984 ). southern Australia where itinhabitscoastalsaltmarshes, P. regius In manyNewZealandwoodyplants,vegetativegrowth A divaricate growth formevolved shortlyafter The mostrecent commonancestorof Divaricate plants are small-leavedshrubs orjuvenile L. squamata L. squamata ( Fig. 6G ), butalsocharacteristicofthejuvenilephase Lawrencia Lawrencia squamata Plagianthus ssp. P. regius Hoheria , , Hoheria, regius P. divaricatus , and itistheonlyspeciesin and ) isalsowidelydistributedandpolymorphic, Plagianthus regius (sect. inadditiontoevergreen leavesinsome alliance( Fig. 6B ). Lander (1984) suggested . A reduction inleafsizehasevolvedinde- ( Wardle 1991 ) andsomespeciesof and L. helmsii Lawrencia Lawrencia and P , , Lawrencia L. squamata . . Plagianthus regius thereduction inleafsizewas Asterotrichion L. helmsii ssp. ) iswidelydistributedin ( Fig. 6F ). Itmayalsooccur, ssp. originatedinstrandhabi- , and L. helmsii Plagianthus chathamicus alliance,appearingin regius (sect. Lawrencia squamata Lawrencia glomerata L. helmsii or exhibitafilira- Plagianthus Selenothamnus isrestricted to Gynatrix wasashrub (Brs and (Burns Plagianthus (Fg 6E). (Fig. P. divari- Hoheria . The . alli- is ) .

Copyright (c) American Society for Plant Taxonomists. All rights reserved. Delivered by Ingenta to IP: 192.168.39.151 on: Tue, 28 Sep 2021 22:12:31 01 WGTF N AE HLGN N HRCE VLTO NPAINHS 413 WAGSTAFF AND TATE: PHYLOGENY AND CHARACTEREVOLUTIONINPLAGIANTHUS 2011] D. Leafphenology. E.Leafsurface area. F. Heteroblastic development.Well-supported nodes(shown in Fig. 5 ) are labelled A– Fig. 6 6. Extant distributions,habitatandfunctional traitsmappedontotheBayesian tree shownin Fig. 5 . A. Distribution. C. B. Habitat.C.Life form. Copyright (c) American Society for Plant Taxonomists. All rights reserved. Delivered by Ingenta to IP: 192.168.39.151 on: Tue, 28 Sep 2021 22:12:31 New Zealand exhibit thisgrowth form, yetitisquiterare genera, andat least10%ofthewoodyendemic speciesin evolved independentlyinseveral unrelated NewZealand by Dinorthidmoas( Burrows 1980 ). A divaricatehabithas empirical ecologicalevidence suggeststhat ing ( Greenwood and Atkinson 1977 ; Bond etal.2004 ). Indeed, divaricate habitmightrepresent aresistance to moabrows- ments withhighlightintensity ( Day 1998 ). Alternatively, the damage, aswellmightoptimizelightcapture inenviron- ronment. Itmightalsoprovide resistance tofrost orwind or inresponse toshortdroughts inthecurrent forest envi- stress eitherduringthelasticeagewhenwaterwasscarce suggested thedivaricatehabitenhancedresistance towater lution ofthedivaricatehabit. McGlone andClarkson(1993) have beenoffered asonepossibleexplanationfortheevo- structure witharelatively leaflessexterior. Climaticfactors Kelly 1994 ). Furthermore, thebranches haveaninterlaced I. Breeding system.J.Dispersal mode.Well-supported nodes(shownin Fig. 5 ) are labelled A–C. [Volume 36 SYSTEMATIC BOTANY 414 Fig. 6 6. Extant distributions,habitatandfunctional traitsmappedontotheBayesiantree shownin Fig. 5 . G.Divaricatebra P. regius waseaten of theopposite sex ( Fig. 1D ), correspoding to the‘unisexualby functional flowers of five typesofdioeciousflowers inNewZealandplants.The hermaphroditic flowers( Fig. 6H–I ). Godley (1979) members ofthe identified other NewZealandendemic, mon throughout theNewZealandflora( Webb etal.1999 ). The node A ( Table 3 ). Dioecyisrare intheMalvaceae,butcom- a dioecioussystemand0.29forhermaphroditic systemat is equivocal( Fig. 6I ), withposteriorprobabilities of0.59for but thebreeding systempresent intheNewZealandfounders 1961 ; Melville 1966 ). Smallinconspicuousflowersare ancestral, polygamodioecy andmonoecyhavebeendescribed( Allan predominantly dioeciousflowers( Fig. 6I ). Rare instancesof McGlone andWebb 1981 ; Bond etal.2004 ). elsewhere intheworld( Greenwood and Atkinson 1977 ; Both speciesof Plagianthus Plagianthus Plagianthus alliancein having