Structure of the Lepidopteran Proboscis in Relation to Feeding Guild

Total Page:16

File Type:pdf, Size:1020Kb

Structure of the Lepidopteran Proboscis in Relation to Feeding Guild JOURNAL OF MORPHOLOGY 00:00–00 (2015) Structure of the Lepidopteran Proboscis in Relation to Feeding Guild Matthew S. Lehnert,1,2* Charles E. Beard,2 Patrick D. Gerard,3 Konstantin G. Kornev,4 and Peter H. Adler2 1Department of Biological Sciences, Kent State University at Stark, North Canton, Ohio 44720 2Department of Agricultural and Environmental Sciences, Clemson University, Clemson, South Carolina 29634 3Department of Mathematical Sciences, Clemson University, Clemson, South Carolina 29634 4Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634 ABSTRACT Most butterflies and moths (Lepidoptera) (Monaenkova et al., 2012). A pump in the head use modified mouthparts, the proboscis, to acquire flu- then forces the liquid up the food canal to the gut ids. We quantified the proboscis architecture of five (Eberhard and Krenn, 2005; Borrell and Krenn, butterfly species in three families to test the hypothesis 2006; Lee et al., 2014). that proboscis structure relates to feeding guild. We Feeding guilds (i.e., groups of species with simi- used scanning electron microscopy to elucidate the fine structure of the proboscis of both sexes and to quantify lar feeding habits) have long been recognized in dimensions, cuticular patterns, and the shapes and the Lepidoptera and have been associated with sizes of sensilla and dorsal legulae. Sexual dimorphism higher taxa, such as nymphalid subfamilies or was not detected in the proboscis structure of any spe- tribes (Gilbert and Singer, 1975; Krenn et al., cies. A hierarchical clustering analysis of overall pro- 2001). Adult Lepidoptera are conventionally cate- boscis architecture reflected lepidopteran phylogeny, gorized into at least two broad feeding guilds: but did not produce a distinct group of flower visitors flower visitors (nectar feeders) and nonflower visi- or of puddle visitors within the flower visitors. Specific tors (nonnectar feeders), the latter drinking from characters of the proboscis, nonetheless, can indicate wetted surfaces, such as sap flows and rotting flower and nonflower visitors, such as the configuration fruit. Within the flower-visiting guild, the males of of sensilla styloconica, width of the lower branches of dorsal legulae, presence or absence of dorsal legulae at some species routinely drink from damp soil the extreme apex, and degree of proboscis tapering. We (“puddling” sensu Arms et al., 1974). suggest that the overall proboscis architecture of Lepi- Selected features of proboscis architecture have doptera reflects a universal structural organization been associated with adult-feeding habits (Krenn that promotes fluid uptake from droplets and films. On et al. 2001; Monaenkova et al., 2012; Lehnert et al., top of this fundamental structural organization, we 2013; Kwauk et al., 2014; Tsai et al., 2014). Tearing suggest that the diversity of floral structure has and rasping spines and other cuticular modifica- selected for structural adaptations that facilitate entry tions, for example, are on the proboscises of moths of the proboscis into floral tubes. J. Morphol. 000:000– that routinely feed on lachrymal secretions and 000, 2015. VC 2015 Wiley Periodicals, Inc. pierce animal tissue to feed on blood (Banziger,€ KEY WORDS: butterfly; flower visiting; fluid uptake; 1971; Buttiker€ et al., 1996; Hilgartner et al., 2007; mouthparts; nectar feeding; sap feeding Zaspel et al., 2011). Flower-visiting butterflies have darker proboscises (Krenn et al., 2001) and signifi- cantly longer proboscises relative to their bodies than do nonflower visitors (Kunte, 2007). Enlarged, INTRODUCTION densely arrayed chemo-mechanoreceptors, that is, Approximately 28% of all fluid-feeding insects are butterflies and moths in the Lepidoptera (Adler and Foottit, 2009). More than 95% of the Contract grant sponsor: National Science Foundation (award number 1354956); Contract grant sponsor: NIH; Grant number: Lepidoptera acquire fluids by means of a tubular 5P02GM103444; Contract grant sponsor: NIFA/USDA. proboscis (Krenn, 1990, 2010). The feeding device consists of two medially concave, elongated maxil- *Correspondence to: Matthew S. Lehnert; 6000 Frank Ave. NW, lary galeae joined dorsally and ventrally by cuticu- North Canton, OH 44720. E-mail: [email protected] lar projections, termed “legulae,” forming a food canal (Eastham and Eassa, 1955; Hepburn, 1971; Received 27 August 2015; Revised 