WRA Species Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Evolutionary Rates Predict Both Extinction and Speciation In
Lancaster BMC Evolutionary Biology 2010, 10:162 http://www.biomedcentral.com/1471-2148/10/162 RESEARCH ARTICLE Open Access MolecularResearch article evolutionary rates predict both extinction and speciation in temperate angiosperm lineages Lesley T Lancaster Abstract Background: A positive relationship between diversification (i.e., speciation) and nucleotide substitution rates is commonly reported for angiosperm clades. However, the underlying cause of this relationship is often unknown because multiple intrinsic and extrinsic factors can affect the relationship, and these have confounded previous attempts infer causation. Determining which factor drives this oft-reported correlation can lend insight into the macroevolutionary process. Results: Using a new database of 13 time-calibrated angiosperm phylogenies based on internal transcribed spacer (ITS) sequences, and controlling for extrinsic variables of life history and habitat, I evaluated several potential intrinsic causes of this correlation. Speciation rates (λ) and relative extinction rates (ε) were positively correlated with mean substitution rates, but were uncorrelated with substitution rate heterogeneity. It is unlikely that the positive diversification-substitution correlation is due to accelerated molecular evolution during speciation (e.g., via enhanced selection or drift), because punctuated increases in ITS rate (i.e., greater mean and variation in ITS rate for rapidly speciating clades) were not observed. Instead, fast molecular evolution likely increases speciation rate (via increased mutational variation as a substrate for selection and reproductive isolation) but also increases extinction (via mutational genetic load). Conclusions: In general, these results predict that clades with higher background substitution rates may undergo successful diversification under new conditions while clades with lower substitution rates may experience decreased extinction during environmental stasis. -
The Geranium Family, Geraniaceae, and the Mallow Family, Malvaceae
THE GERANIUM FAMILY, GERANIACEAE, AND THE MALLOW FAMILY, MALVACEAE TWO SOMETIMES CONFUSED FAMILIES PROMINENT IN SOME MEDITERRANEAN CLIMATE AREAS The Geraniaceae is a family of herbaceous plants or small shrubs, sometimes with succulent stems • The family is noted for its often palmately veined and lobed leaves, although some also have pinnately divided leaves • The leaves all have pairs of stipules at their base • The flowers may be regular and symmetrical or somewhat irregular • The floral plan is 5 separate sepals and petals, 5 or 10 stamens, and a superior ovary • The most distinctive feature is the beak of fused styles on top of the ovary Here you see a typical geranium flower This nonnative weedy geranium shows the styles forming a beak The geranium family is also noted for its seed dispersal • The styles either actively eject the seeds from each compartment of the ovary or… • They twist and embed themselves in clothing and fur to hitch a ride • The Geraniaceae is prominent in the Mediterranean Basin and the Cape Province of South Africa • It is also found in California but few species here are drought tolerant • California does have several introduced weedy members Here you see a geranium flinging the seeds from sections of the ovary when the styles curl up Three genera typify the Geraniaceae: Erodium, Geranium, and Pelargonium • Erodiums (common name filaree or clocks) typically have pinnately veined, sometimes dissected leaves; many species are weeds in California • Geraniums (that is, the true geraniums) typically have palmately veined leaves and perfectly symmetrical flowers. Most are herbaceous annuals or perennials • Pelargoniums (the so-called garden geraniums or storksbills) have asymmetrical flowers and range from perennials to succulents to shrubs The weedy filaree, Erodium cicutarium, produces small pink-purple flowers in California’s spring grasslands Here are the beaked unripe fruits of filaree Many of the perennial erodiums from the Mediterranean make well-behaved ground covers for California gardens Here are the flowers of the charming E. -