large, showy, Hoheria, haveinconspicuous( Fig. 6H ), retain arudimentary remnant isdistinctfrom theother nching. H.Floraldisplay. Copyright (c) American Society for Plant Taxonomists. All rights reserved. Delivered by Ingenta to IP: 192.168.39.151 on: Tue, 28 Sep 2021 22:12:31 clade, B. .La hnlg eiuu .809 0.99 0.13 0.01 0.90 0.09 0.98 0.59 0.02 0.02 Leptophyll( Deciduous Suffrutescent perennial herbs Saline 5. Leafsurfacearea 4. Leafphenology 3. Lifeform 2. Habitat 1. Distribution 0 ipra oeFutwne .505 0.11 0.99 0.75 0.97 0.56 0.20 0.71 0.55 0.59 0.93 0.65 0.24 0.98 0.85 Fruit winged 0.29 Dioecious Smallandinconspicuous 10. Dispersalmode Absent 9. Breeding system 8. Floraldisplay Absent 7. Divaricatebranching 6. Heteroblastic development of developmentinoneortheotherorgan set. organs occursinallflowers,but isfollowedbythetermination morphological type,theinitiationofandroecial andgynoecial abortion’ type( Godley 1979 ; Mitchell andDiggle2005 ). Inthis 415 WAGSTAFF AND TATE: PHYLOGENY AND CHARACTEREVOLUTIONINPLAGIANTHUS 2011] or bisexual.Both bisexual, whereas thoseof the chancesofself-pollination.Theflowers the staminalclusterasflowersmature, whichincreases Lawrencia expressed in hermaphroditism, polygamodioecy, andcompletedioecy 10 mm.However, thebreeding systemsare variable,with white, paleyellow, orgreen, ranginginsizefrom twoto inconspicuous, resembling thoseof in ourcharacterreconstructions. 2008 ). Theevolutionofdispersalmechanismsisequivocal cessful establishmentbeingexceedinglysmall( Nathan etal. likely aninfrequent randomeventwiththeprobability ofsuc- New Zealand.Transoceanic long-distancedispersalismost tle todowithlong-distancedispersalbetween Australia and spread of phism infloweringplants). a review ofecologicalcorrelates ofgenderandsexualdimor- are Malveae with trends towards areduction inthenumberof involves basicmodifications ofthetypicalschizocarp ofTribe node A is0.55( Table 3 ). lished inNewZealand( Fig. 6J ); thePP ofwinged fruits at lacked wingedfruits orlostthemsoonafter theywere estab- Table The flowersof Mechanisms ofseed dispersalmayhavefacilitatedthe Fruit morphologyinmembers of the Asterotrichion Asterotrichion . 3. Posterior probabilities forcharacterstatedistributionsatthree well-supportednodes. A. Character are protandrous, and the stylebranchesreflex into Plagianthus Lawrencia and L. squamata Asterotrichion , , Gynatrix inNewZealand,butprobably hadlit- Gynatrix ( Lander 1984 ). Thebisexual flowersof and L. glomerata and (see Sakai andWeller 1999 for Plagianthus , , Gynatrix Plagianthus vrre .100 0.00 0.07 0.00 0.87 0.01 0.91 0.07 0.05 0.03 0.01 0.17 0.91 0.02 0.92 0.01 0.41 0.41 0.55 Mesophyll (20–180cm Evergreen Semideciduous Tree orsmall tree Erect subshrub Forests Fruit lackingwings 0.84 0.02 0.59 0.03 Microphyll (2.5–20cm 0.18 0.01 Chatham Islands New Zealand Australia emprdtc02 .40.01 0.01 0.11 0.03 0.80 0.14 0.24 0.05 0.03 0.34 0.29 0.76 0.11 0.04 0.01 0.15 0.71 0.01 Hermaphroditic Polygamodioecious Large andshowy Divaricate Divaricate juveniles Present L. helmsii Plagianthus clade,C. are eitherunisexual , and Plagianthus are dioeciousas States founderseither < 2.5cm Lawrencia Plagianthus L. spicata . Theyare 3 )00 .30.00 0.03 0.03 ) alliance alliance 3 3 )02 .40.10 0.04 0.22 ) )07 .30.90 0.93 0.75 ) clade.See Fig. 6A–J forcharacterstatemaps. are are carps ( Melville 1966 ; Lander 1984 ). Thefruits of carpels, areduction infertility, andabortionofsterilemeri- structure in is different, andprobably nothomologoustothewinged (obscurely soin wind ( Fig. 6J ). Whilethemericarpsof bladder-like fruit couldconceivably be dispersedbywateror stantial airspacebetweentheseedandpericarp, maturity, whilethemargins formnarrow wings.There issub- fruit ( Lander 1984 ). Thepericarpbecomeslight,dry, andstiff at L.glomerata gration ofthepericarp.Thefruits of the neighbourhood oftheparent plantfollowingthedisinte- for