10 October 2015; Krenn, 1997). Spaces between the dorsal legulae Accepted 18 October 2015. facilitate capillary action, supporting the with- Published online 00 Month 2015 in drawal of liquids from pools and porous sub- Wiley Online Library (wileyonlinelibrary.com). strates, such as rotting fruit, into the food canal DOI 10.1002/jmor.20487 VC 2015 WILEY PERIODICALS, INC. 2 M.S. LEHNERT ET AL. sensilla styloconica (Altner and Altner 1986) form a from porous substrates, such as rotting fruit and tree sap brushy tip in nonflower-visiting butterflies (Krenn (Scott, 1986). et al., 2001; Knopp and Krenn, 2003; Petr and Danaus plexippus was received as pupae or adults from Shady Oak Butterfly Farm (Brooker, Florida) or were labora- Stewart, 2004; Krenn, 2010), which takes up fluid tory reared on milkweed (Asclepias spp.). Larvae of P. rapae, more effectively from liquid films (Molleman et al., from Carolina Biological Supply Co. (Burlington, NC) were 2005). We recently discovered that these sensilla reared on artificial diet. Adults of P. glaucus, L. a. astyanax, are hydrophilic, and function like a sponge when and P. interrogationis were captured as adults or reared from 0 0 arranged as a brush (Lehnert et al., 2013), a mech- larvae collected in Clemson, South Carolina (N34839 , W82850 ), from April to September 2011. Voucher specimens were depos- anism further studied by Lee and Lee (2014). In ited in the Clemson University Arthropod Collection. addition, some nonflower-visiting butterflies have a more elliptical proboscis in cross-section, compared Scanning Electron Microscopy with the condition of flower visitors (Lehnert et al., Lepidopteran heads were secured and proboscises straight- 2013). When an elliptical proboscis is dipped into a ened with insect pins on polystyrene foam where they remained liquid, the meniscus rises to a higher level com- through a series of ethanol washes (80%, 95%, 100%; ca. 24 h pared with that of a circular proboscis (Lehnert each) followed by chemical drying in hexamethyldisilazane. et al., 2013; Alimov and Kornev, 2014), which might Specimens were attached to a scanning electron microscope help Lepidoptera to engage more interlegular (SEM) mount with carbon-graphite adhesive tape and sputter- coated with gold or platinum for 1–3 min. A Hitachi TM-3000 spaces for liquid uptake (Kwauk et al., 2014). SEM was used to photograph the dorsum of each proboscis at In accord with the hypothesis that structural 503 magnification, 15 kV, and full vacuum. Selected areas were organization of an organismal device is matched to observed at 1503 or higher magnifications. Composite images its functional demand (Weibel et al., 1991), we of each proboscis were assembled in AdobeVR Photoshop CS2 (Adobe Systems) and used for measurements and illustrations. looked for a testable framework to facilitate the ImageJ software (Rasband, W.S., ImageJ, U. S. National Insti- prediction of general feeding habits (guilds) of but- tutes of Health, Bethesda, Maryland, USA, http://imagej.nih. terflies. Therefore, we asked the following ques- gov/ij/, 1997-2015) was used to acquire measurements. tion: Can visible structural features of the proboscis predict feeding guild? To test the hypoth- Measurements esis that species with similar feeding habits have We used SEM to ensure accuracy of proboscis measurements structurally similar proboscises, we examined 21 and character assessments. Overall, we quantified or catego- proboscis characters for three guilds of butterflies: rized a total of 21 characters for 11–20 (typically 20) specimens of each of the five species (Tables (1–3)). We compared charac- flower visitors, flower-visiting puddlers, and non- ters between sexes for each species [P. glaucus 11 females and flower visitors. To provide a robust analysis of the 9 males for all measured characters, except number of hand- overall proboscis landscape, we built on the study switches (10f, 8m); D. plexippus 10f, 10m; L. a. astyanax 11f, of nymphalid butterflies by Krenn et al. (2001), 9m, except number of handswitches (6f, 6m), widths of Zone 1 and included characters recently associated with (8f, 8m) and Zone 2 (10f, 7m); P. interrogationis 5f, 14m, except for handswitches (3f, 11m), widths of Zone 1 (5f, 13m) and Zone fluid uptake, such as attributes of the dorsal legu- 2 (5f, 13m); P. rapae 8f, 12m, except for handswitches (2f, 5m), lae (Monaenkova et al., 2012; Lehnert et al., and sensilla styloconica stylus length and peg length (6f, 9m)]. 