Lord Howe Island, a Riddle of the Pacific, Part III
Lord Howe Island, A Riddle of the Pacific, Part III S. J. PARAMONOV1 IN THIS FINAL PART (for parts I and II see During two visits to the island, in 1954 and Pacif.Sci.12 (1) :82- 91, 14 (1 ): 75-85 ) the 1955, the author failed to find the insect. An author is dealing mainly with a review of the official enquiry was made recently to the Ad insects and with general conclusions. mini stration staff of the island, and the author received a letter from the Superintendent of INSECTA the Island, Mr. H. Ward, on Nov. 3, 1961, in which he states : "A number of the old inhabi Our knowledge of the insects of Lord Howe tants have been questioned and all have advised Island is only preliminary and incomplete. Some that it is at least 30 years and possibly 40 groups, for example butterflies and beetles, are years since this insect has .been seen on the more or less sufficiently studied, other groups Island. A member of the staff, aged 33 years, very poorly. has never seen or heard of the insect, nor has Descriptions of new endemic species and any pupil of the local School." records of the insects of the island are dis The only possibility is that the insect may persed in many articles, and a summary of our still exist in one of the biggest banyan trees knowledge in this regard is lacking. However, on the slope of Mr, Gower, on the lagoon side. a high endemism of the fauna is evident. Al The area is well isolated from the settlement though the degree of endemi sm is only at the where the rat concentration was probably the specific, or at most the generic level, the con greatest, and may have survived in crevices of nection with other faunas is very significant. -
Technical Bulletin for Oxycarenus Hyalinipennis (Cotton Seed Bug)
USDA United States Department of Agriculture United States Department of Agriculture Technical Bulletin- Oxycarenus Animal and Plant hyalinipennis (Costa) (Hemiptera: Health Inspection Service Oxycarenidae) Cotton seed bug April 23, 2021 Cotton seed bug, O. hyalinipennis (image courtesy of Julieta Brambila, USDA– APHIS–PPQ) Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Oxcarenus hyalinipennis Cotton seed bug Technical Bulletin 5 E E Figure 1. Adult and five nymphal stages of Oxycarenus hyalinipennis (image courtesy of Natasha Wright, FDACS-DPI). Introduction: Cotton seed bug (CSB), Oxycarenus distinct wingpads that extend to the third abdominal hyalinipennis, is an important global pest of cotton segment (Henry, 1983). (Smith and Brambila, 2008). Native to Africa, CSB is now widespread with distribution in Asia, Europe, Eggs: Egg are 0.29 mm (0.01 in) wide by 0.97 mm Middle East, South America and the Caribbean (Bolu (0.04 in) long and slender with 25 longitudinal ribs or et al., 2020; Halbert and Dobbs, 2010). Cotton seed corrugations. During development, the eggs change from straw yellow to orange or pink (Fig. 2) (Henry, bug infestations can cause weight loss in cottonseed, 1983; Sweet, 2000). decrease seed germination, and reduce oil seed (Henry, 1983). Additionally, when CSB is present in sufficient numbers, cotton fibers become stained during processing (Smith and Brambila, 2008) which results in decreased value. Description: Final identification of CSB is based on the morphology of adult male internal structures (Brambila, 2020). -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Characterization of Some Common Members of the Family Malvaceae S.S