dispersal( Lander 1984 ). Thenakedseedsare released in are fertile.Thepericarpslackwingsoranyotherspecialaids in eachfruit; insomecasesonlyoneortwoofthemericarps L.helmsii in Asterotrichion emerged as monophyletic.However, nogeographic structure analyses ( Tate et al.2005 ; their newhome.Consistentwith ourprevious phylogenetic Wagstaff etal.2010 ), that haveevolvedelsewhere andsubsequentlypersisted in lation, butrequires an appreciation ofalliedfloras andtraits evolution ofNewZealandplants cannotbeachievediniso- regions are different. Ourfindingsshowthatunravellingthe yet theenvironmental conditionsdrivingevolutionin both groups suchas sible forthedehiscenceofmericarps( Melville 1966 ). alliance inpossessingacrustaceous endocarp,whichisrespon- . Australia wasthesource formanyNewZealandplants P. divaricatus Node A 0.80 0.45 Gynatrix are irregularly dehiscentwithtwotofivemericarps are indehiscentwithfivefertilemericarpsineach Lawrencia are similar, butusuallyonlyone(sometimestwo differs from allothermembersofthe ) ofthemericarpsare fertile;eachwithasingle H. lyallii Plagianthus Node B 0.38 0.44 Hoheria (Lne 18 . 1984). (Lander and , , (Ccan 15 ade 1991), Wardle 1958; (Cockayne Asterotrichion H. glabrata P. divaricatus Hoheria Lawrencia squamata , , Gynatrix ), thefruit structure are alsowinged Node C 0.14 0.89 and , , L. spicata P. regius Plagianthus Plagianthus Plagianthus , and and , and and and and

Copyright (c) American Society for Plant Taxonomists. All rights reserved. Delivered by Ingenta to IP: 192.168.39.151 on: Tue, 28 Sep 2021 22:12:31 Cip M D, . . ok ad . tae . 20 aito o te Australian the of Radiation 2004. Steane. D. and Cook, G. L. D., M. Jordan , Crisp, J. G. Gandolfo, A. M. Cook, G. L. Arroyo , K. T. M. D., M. Crisp, Cip M D ad . . ok . 20 cnret oeua sgaue of signature molecular congruent A 2007. Cook. G. L. and D. M. Crisp, 1958. L. Cockayne, Ccan, 91. A iqiy no h seln frs f e Zealand New of forms seedling the into inquiry An 1901. L. Cockayne, Edwards , R. A. Maxwell, A. P. Beu, G. A. Andrews , B. P. J., H. Campbell, Cooper , S. Williams , A. M. Bowler , J. Kearney , M. J. Yeates , K. D. M., Byrne, Ccan, 92. Osrain cnenn eouin drvd rm eco- from derived evolution, concerning Observations 1912. L. Cockayne, Bros C J. 18 oe miia ifrain ocrig h de of diet the concerning information empirical Some 1980. J. Island: C. Chatham Burrows, on Heteroblasty 2009. Dawson. W. J. and defense C. structural K. Plant Burns, 2004. Craine. M. J. and Lee, G. W. J., W. Malveae. Tribe Bond, Malvaceae, the in relationships Generic 1968. M. D. Bates, Bianchi, M. M. Aceñolaza, P. Prieto, R. A. Anzótegui, M. L. V., Barreda, Brea V. 19 ae lgcn?Moee oln f h families the of pollen Oligocene?–Miocene Late 1993. V . Barreda, 1961. H. H. Allan, 1 SSEAI OAY [Volume 36 SYSTEMATIC BOTANY Plagianthusdivaricatus for hermeticulousediting;andRebeccaWagstaff fortheillustrationsof the fossilhistoryof earlier draftsofthismanuscript;D.Leeforvaluableinformationabout edge ThomasBuckleyandBillLeeforinsightfulcommentsadviceon Defining NewZealand’sLandBiotaOBI.Theauthorsgratefullyacknowl- Zealand FoundationforResearch, ScienceandTechnology through the endemics. are neededtoclarifytherelationships ofthese intriguing data andfasterevolvingmarkers(e.g.microsatellite loci) shown tobeequallylikelysister or Plagianthus and SouthIslandswasfound.Theexactsistergroup of on thegeneticvariationoftwospeciesacross theNorth 416 Acknowledgments. Gynatrix 754–758. B, BiologicalSciences munities . tiple taxatellusabouttheevolution ofdiversityinpresent-day com- flora: whatcancomparisonsofmolecular phylogeniesacross mul- Linder . P. H. and Wilf , P. Westoby , M. Weston , H. 2009 P. . McGlone, Phylogenetic biomeconservatism onaglobalscale S. . M. emn . Cramer . J. Germany : vicariance across multiple plantlineages . Evolution . . ukrde D E Le C P Srn , . . isn ad . W. phanerogams andtheirdevelopment B. . and Wilson , biostratigra- J. G. and Nuclear SciencesMonograph Strong , P. geology C. Watters , Cretaceous–Cenozoic phy oftheChathamIslands,NewZealand A. Lee, W.. 1994. E. Mildenhall, C. D. Hayward . D. Buckeridge, Hornibrook , B. S. de J. N. Laird , G. M. 4398–4417. 