2013), as well as characters with unknown func- Composite SEM images (503 magnification) were used to tions. We also tested the hypothesis that males define areas (i.e., zones) of the proboscis to assist in structural comparisons among species. These structural zones correspond and females differ in the structure of their probos- with well-defined functional zones, that is, the drinking and cises, and predicted differences in the puddling nondrinking regions (Monaenkova et al., 2012; Lehnert et al., group because predominantly males exhibit this 2013). Upper and lower branches of dorsal legulae (Lehnert behavior (Arms et al. 1974). In analyzing the et al., 2013) were present along more than 95% of the length of structural characters, we considered only their each galea of all species, and the width of the upper branch was used to designate structurally defined zones. In ImageJ geometrical features and not their materials software, a straight line was drawn from the base to the tip of properties. a single dorsal legula at the base of the proboscis (Fig. 1). The line was held at constant length and moved distally along the bases of the dorsal legulae until the width of the legulae consis- MATERIAL AND METHODS tently enlarged, signifying the end of one zone and the begin- Species ning of a second zone (cf. Fig.
Recommended publications
  • Fauna Lepidopterologica Volgo-Uralensis" 150 Years Later: Changes and Additions
    ©Ges. zur Förderung d. Erforschung von Insektenwanderungen e.V. München, download unter www.zobodat.at Atalanta (August 2000) 31 (1/2):327-367< Würzburg, ISSN 0171-0079 "Fauna lepidopterologica Volgo-Uralensis" 150 years later: changes and additions. Part 5. Noctuidae (Insecto, Lepidoptera) by Vasily V. A n ik in , Sergey A. Sachkov , Va d im V. Z o lo t u h in & A n drey V. Sv ir id o v received 24.II.2000 Summary: 630 species of the Noctuidae are listed for the modern Volgo-Ural fauna. 2 species [Mesapamea hedeni Graeser and Amphidrina amurensis Staudinger ) are noted from Europe for the first time and one more— Nycteola siculana Fuchs —from Russia. 3 species ( Catocala optata Godart , Helicoverpa obsoleta Fabricius , Pseudohadena minuta Pungeler ) are deleted from the list. Supposedly they were either erroneously determinated or incorrect noted from the region under consideration since Eversmann 's work. 289 species are recorded from the re­ gion in addition to Eversmann 's list. This paper is the fifth in a series of publications1 dealing with the composition of the pres­ ent-day fauna of noctuid-moths in the Middle Volga and the south-western Cisurals. This re­ gion comprises the administrative divisions of the Astrakhan, Volgograd, Saratov, Samara, Uljanovsk, Orenburg, Uralsk and Atyraus (= Gurjev) Districts, together with Tataria and Bash­ kiria. As was accepted in the first part of this series, only material reliably labelled, and cover­ ing the last 20 years was used for this study. The main collections are those of the authors: V. A n i k i n (Saratov and Volgograd Districts), S.
    [Show full text]
  • Self-Repair and Self-Cleaning of the Lepidopteran Proboscis
    Clemson University TigerPrints All Dissertations Dissertations 8-2019 Self-Repair and Self-Cleaning of the Lepidopteran Proboscis Suellen Floyd Pometto Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Pometto, Suellen Floyd, "Self-Repair and Self-Cleaning of the Lepidopteran Proboscis" (2019). All Dissertations. 2452. https://tigerprints.clemson.edu/all_dissertations/2452 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. SELF-REPAIR AND SELF-CLEANING OF THE LEPIDOPTERAN PROBOSCIS A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy ENTOMOLOGY by Suellen Floyd Pometto August 2019 Accepted by: Dr. Peter H. Adler, Major Advisor and Committee Co-Chair Dr. Eric Benson, Committee Co-Chair Dr. Richard Blob Dr. Patrick Gerard i ABSTRACT The proboscis of butterflies and moths is a key innovation contributing to the high diversity of the order Lepidoptera. In addition to taking nectar from angiosperm sources, many species take up fluids from overripe or sound fruit, plant sap, animal dung, and moist soil. The proboscis is assembled after eclosion of the adult from the pupa by linking together two elongate galeae to form one tube with a single food canal. How do lepidopterans maintain the integrity and function of the proboscis while foraging from various substrates? The research questions included whether lepidopteran species are capable of total self- repair, how widespread the capability of self-repair is within the order, and whether the repaired proboscis is functional.