Indian Journal of Plant Sciences ISSN: 2319–3824(Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jps.htm 2014 Vol. 3 (3) July-September, pp.79-86/Naskar and Mandal Research Article CHARACTERIZATION OF SOME COMMON MEMBERS OF THE FAMILY MALVACEAE S.S. ON THE BASIS OF MORPHOLOGY OF SELECTIVE ATTRIBUTES: EPICALYX, STAMINAL TUBE, STIGMATIC HEAD AND TRICHOME *Saikat Naskar and Rabindranath Mandal Department of Botany, Barasat Govt. College, Barasat, Kolkata- 700124, West Bengal, India *Author for Correspondence: [email protected] ABSTRACT Epicalyx, staminal tube, stigma and trichome morphological characters have been used to characterize some common members of Malvaceae s.s. These characters have been analyzed following a recent molecular phylogenetic classification of Malvaceae s.s. Stigmatic character is effective for segregation of the tribe Gossypieae from other tribes. But precise distinction of other two studied tribes, viz. Hibisceae and Malveae on the basis of this character proved to be insufficient. Absence of epicalyx in Malachra has indicated an independent evolutionary event within Hibisceae. Distinct H-shaped trichome of Malvastrum has pointed out its isolated position within Malveae. Staminal tube morphological similarities of Abutilon and Sida have suggested their closeness. A key to the genera has been provided for identification purpose. Keywords: Malvaceae s.s., Epicalyx, Staminal Tube, Stigma, Trichome INTRODUCTION Epicalyx and monadelphous stamens are considered as key characters of the family Malvaceae s.s. Epicalyx was recognized as an important character for taxonomic value by several authors (Fryxell, 1988; Esteves, 2000) since its presence or absence was employed to determine phylogenetic interpretation within the tribes of Malvaceae s.s. -
<I>Plagianthus</I> (Malveae, Malvaceae)
Systematic Botany (2011), 36(2): pp. 405–418 © Copyright 2011 by the American Society of Plant Taxonomists DOI 10.1600/036364411X569589 Phylogeny and Character Evolution in the New Zealand Endemic Genus Plagianthus (Malveae, Malvaceae) Steven J. Wagstaff 1 , 3 and Jennifer A. Tate 2 1 Allan Herbarium, Landcare Research, PO Box 40, Lincoln 7640, New Zealand 2 Massey University, Institute of Molecular Biosciences, Private Bag 11222, Palmerston North, New Zealand 3 Author for correspondence ([email protected]) Communicating Editor: Lúcia Lohmann Abstract— As presently circumscribed, Plagianthus includes two morphologically distinct species that are endemic to New Zealand. Plagianthus divaricatus , a divaricate shrub, is a dominant species in coastal saline shrub communities, whereas P. regius is a tree of lowland and montane forests. Results from independent analyses of ITS and 5′ trnK / matK sequences are congruent, and when combined provide a robust framework to study character evolution. Our findings suggest the ancestor of Plagianthus originated in Australia where the sister gen- era Asterotrichion and Gynatrix are presently distributed. The stem age of Plagianthus was estimated at 7.3 (4.0–14.0) million years ago (Ma) and the crown radiation at 3.9 (1.9–8.2) Ma. Most of the characters optimized onto the molecular phylogeny were shared with source lineages from Australia and shown to be plesiomorphic. Only the divaricate branching pattern characteristic of Plagianthus divaricatus was acquired after the lineage became established in New Zealand and shown to be apomorphic. The initial Plagianthus founders were shrubs or small trees with deciduous leaves and small inconspicuous dioecious flowers. -
Tasmania's Largest Landscaped Native Garden
Tasmania’s Largest Landscaped Native Garden Whozat? Norfolk Island Hibiscus Norfolk Island Hibiscus Our Norfolk Island Hibiscus ( Lagunaria patersonia ) is flowering early this year and judging by all the buds, we are in for a treat. It's rated an environmental nuisance in various parts of Australia but we have Juvenile Goldfinch had no trouble with it. There is a very large one in We were stuck on 99 bird species at Inverawe for so the Hobart Botanical Gardens, down near the flower long, then jumped suddenly to 101. We thought for clock. The hairs inside the fruit are a skin irritant so one moment this might be 102 but it is a juvenile its common names include Itchy Bomb tree, and Goldfinch. It has the Zebra panels on its wings but Cowsitch. lacks the characteristic red face mask and has a very mottled appearance. Some years ago I saw New