17: Porch , and maintenanceofthe Australian aridzonebiota N. Murphy , . J. D. Melvill, J. Leys, and R. Keogh, S. K.-H. J. Donnellan, Wyrwoll C. S. . 2008 . Birth ofabiome:insightsintotheassembly the NewZealandInstitute New ZealandInstitute logical studiesinNewZealand . os. moas . Journal ofEcology a comparisonwithNewZealandandCaledonia . Oikos against browsing birds: alegacyofNewZealand’s extinctmoas . GentesHerbarium and Mautino, 173–191. Zamaloa, R. C. durante L. angiosperms M. las Romero Mancini, , de el Neógenoen Argentina V. cambios J. y E. M. Diversificación . 2007. Quattrocchio , Lutz, Zucol. E. A. I. M. A. Ottone, Garralla, Guerstein, G. S. Cuadrado, E. R. A. G. G. Caccavari, Grill, M. S. Brea , M. Borromei , M. A. 169–186. 17: mation, GolfoSanJorge Basin,Southeastern Argentina . Compositae, Malvaceae,andPolygonaceaefrom theChenquefor- Printer . Government 0: 500–508. 104: New ZealandJournalofEcology isalsostillunresolved, aseither 3 1106 –1117 . 43: oracladecomposedofthetwogenerawere Philosophical Transactions oftheRoyal SocietyofLondon.Series Hoheria The vegetationofNewZealand Flora ofNewZealand 3 156–163. 33: 0 117 –135. 10: and 5: 1551–1571. 359: 4 1–50. 44: This research wassupportedby the New P. regius ieaue Cited Literature and 3 263–298. 33: : 1–269. 2: Asociación PaleontológicaArgentina Plagianthus . Transactions andProceedings ofthe : 125–130. 3: . Wellington, NewZealand : Transactions andProceedings of inNewZealand;C.Bezar Plagianthus Molecular Phylogeneticsand Institute ofGeologicaland . Weinheim/Bergst., . Molecular Ecology Asterotrichion . Additional . New Zealand Nature Palynology 458: 11:

d Lne P J. 20 2008. J. P. Lange, de numbers chromosome of Index 2000. Beuzenberg . J. E. and I. M. Dawson, Dy J S. 19 ih cniin ad h eouin f eeolsy (and heteroblasty of evolution the and conditions Light 1998. S. J. Day, Mchi, . . 97. Cmet n . oe 19) Te e Zealand New The (1994): Pole M. on Comment of 1997. Analysis K. 4.08: M. MacClade Macphail, 2004. Maddison. P. W. and New R. of D. history Maddison, natural the understanding in Progress 1985. G. D. Lloyd, Patterson, M. A. Mildenhall , C. D. Begg, G. J. genus Campbell , J. Australian H. A., the C. Landis, of Revision 1984. S. (interlaced N. divaricate Lander, for definition numerical a Towards 1994. D. Kelly, Jns C S. 19 n sa o jvnlt, hs cag, n htrbat in heteroblasty and change, phase juvenility, on essay An 1999. S. C. Jones, Ilsa, . P Wl , . . ono , . . aue , . . úe , and Cúneo, R. N. Zamuner , B. A. Johnson, R. K. Wilf , P. A., Iglesias, of inference Bayesian MRBAYES: 2001. Ronquist. R. and P. J. Huelsenbeck, uncer- 1852. calibration D. J. for Hooker, Accounting 2009. Phillips. J. M. and W. Y. S. phylo- Ho, versus Congruence 2004. Sytsma . J. K. and Hall, C. J. L., A. Hipp, 2005. Wagstaff . J. S. and Redmond, N. D. Dawson, I. M. atlas B., P. chromosome Heenan, a to Contributions 1971. Hair . B. J. and E. divaricating B. of Groves, Evolution 1977. Atkinson. E. A. and M. R. Greenwood, Zealand. New in biology inferences 1979. J. sequences: E. Godley, molecular from Phylogenies 1988. J. Felsenstein, using approach an phylogenies: on limits sig- Confidence a 1985. Constructing J. 1995. Felsenstein, Bult. C. and Kluge, J. A. Källersjö, M. S., significance J. Testing Farris, 1994. Bult. C. and Kluge, J. A. Källersjö, M. S., J. Farris, Dumn, . . n A Rmat . 20 ES: aein evolutionary Bayesian BEAST: 2007. Rambaut. A. and J. A. Drummond, d Lne P J, . . . ayr ad . . of 06. 2006. Rolfe. R. J. and Sawyer , D. W. J. J., P. Lange, de Mnhse, . 