    [Show full text]
  • Butterflies of Ontario & Summaries of Lepidoptera
    ISBN #: 0-921631-12-X BUTTERFLIES OF ONTARIO & SUMMARIES OF LEPIDOPTERA ENCOUNTERED IN ONTARIO IN 1991 BY A.J. HANKS &Q.F. HESS PRODUCTION BY ALAN J. HANKS APRIL 1992 CONTENTS 1. INTRODUCTION PAGE 1 2. WEATHER DURING THE 1991 SEASON 6 3. CORRECTIONS TO PREVIOUS T.E.A. SUMMARIES 7 4. SPECIAL NOTES ON ONTARIO LEPIDOPTERA 8 4.1 The Inornate Ringlet in Middlesex & Lambton Cos. 8 4.2 The Monarch in Ontario 8 4.3 The Status of the Karner Blue & Frosted Elfin in Ontario in 1991 11 4.4 The West Virginia White in Ontario in 1991 11 4.5 Butterfly & Moth Records for Kettle Point 11 4.6 Butterflies in the Hamilton Study Area 12 4.7 Notes & Observations on the Early Hairstreak 15 4.8 A Big Day for Migrants 16 4.9 The Ocola Skipper - New to Ontario & Canada .17 4.10 The Brazilian Skipper - New to Ontario & Canada 19 4.11 Further Notes on the Zarucco Dusky Wing in Ontario 21 4.12 A Range Extension for the Large Marblewing 22 4.13 The Grayling North of Lake Superior 22 4.14 Description of an Aberrant Crescent 23 4.15 A New Foodplant for the Old World Swallowtail 24 4.16 An Owl Moth at Point Pelee 25 4.17 Butterfly Sampling in Algoma District 26 4.18 Record Early Butterfly Dates in 1991 26 4.19 Rearing Notes from Northumberland County 28 5. GENERAL SUMMARY 29 6. 1990 SUMMARY OF ONTARIO BUTTERFLIES, SKIPPERS & MOTHS 32 Hesperiidae 32 Papilionidae 42 Pieridae 44 Lycaenidae 48 Libytheidae 56 Nymphalidae 56 Apaturidae 66 Satyr1dae 66 Danaidae 70 MOTHS 72 CONTINUOUS MOTH CYCLICAL SUMMARY 85 7.
    [Show full text]
  • Lepidoptera of North America 5
    Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains,
    [Show full text]
  • Big Creek Lepidoptera Checklist
    Big Creek Lepidoptera Checklist Prepared by J.A. Powell, Essig Museum of Entomology, UC Berkeley. For a description of the Big Creek Lepidoptera Survey, see Powell, J.A. Big Creek Reserve Lepidoptera Survey: Recovery of Populations after the 1985 Rat Creek Fire. In Views of a Coastal Wilderness: 20 Years of Research at Big Creek Reserve. (copies available at the reserve). family genus species subspecies author Acrolepiidae Acrolepiopsis californica Gaedicke Adelidae Adela flammeusella Chambers Adelidae Adela punctiferella Walsingham Adelidae Adela septentrionella Walsingham Adelidae Adela trigrapha Zeller Alucitidae Alucita hexadactyla Linnaeus Arctiidae Apantesis ornata (Packard) Arctiidae Apantesis proxima (Guerin-Meneville) Arctiidae Arachnis picta Packard Arctiidae Cisthene deserta (Felder) Arctiidae Cisthene faustinula (Boisduval) Arctiidae Cisthene liberomacula (Dyar) Arctiidae Gnophaela latipennis (Boisduval) Arctiidae Hemihyalea edwardsii (Packard) Arctiidae Lophocampa maculata Harris Arctiidae Lycomorpha grotei (Packard) Arctiidae Spilosoma vagans (Boisduval) Arctiidae Spilosoma vestalis Packard Argyresthiidae Argyresthia cupressella Walsingham Argyresthiidae Argyresthia franciscella Busck Argyresthiidae Argyresthia sp. (gray) Blastobasidae ?genus Blastobasidae Blastobasis ?glandulella (Riley) Blastobasidae Holcocera (sp.1) Blastobasidae Holcocera (sp.2) Blastobasidae Holcocera (sp.3) Blastobasidae Holcocera (sp.4) Blastobasidae Holcocera (sp.5) Blastobasidae Holcocera (sp.6) Blastobasidae Holcocera gigantella (Chambers) Blastobasidae
    [Show full text]
  • Phylogeny and Biogeography of Hawkmoths (Lepidoptera: Sphingidae): Evidence from Five Nuclear Genes