Paws over the Bay Hollands pull a baby Goldfinch from a nest. I put it back but it was dead the next day. Breakfast with the Birds Our next Breakfast with the Birds is Sunday February 22, kicking off at 8.30 am with fresh fruit salad, cereal and hot muffins. We then take the grand tour of Inverawe, looking for birds. Bookings essential, (ph 6267 2020) - experience not necessary -we can bring you up to speed on the "how" of bird identification. $30 per person, what a bargain! Native Plant Workshop Our next "hands on" Native Plant Propagating Workshop is Sunday March 22, 1.30 pm to around North West Bay, Kangaroo Paws, foreground 4.00 pm. -
The Correspondence of Julius Haast and Joseph Dalton Hooker, 1861-1886
The Correspondence of Julius Haast and Joseph Dalton Hooker, 1861-1886 Sascha Nolden, Simon Nathan & Esme Mildenhall Geoscience Society of New Zealand miscellaneous publication 133H November 2013 Published by the Geoscience Society of New Zealand Inc, 2013 Information on the Society and its publications is given at www.gsnz.org.nz © Copyright Simon Nathan & Sascha Nolden, 2013 Geoscience Society of New Zealand miscellaneous publication 133H ISBN 978-1-877480-29-4 ISSN 2230-4495 (Online) ISSN 2230-4487 (Print) We gratefully acknowledge financial assistance from the Brian Mason Scientific and Technical Trust which has provided financial support for this project. This document is available as a PDF file that can be downloaded from the Geoscience Society website at: http://www.gsnz.org.nz/information/misc-series-i-49.html Bibliographic Reference Nolden, S.; Nathan, S.; Mildenhall, E. 2013: The Correspondence of Julius Haast and Joseph Dalton Hooker, 1861-1886. Geoscience Society of New Zealand miscellaneous publication 133H. 219 pages. The Correspondence of Julius Haast and Joseph Dalton Hooker, 1861-1886 CONTENTS Introduction 3 The Sumner Cave controversy Sources of the Haast-Hooker correspondence Transcription and presentation of the letters Acknowledgements References Calendar of Letters 8 Transcriptions of the Haast-Hooker letters 12 Appendix 1: Undated letter (fragment), ca 1867 208 Appendix 2: Obituary for Sir Julius von Haast 209 Appendix 3: Biographical register of names mentioned in the correspondence 213 Figures Figure 1: Photographs -
Bio 308-Course Guide
COURSE GUIDE BIO 308 BIOGEOGRAPHY Course Team Dr. Kelechi L. Njoku (Course Developer/Writer) Professor A. Adebanjo (Programme Leader)- NOUN Abiodun E. Adams (Course Coordinator)-NOUN NATIONAL OPEN UNIVERSITY OF NIGERIA BIO 308 COURSE GUIDE National Open University of Nigeria Headquarters 14/16 Ahmadu Bello Way Victoria Island Lagos Abuja Office No. 5 Dar es Salaam Street Off Aminu Kano Crescent Wuse II, Abuja e-mail: [email protected] URL: www.nou.edu.ng Published by National Open University of Nigeria Printed 2013 ISBN: 978-058-434-X All Rights Reserved Printed by: ii BIO 308 COURSE GUIDE CONTENTS PAGE Introduction ……………………………………......................... iv What you will Learn from this Course …………………............ iv Course Aims ……………………………………………............ iv Course Objectives …………………………………………....... iv Working through this Course …………………………….......... v Course Materials ………………………………………….......... v Study Units ………………………………………………......... v Textbooks and References ………………………………........... vi Assessment ……………………………………………….......... vi End of Course Examination and Grading..................................... vi Course Marking Scheme................................................................ vii Presentation Schedule.................................................................... vii Tutor-Marked Assignment ……………………………….......... vii Tutors and Tutorials....................................................................... viii iii BIO 308 COURSE GUIDE INTRODUCTION BIO 308: Biogeography is a one-semester, 2 credit- hour course in Biology. It is a 300 level, second semester undergraduate course offered to students admitted in the School of Science and Technology, School of Education who are offering Biology or related programmes. The course guide tells you briefly what the course is all about, what course materials you will be using and how you can work your way through these materials. It gives you some guidance on your Tutor- Marked Assignments. There are Self-Assessment Exercises within the body of a unit and/or at the end of each unit. -