92. Foes fut ad oln f of pollen and fruit, Flowers, 1992. R. S. Manchester, , and fruits Monocotyledon 2000. Clifford . T. H. and E. M. Dettmann, Mnhse, . 94. Ifoecne rcs f osl n etn extant and fossil of bracts Inflorescence 1994. R. S. Manchester, 2: 43–54. 22: Journal ofBotany new combinationforaChathamIslandsendemictree . Botany of indigenousNewZealandspermatophytes . the divaricateform)inNewZealand . flora—entirely long-distancedispersal . Associates. Sinauer Sunderland: evolution. character and phylogeny Zealand plants . fauna andflora . question- surface; erosion Waipounamu ing theantiquityofNewZealandlandsurfaceandterrestrial The 2008. Trewick . A. S. and (Malvaceae: Malveae) . small-leaved) shrubs . seed plants . Geology Patagonia from macroflora lowland reveals significantlygreater richnessthanNorth American analogs Paleocene A . 2007. Matheos. D. S. phylogeny . SystematicBiology tainty inphylogeneticestimationofevolutionarydivergence times . SystematicBiology genetic accuracy:revisiting theincongruence lengthdifference test . logical data . glabrata Relationships oftheNewZealandmountainribbonwoods ( Journal ofBotany of theNewZealandFlora—15MiscellaneousFamiles . New ZealandEcologicalSociety plants inNewZealandrelation toMoabrowsing . Botany and reliability . the bootstrap . nificance testforincongruence . of incongruence . 10.1186/1471-2148-7-214 . analysis bysamplingtrees . Network . vascular plantchecklist 625–635. Palynology of coastalcentralQueensland, Australia . and anassociatedpalynoflorafrom Eocene-Oligocenesediments mrc America . malvalean genusfrom theEoceneandOligoceneofWestern North 1176 –1185 . gence andbiogeographic history . North America, Europe, and Asia: patternsofmorphologic diver- 8 47–150. 38: 7 441–466. 17: 5 947–950. 35: and American JournalofBotany 1: 141–173. 110: Bioinformatics International JournalofPlantSciences H. lyallii New ZealandJournalofBotany Flora Novae-Zelandiae Evolution Annual ReviewofGenetics New ZealandJournalofBotany : 569–579. 9: 6 381–386. 46: Geological Magazine Plagianthus regius Cladistics 8 367–380. 58: 81–89. 53: : Malvaceae),basedonmolecularandmorpho- . Wellington : New ZealandPlantConservation New ZealandJournalofBotany Nuytsia 9 783–791. 39: 7 754–755. 17: 0 315–319. 10: 4 21–33. 24: BMC EvolutionaryBiology : 201–271. 5: Systematic Biology ssp. . Lno Reeve. London: . 9 996–1008. 79: 4: 173–197. 145: American Journal of Botany New ZealandJournalofEcology 2 521–565. 22: chathamicus Journal ofBiogeography 3 527–549. 43: Review ofPalaeobotanyand 3 707–722. 23: New Zealandindigenous New ZealandJournalof New ZealandJournalof Florissantia 6: S105–S111 . 160: 4 570–572. 44: 2 509–518. 32: Lawrencia (Malvaceae)—a Proceedings ofthe : 1 doi: 214, 7: New Zealand New Zealand , anextinct Hoheria Hook. Tilia 81: 22: in

Copyright (c) American Society for Plant Taxonomists. All rights reserved. Delivered by Ingenta to IP: 192.168.39.151 on: Tue, 28 Sep 2021 22:12:31 Snesn M J. 19 nnaaerc prah o siaig diver- estimating to approach nonparametric A 1997. J. M. Sanderson, in dimorphism sexual and Gender 1999. Weller . G. S. and K. A. Sakai, Rnus, . n J P Hesnek . 20 RAE 3 Bysa phyloge- Bayesian 3: MRBAYES 2003. Huelsenbeck . P. evolution. J. and character F. Ronquist, of inference Bayesian 2004. F . Ronquist, Rmrz M J. 20 ute polm wt te nogune egh dif- length incongruence the with problems Further 2006. J. M. Ramirez, Pcnl, . 92. Plnlg o lt Oioee oaaa Estuarine Pomahaka Oligocene late of Palynology 1982. T . D. Pocknall, Nieves-Aldrey . L. J. and Huelsenbeck, P. J. Ronquist, F. A., A. J. Nylander, 1864. F . Mueller, Rmat A ad . . rmod . 20 rcr 14. Aalbe from : Available v1.4. Tracer 2007. Drummond . J. A. and A. Rambaut, http://beast.bio. from: Available v1.1.2. FigTree 2006–2008. A. Rambaut, averaging model and selection Model 2004. Buckley . R. T. and D. Posada, Nwto, . n A Rbrsn . 