    Phylogeny and Biogeography of Hawkmoths (Lepidoptera: Sphingidae): Evidence from Five Nuclear Genes Akito Y. Kawahara1*, Andre A. Mignault1, Jerome C. Regier2, Ian J. Kitching3, Charles Mitter1 1 Department of Entomology, College Park, Maryland, United States of America, 2 Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland, United States of America, 3 Department of Entomology, The Natural History Museum, London, United Kingdom Abstract Background: The 1400 species of hawkmoths (Lepidoptera: Sphingidae) comprise one of most conspicuous and well- studied groups of insects, and provide model systems for diverse biological disciplines. However, a robust phylogenetic framework for the family is currently lacking. Morphology is unable to confidently determine relationships among most groups. As a major step toward understanding relationships of this model group, we have undertaken the first large-scale molecular phylogenetic analysis of hawkmoths representing all subfamilies, tribes and subtribes. Methodology/Principal Findings: The data set consisted of 131 sphingid species and 6793 bp of sequence from five protein-coding nuclear genes. Maximum likelihood and parsimony analyses provided strong support for more than two- thirds of all nodes, including strong signal for or against nearly all of the fifteen current subfamily, tribal and sub-tribal groupings. Monophyly was strongly supported for some of these, including Macroglossinae, Sphinginae, Acherontiini, Ambulycini, Philampelini, Choerocampina, and Hemarina. Other groupings proved para- or polyphyletic, and will need significant redefinition; these include Smerinthinae, Smerinthini, Sphingini, Sphingulini, Dilophonotini, Dilophonotina, Macroglossini, and Macroglossina. The basal divergence, strongly supported, is between Macroglossinae and Smerinthinae+Sphinginae. All genes contribute significantly to the signal from the combined data set, and there is little conflict between genes.
    [Show full text]
  • Evolution of the Suctorial Proboscis in Pollen Wasps (Masarinae, Vespidae)
    Arthropod Structure & Development 31 (2002) 103–120 www.elsevier.com/locate/asd Evolution of the suctorial proboscis in pollen wasps (Masarinae, Vespidae) Harald W. Krenna,*, Volker Maussb, John Planta aInstitut fu¨r Zoologie, Universita¨t Wien, Althanstraße 14, A-1090, Vienna, Austria bStaatliches Museum fu¨r Naturkunde, Abt. Entomologie, Rosenstein 1, D-70191 Stuttgart, Germany Received 7 May 2002; accepted 17 July 2002 Abstract The morphology and functional anatomy of the mouthparts of pollen wasps (Masarinae, Hymenoptera) are examined by dissection, light microscopy and scanning electron microscopy, supplemented by field observations of flower visiting behavior. This paper focuses on the evolution of the long suctorial proboscis in pollen wasps, which is formed by the glossa, in context with nectar feeding from narrow and deep corolla of flowers. Morphological innovations are described for flower visiting insects, in particular for Masarinae, that are crucial for the production of a long proboscis such as the formation of a closed, air-tight food tube, specializations in the apical intake region, modification of the basal articulation of the glossa, and novel means of retraction, extension and storage of the elongated parts. A cladistic analysis provides a framework to reconstruct the general pathways of proboscis evolution in pollen wasps. The elongation of the proboscis in context with nectar and pollen feeding is discussed for aculeate Hymenoptera. q 2002 Elsevier Science Ltd. All rights reserved. Keywords: Mouthparts; Flower visiting; Functional anatomy; Morphological innovation; Evolution; Cladistics; Hymenoptera 1. Introduction Some have very long proboscides; however, in contrast to bees, the proboscis is formed only by the glossa and, in Evolution of elongate suctorial mouthparts have some species, it is looped back into the prementum when in occurred separately in several lineages of Hymenoptera in repose (Bradley, 1922; Schremmer, 1961; Richards, 1962; association with uptake of floral nectar.