Sida Rhombifolia
Sida rhombifolia Arrowleaf sida, Cuba jute Sida rhombifolia L. Family: Malvaceae Description: Small, perennial, erect shrub, to 5 ft, few hairs, stems tough. Leaves alternate, of variable shapes, rhomboid (diamond-shaped) to oblong, 2.4 inches long, margins serrate except entire toward the base. Flowers solitary at leaf axils, in clusters at end of branches, yel- low to yellowish orange, often red at the base of the petals, 0.33 inches diameter, flower stalk slender, to 1.5 inches long. Fruit a cheesewheel (schizocarp) of 8–12 segments with brown dormant seeds. A pantropical weed, widespread throughout Hawai‘i in disturbed areas. Pos- sibly indigenous. Used as fiber source and as a medici- nal in some parts of the world. [A couple of other weedy species of Sida are common in Hawai‘i. As each spe- cies tends to be variable in appearance (polymorphic), while at the same time similar in gross appearance, they are difficult to tell apart. S. acuta N.L. Burm., syn. S. Distribution: A pantropical weed, first collected on carpinifolia, southern sida, has narrower leaves with the Kauaÿi in 1895. Native to tropical America, naturalized bases unequal (asymmetrical), margins serrated to near before 1871(70). the leaf base; flowers white to yellow, 2–8 in the leaf axils, flower stalks to 0.15 inches long; fruit a cheese- Environmental impact: Infests mesic to wet pas- wheel with 5 segments. S. spinosa L., prickly sida, has tures and many crops worldwide in temperate and tropi- very narrow leaves, margins serrate or scalloped cal zones(25). (crenate); a nub below each leaf, though not a spine, accounts for the species name; flowers, pale yellow to Management: Somewhat tolerant of 2,4-D, dicamba yellowish orange, solitary at leaf axils except in clusters and triclopyr. -
September 29, 2015 20884 Jemellee Cruz Flood Maintenance
September 29, 2015 20884 Jemellee Cruz Flood Maintenance Division County of Los Angeles Department of Public Works 900 South Fremont Avenue, Annex Building Alhambra, California 91803 SUBJECT: RESULTS FROM THE FOCUSED PLANT SURVEY FOR SOFT-BOTTOM CHANNEL REACH 113, DOMINGUEZ CHANNEL, MAINTENANCE PROJECT, LOS ANGELES COUNTY, CALIFORNIA. TASK ORDER NUMBER FMD-C339 Dear Ms. Cruz: This letter report summarizes the findings of the focused plant survey conducted for the Soft-Bottom Channel (SBC) Reach 113, Dominguez Channel, for the Los Angeles County Flood Control District (LACFCD) to support the Regional Water Quality Control Board (RWQCB) Waste Discharge Requirements (WDR) for the proposed actions relating to the Dominguez Channel SBC Reach Annual Maintenance Project (Project). Information contained in this document is in accordance with accepted scientific and technical standards that are consistent with the requirements of United States Fish and Wildlife Service (USFWS) and the California Department of Fish and Wildlife (CDFW). The Project reach is located in the Cities of Gardena, Carson, Wilmington, and Los Angeles. The channel is surrounded mainly by residential, commercial, and industrial development. The Project is located between the Interstate-110 and Interstate-710, extending south of Artesia Boulevard in Gardena to Henry Ford Avenue in Wilmington in the Port of Los Angeles (Figure 1). The proposed impact area includes: . The expanse from the top of the riprap on one bank, across the channel, to the top of the riprap on the other bank . A 50-foot buffer around any tree or shrub identified as having a 0.5-inch or more root diameter within the Dominguez Channel Project area (landward side of levee on one bank, across the channel, to the landward side of levee on the other bank plus an additional 15-foot buffer if it is contained within the LACFCD easement) .