20 rges n nesadn pollina- understanding in Progress 2005. Robertson. and A. Trakhtenbrot , and L. A. Newstrom, Steinitz, O. Spiegel, O. Schurr , M. F. R., Nathan, history . angiosperm for pollen fossil of Significance 1984. J. Muller, flow- unisexual of evolution The 2005. Diggle. K. P. and H. C. Mitchell, Psd, . n K A Cadl 98. Mdlet tsig h mdl f DNA of model the testing Modeltest: 1998. Crandall. A. K. and D. Posada, plant Cenozoic and Cretaceous late Zealand New 1980. C. D. Mildenhall, Mlil, 96. Cnrbtos o h Foa f utai: I. Generic VII. Australia: of Flora the to Contributions 1966. R. Melville, Tt, . . J Fets gia , . . asaf J C L Dk , . . . Slotta , B. A. T. Duke, La C. J. Wagstaff , J. S. Aguilar , Fuertes J. A., J. Tate, (and parsimony using analysis Phylogenetic PAUP*: 2002. L. D. Swofford, MQen D R. 15 osl evs fut ad ed fo te Wanganui the from seeds and fruits leaves, Fossil 1954. R. D. McQueen, Smos M P ad . coeea . 20 as s hrces n sequence- in characters as Gaps 2000. Ochoterena . H. and P. M. Simmons, MGoe M S, . . ugn G M Hl , n R B Aln . 20 itr Winter 2004 . Allen. B. R. and Hall, M. G. Dungan, J. R. S., M. McGlone, Snesn M J. 20 8: nern aslt rts f oeua evo- molecular of rates absolute Inferring R8s: 2003. J. M. Sanderson, Snesn M J. 20b. rs .0. Cmue porm n documentation and program Computer 1.50. r8s 2002b . J. M. Sanderson, plant evo- Moa, the influencing stories: forces Selective Ghost 1981. Webb . 1993. J. C. and Clarkson. S. M. C. McGlone, B. and S. M. McGlone, Snesn M J. 20a. Etmtn aslt rts f oeua evolution molecular of rates absolute Estimating 2002a. J. M. Sanderson, 417 WAGSTAFF AND TATE: tax- PHYLOGENY AND CHARACTEREVOLUTIONINPLAGIANTHUS Novedades 2004. Anzótegui. M. L. and Cuadrado, A. G. R., L. Mautino, 2011] Evolution gence timesintheabsenceofrateconstancy . Springer . York : New Delpheds. F. L. and Dawson, Genderandsexualdimorphisminfloweringplants ecological correlates, and phylogeneticapproaches . Pages 1 flowering plants:areview ofterminology, biogeographicpatterns, – 31 in Ecology &Evolution netic inference undermixed models . Cladistics ference test:“hypercongruence” effect andmultiplecomparisons . Biology Bed sediments,Waikoikoi, Southland,NewZealand . 2004 . Bayesian phylogeneticanalysisofcombineddata . Journal ofBotany http:/ ed.ac.uk/FigTree. Bayesian approaches overlikelihoodratiotests . in phylogenetics:advantagesof Akaike InformationCriterionand Gvrmn Printer . Government tion systemsinNewZealand . dispersal. seed Ecology &Evolution long-distance of Mechanisms 2008. Tsoar . A. developmental transitions . ers: morphologicalandfunctionalconvergence results from diverse 793–808. Palaeoecology usiuin. substitution . biogeography: acontribution . of theMissouriBotanicalGarden delimitation inthe n B B Smsn . 20 hlgntc eainhp wti te tribe the within relationships Phylogenetic 2005. Simpson. B. B. and Associates . Sinauer Sunderland: methods). other Series (Plio-Pleistocene)ofNewZealand . 1–19. 42: Botany based phylogeneticanalyses . loss intheNewZealandwoodyflora . Bioinformatics lution anddivergence timesintheabsenceofamolecular clock . 467–483. available from http:/ lution ofdivaricatingplants . defences andevolutioninNewZealand . and divergence times:a penalized likelihoodapproach . en elTerciario de Argentina . onómicas, diversidaysignificadoevolutivodelpollendeMalvaceae Biology andEvolution /beast.bio.ed.ac.uk/Tracer . 2 667–676. 82: 3 47–67. 53: 2 289–295. 22: 4 1218–1231. 14: 1 197–233. 31: Bioinformatics 9 301–302. 19: The vegetationoftheChathamIslands 0 263–287. 20: Plagianthus 9 475–481. 19: 3 638–647. 23: /phylo.ucdavis.edu/r8s/r8s.html . 9 101–109. 19: 4 817–818. 14: American JournalofBotany New ZealandJournalofEcology Revista EspañoladeMicropaleotologia Systematic Biology cmlx. complex. 1 419–443. 71: New ZealandJournalofBotany Palaeogeography, Palaeoclimatology, Bioinformatics New ZealandJournalofBotany Kew Bulletin Tuatara New ZealandJournalof , d . . ee , . E. T. Geber , A. M. ed. , 9 369–381. 49: Molecular Biologyand Systematic Biology 2 1–21. 32: 9 1572–1574. 19: 0 511 –516. 20: 2 1068–1076. 92: . Melbourne: . New Zealand Systematic : 20–28. 4: Molecular 3 1–59. 43: Trends in Trends in Annals 36: 53:

(New Zealand,cultivated,Christchurch, 2000), 0.10,CHR534905A, AY944585, AY944608; (New Zealand,Otago,OtagoPeninsula,Taiaroa Bush, 1991. P . Wardle, grounds, lowerE.slopesofBlackMountain, Teik S A, . . aesn ad . . apel . 20 el New Hello 2007. Campbell. J. H. and Paterson, M. A. A., G. S. D. Trewick, and Jeanmougin, F. Plewniak, F. Gibson, J. T. D., J. Thompson, Wli, . . n S A Teik . 20 e Zaad hlgorpy evo- phylogeography: Zealand New 2009. Trewick . A. S. signifi- and P. Evolutionary G. Wallis, 2010. Tate . A. J. and Molloy , J. P. B. J., S. Wagstaff, 9.69, CHR410595A, AY591826, GU045814; GU045813 Bluff River, trnK with theirDNA,Herbarium,andGenBankaccessionnumbers(ITS,5 which DNA wasextractedforsequencingare listedalphabeticallyalong the from pollen and spores Some 1990. Romero . and J. Singer , R. and S. C. M. B. Zamaloa, Smith, E. M. Cúneo, R. N. Johnson, R. in K. dimorphism P., Gender Wilf, 1999. Delph. F. L. and Lloyd, G. D. J., C. Webb, Otago Peninsula, Hoopers Inlet, Plagianthusdivaricatus P. Douglass (New Zealand,Canterbury, BanksPeninsula,Teddington, HM348801, HM348790; coast, NEofOterei Rivermouth, divaricatus 2083 (New Zealand, Auckland, LucasCreek Scenic Reserve, AY944606, AY944629; to OpararaRoadlagoon. G. Forst. CHR411138, AY591853, GU045818; South Australia, NullaborRegion, CHR423878, AY591835, GU045817; Dorans Road,nearLauderdale, AY5911852, GU045816; Australia, Lake Austin, Lawrencia helmsii J.Z.Weber 1321 Torrens Basin, Carrapateena Arm, SaltCreek, southof Archie BeavisDam, GU045807; 1999, exBanksPeninsula,KaitunaReserve),9.25,CHR529984,GU045785, Canterbury Agriculture andScienceCentre grounds, AY944627; Centre grounds, (New Zealand,cultivated,Lincoln,Canterbury Agriculture andScience Ashburton River, Hoherialyallii 2.147, CHR512522A, AY944603, AY944626. Zealand, Nelson,MtBurnett, AY944601, AY944624; out, Canterbury, PassNationalPark,OtiraValley, Arthur’s Windy Pointlook- GU045804; Aorangi Island,PoorKnightsIslands),9.54,CHR529193, AY944586, HM348802, HM348791; Asterotrichion discolor Appendix / , 1Nov. 1978),9.36,CHR397684,HM348800, HM348789; S. J.Wagstaff eln Zealand . Acids Research multiple sequencealignmentaidedbyqualityanalysistools . Higgins . 1997 . The ClustalXwindowsinterface:flexiblestrategiesfor lution onasmallcontinent . (Malvaceae) . cance ofhybridizationintheNewZealandendemicgenus nvriy Press . University Fuego, Argentina . Cullen Formation(UpperEocenetoMiddleOligocene),Tierra del Hunco del 634–650. Laguna at diversity plant and RíoPichileufú,Patagonia, Argentina Eocene 2005. . Gandolfo. A. M. 119 –130. 37: indigenous NewZealandseedplants . sequence data . Malveae (subfamilyMalvoideae,Malvaceae)asinferred from ITS matK (NewZealand,Westland, Karamea-HeaphyRoad adjacent ; Hoheriasexstylosa ) Gynatrix pulchella Lawrencia glomerata J.R.Forst.&G. , 16Nov. 1990),9.38, CHR474070,GU045791,GU045819; Hoheriaglabrata 1.Taxa (andcollectiondetails)ofplantmaterialfrom A. Moscal8224 Journal ofBiogeography Hook.f. , 5Sept.1968),9.70,CHR380446A, AY591836, GU045815; S. J.Wagstaff, , 9Mar. 2001), 1.18,CHR541761, AY944588, AY944611; Australian SystematicBotany 5 4876–4882. 25: Vegetation ofNewZealand S. J.Wagstaff (F. Muell.&Tate) Lander American JournalofBotany Hoheriaovata Plagianthusdivaricatus Palynology Plagianthusregius L. A.Craven5033 Lawrencia spicata (NewZealand,SouthCanterbury, SouthBranch Plagianthusdivaricatus J.R.Forst.&G. D. K.Manning (Hook.f.)Melville , 1June1984),9.72,CHR491243, AY591811, Colenso 15Feb.1999),9.27,CHR529983, AY944604, (Willd.) Alef. Sprague&Summerh. P. B. Heenan &P. J.deLange A. M.Buchanan4540 Molecular Ecology A. P. Druce Hook. A. Markey, 4 123–133. 