    [Show full text]
  • Pollination and Botanic Gardens Contribute to the Next Issue of Roots
    Botanic Gardens Conservation International Education Review Volume 17 • Number 1 • May 2020 Pollination and botanic gardens Contribute to the next issue of Roots The next issue of Roots is all about education and technology. As this issue goes to press, most botanic gardens around the world are being impacted by the spread of the coronavirus Covid-19. With many Botanic Gardens Conservation International Education Review Volume 16 • Number 2 • October 2019 Citizen gardens closed to the public, and remote working being required, Science educators are having to find new and innovative ways of connecting with visitors. Technology is playing an ever increasing role in the way that we develop and deliver education within botanic gardens, making this an important time to share new ideas and tools with the community. Have you developed a new and innovative way of engaging your visitors through technology? Are you using technology to engage a Botanic Gardens Conservation International Education Review Volume 17 • Number 1 • April 2020 wider audience with the work of your garden? We are currently looking for a variety of contributions including Pollination articles, education resources and a profile of an inspirational garden and botanic staff member. gardens To contribute, please send a 100 word abstract to [email protected] by 15th June 2020. Due to the global impacts of COVID-19, BGCI’s 7th Global Botanic Gardens Congress is being moved to the Australian spring. Join us in Melbourne, 27 September to 1 October 2021, the perfect time to visit Victoria. Influence and Action: Botanic Gardens as Agents of Change will explore how botanic gardens can play a greater role in shaping our future.
    [Show full text]
  • Chapter 02 Biogeography and Evolution in the Tropics
    Chapter 02 Biogeography and Evolution in the Tropics (a) (b) PLATE 2-1 (a) Coquerel’s Sifaka (Propithecus coquereli), a lemur species common to low-elevation, dry deciduous forests in Madagascar. (b) Ring-tailed lemurs (Lemur catta) are highly social. PowerPoint Tips (Refer to the Microsoft Help feature for specific questions about PowerPoint. Copyright The Princeton University Press. Permission required for reproduction or display. FIGURE 2-1 This map shows the major biogeographic regions of the world. Each is distinct from the others because each has various endemic groups of plants and animals. FIGURE 2-2 Wallace’s Line was originally developed by Alfred Russel Wallace based on the distribution of animal groups. Those typical of tropical Asia occur on the west side of the line; those typical of Australia and New Guinea occur on the east side of the line. FIGURE 2-3 Examples of animals found on either side of Wallace’s Line. West of the line, nearer tropical Asia, one 3 nds species such as (a) proboscis monkey (Nasalis larvatus), (b) 3 ying lizard (Draco sp.), (c) Bornean bristlehead (Pityriasis gymnocephala). East of the line one 3 nds such species as (d) yellow-crested cockatoo (Cacatua sulphurea), (e) various tree kangaroos (Dendrolagus sp.), and (f) spotted cuscus (Spilocuscus maculates). Some of these species are either threatened or endangered. PLATE 2-2 These vertebrate animals are each endemic to the Galápagos Islands, but each traces its ancestry to animals living in South America. (a) and (b) Galápagos tortoise (Geochelone nigra). These two images show (a) a saddle-shelled tortoise and (b) a dome-shelled tortoise.
    [Show full text]
  • The Radiation of Satyrini Butterflies (Nymphalidae: Satyrinae): A
    Zoological Journal of the Linnean Society, 2011, 161, 64–87. With 8 figures The radiation of Satyrini butterflies (Nymphalidae: Satyrinae): a challenge for phylogenetic methods CARLOS PEÑA1,2*, SÖREN NYLIN1 and NIKLAS WAHLBERG1,3 1Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden 2Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256, Apartado 14-0434, Lima-14, Peru 3Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Finland Received 24 February 2009; accepted for publication 1 September 2009 We have inferred the most comprehensive phylogenetic hypothesis to date of butterflies in the tribe Satyrini. In order to obtain a hypothesis of relationships, we used maximum parsimony and model-based methods with 4435 bp of DNA sequences from mitochondrial and nuclear genes for 179 taxa (130 genera and eight out-groups). We estimated dates of origin and diversification for major clades, and performed a biogeographic analysis using a dispersal–vicariance framework, in order to infer a scenario of the biogeographical history of the group. We found long-branch taxa that affected the accuracy of all three methods. Moreover, different methods produced incongruent phylogenies. We found that Satyrini appeared around 42 Mya in either the Neotropical or the Eastern Palaearctic, Oriental, and/or Indo-Australian regions, and underwent a quick radiation between 32 and 24 Mya, during which time most of its component subtribes originated. Several factors might have been important for the diversification of Satyrini: the ability to feed on grasses; early habitat shift into open, non-forest habitats; and geographic bridges, which permitted dispersal over marine barriers, enabling the geographic expansions of ancestors to new environ- ments that provided opportunities for geographic differentiation, and diversification.