14: , 12March 2002),1.60,CHR559101, (NewZealand,Wellington, Wairarapa N. Donner7196 Plagianthusdivaricatus Lawrencia squamata 4 1–6. 34: G.Simpson&J.S.Thomson (New Zealand, cultivated,Lincoln, (Australia, South Australia, Lake , 22 Apr. 1978),9.68,CHR380678, , 8Jan.1985),1.50,CHR419115, (Poit.)Hochr. ssp. P. B. Heenan Hook. 11 Jan.2000), 0.8,CHR53488, , Dec.1978),9.37,CHR312124, New ZealandJournalofBotany Hoheriaangustifolia (Australia,Canberra,CSIRO Hoheriapopulnea R. Pullen8529 3 112 –130. 23: 2 584–602. 92: . Cmrde: Cambridge Cambridge: . J.R.Forst.&G. American Naturalist Hoheriaequitum J.R.Forst.&G. (NewZealand,Otago, (Australia,Tasmania, 8 3548–3580. 18: (Australia,Tasmania, (Australia,Western , 28Nov. 1984),9.71, , 16 Aug. 1980),9.67, S. J.Wagstaff, , 17Sept.1999,ex A. Markey (NewZealand, Miq. D. Banks90/33& , 14Oct.1973), R. O.Gardner J.R.Forst.& chathamicus Plagianthus , 8.iv.1997), , (Australia, A.Cunn. , 11 Jan. 15Feb. Raoul Heads Hoheria Nucleic (New 165: ′

Copyright (c) American Society for Plant Taxonomists. All rights reserved. Delivered by Ingenta to IP: 192.168.39.151 on: Tue, 28 Sep 2021 22:12:31 1 SSEAI OAY [Volume 36 SYSTEMATIC BOTANY Fyfe Ra.,360m. Bush), 9.23,CHR529985, AY944607, AY944630; Centre grounds, (New Zealand,cultivated,Lincoln,Canterbury Agriculture andScience Plagianthusregius W. R.Sykes426/93 (Cockayne) deLange 418 HM348804; GU045820; R.Elder&J.Thompson Hochr. 16 Jan.1996),1.153,CHR510106,HM348809,HM348798. Land District,Teremakau River, HarringtonCreek, HM348799; CHR 472686,HM348806,HM348795; icatus 13.11.89), CHR446878,HM348805,HM348794; (Poit.) Hochr. Apr. 1993),2.152,CHR481818,HM348808, HM348797; Turakina River, Rangiwaea,Turakina Valley Road, Wairoa River, HM348796; (New Zealand,RakanuiRakaukekeCreek), CHR536756,HM348807, (NewZealand,LakeForsythe,P. Heenan&P. J.deLange8/2/00), (NewZealand,Canterbury, SummitRoad,SignoftheBellbird, Plagianthusregius Plagianthusregius Plagianthusregius Plagianthusregius P. J.deLange6992 (NewZealand,nearGeraldine,Waihi Gorge, F. J.Breteler S. J.Wagstaff , 2Dec.1993),1.52,CHR496754,HM348803,HM348792; A. P. Druce (Poit.)Hochr. ssp. (NewZealand, ChathamIsland,Te Matarae, , 27Nov. 1988),2.153,CHR465352,GU045792, , Feb.1989),1.54,CHR395673,HM348793, , 15Feb1999,exChathamIsland,Smith’s (Poit.)Hochr. , Feb.17,2008),8.42, AK300202, HM348810, (Poit.)Hochr. (ot) Hochr. (Poit.) (Poit.)Hochr. chathamicus Plagianthusregius (NewZealand,NWNelson, (NewZealand,Tongariro, (NewZealand,Clevedon, Plagianthusregius (NewZealand,Westland Plagianthusregius (Cockayne)de Lange B. H.Macmillan96/9 C. Ogle2564 Plagianthusregius × divaricatus × (Poit.) divar- , 18 , .

glomerate 2 01; Plagianthusregius tus 0 1; Lawrencia spicata 9.27: 13020; 1: Leptophyll( 1 200; 1 200; ? 021; winged, 1:Mericarpslackingwings). Polygamodioecious, 2:Hermaphroditic); spicuous, 1:Large andshowy); Divaricate juveniles,2:Divaricate); development (0: Absent, 1:Present); deciduous, 2:Evergreen); Shrub orsmall tree, 3:Tree); Forests); New Zealand,2:ChathamIslands); Asterotrichion discolor Appendix 9.36:1021; Plagianthus regius Plagianthus divaricatus 3. 9.70:0120; Lifeform(0:Suffrutescent perrenial herbs,1:Erect subshrub, 2: 2.Characterstatedistributions. < 2.5cm 9.71:0120; Hoheria glabrate 1.54:13021; Hoheria ovata 3

), 2:Mesophyll(20–180cm 9.72: 012?1; 8.42:13021; 5. P. regius Leafsurfacearea (0:Microphyll (2.5–20cm 1.50:1021; 4. 0.10:1320; 2.147:13020; Leafphenology(0:Deciduous,1:Semi- 1.18:1200; Lawrencia helmsii ssp. 9. 8. 2. Breeding system(0:Dioecious,1: Floraldisplay(0:Smallandincon- Habitat(0:Salineenvironments, 1: 7. chathamicus Lawrencia squamate Plagianthus regius 9.25:13020; Divaricatebranching(0:No,1: 10. Dispersalmode(0:Mericarps 1.

Distribution(0: Australia, 1: Gynatrix pulchella 9.68:021; 1.52:21301; 3 ) ); Hoheria equitum 6. Plagianthus divarica- Heteroblastic leaf 1.153:130 9.67:021 9.69:012 Lawrencia 1.60: 9.54: 3 ),