    [Show full text]
  • A Revision of the Genus Bryolymnia Hampson in North America with Descriptions of Three New Species (Lepidoptera, Noctuidae, Noctuinae, Elaphriini)
    A peer-reviewed open-access journal ZooKeysA 39:revision 187–204 of (2010) the genus Bryolymnia Hampson in North America with descriptions of three... 187 doi: 10.3897/zookeys.39.437 RESEARCH ARTICLE www.pensoftonline.net/zookeys Launched to accelerate biodiversity research A revision of the genus Bryolymnia Hampson in North America with descriptions of three new species (Lepidoptera, Noctuidae, Noctuinae, Elaphriini) J. Donald Lafontaine1,†, J. Bruce Walsh2,‡, Richard W. Holland3,§ 1 Canadian National Collection of Insects, Arachnids, and Nematodes, Biodiversity Program, Agriculture and Agri-Food Canada, KW Neatby Bldg., C.E.F., Ottawa, Ontario, Canada K1A 0C6 2 Dept of Ecology and Evolutionary Biology, Biosciences West, University of Arizona, Tucson, Arizona USA 85721; Research Associate: McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA. 3 1625 Roma Ave. NE, Albuquerque, New Mexico, 87106-4514, USA † urn:lsid:zoobank.org:author:2227A860-B768-4A51-8FE4-F1F3EB1CAA7F ‡ urn:lsid:zoobank.org:author:EFCD84CA-F880-4BC5-8AEC-BF2C7323920B § urn:lsid:zoobank.org:author:A61E522B-3A29-4407-9106-B3B13D969990 Corresponding authors: J. Donald Lafontaine ([email protected]), J.Bruce Walsh ([email protected] zona.edu) Academic editor: Christian Schmidt | Received 26 December 2009 | Accepted 29 January 2010 | Published 18 March 2010 urn:lsid:zoobank.org:pub:D51F6A11-B3CD-4877-9B75-36B966F299C1 Citation: Lafontaine JD, Walsh JB, Holland RW (2010) A revision of the genus Bryolymnia Hampson in North America with descriptions of three new species (Lepidoptera, Noctuidae, Noctuinae, Elaphriini). In: Schmidt BC, Lafontaine JD (Eds) Contributions to the systematics of New World macro-moths II.
    [Show full text]
  • MOTHS and BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed Distributional Information Has Been J.D
    MOTHS AND BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed distributional information has been J.D. Lafontaine published for only a few groups of Lepidoptera in western Biological Resources Program, Agriculture and Agri-food Canada. Scott (1986) gives good distribution maps for Canada butterflies in North America but these are generalized shade Central Experimental Farm Ottawa, Ontario K1A 0C6 maps that give no detail within the Montane Cordillera Ecozone. A series of memoirs on the Inchworms (family and Geometridae) of Canada by McGuffin (1967, 1972, 1977, 1981, 1987) and Bolte (1990) cover about 3/4 of the Canadian J.T. Troubridge fauna and include dot maps for most species. A long term project on the “Forest Lepidoptera of Canada” resulted in a Pacific Agri-Food Research Centre (Agassiz) four volume series on Lepidoptera that feed on trees in Agriculture and Agri-Food Canada Canada and these also give dot maps for most species Box 1000, Agassiz, B.C. V0M 1A0 (McGugan, 1958; Prentice, 1962, 1963, 1965). Dot maps for three groups of Cutworm Moths (Family Noctuidae): the subfamily Plusiinae (Lafontaine and Poole, 1991), the subfamilies Cuculliinae and Psaphidinae (Poole, 1995), and ABSTRACT the tribe Noctuini (subfamily Noctuinae) (Lafontaine, 1998) have also been published. Most fascicles in The Moths of The Montane Cordillera Ecozone of British Columbia America North of Mexico series (e.g. Ferguson, 1971-72, and southwestern Alberta supports a diverse fauna with over 1978; Franclemont, 1973; Hodges, 1971, 1986; Lafontaine, 2,000 species of butterflies and moths (Order Lepidoptera) 1987; Munroe, 1972-74, 1976; Neunzig, 1986, 1990, 1997) recorded to date.
    [Show full text]