Self-Repair and Self-Cleaning of the Lepidopteran Proboscis

Total Page:16

File Type:pdf, Size:1020Kb

Self-Repair and Self-Cleaning of the Lepidopteran Proboscis Clemson University TigerPrints All Dissertations Dissertations 8-2019 Self-Repair and Self-Cleaning of the Lepidopteran Proboscis Suellen Floyd Pometto Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Pometto, Suellen Floyd, "Self-Repair and Self-Cleaning of the Lepidopteran Proboscis" (2019). All Dissertations. 2452. https://tigerprints.clemson.edu/all_dissertations/2452 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. SELF-REPAIR AND SELF-CLEANING OF THE LEPIDOPTERAN PROBOSCIS A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy ENTOMOLOGY by Suellen Floyd Pometto August 2019 Accepted by: Dr. Peter H. Adler, Major Advisor and Committee Co-Chair Dr. Eric Benson, Committee Co-Chair Dr. Richard Blob Dr. Patrick Gerard i ABSTRACT The proboscis of butterflies and moths is a key innovation contributing to the high diversity of the order Lepidoptera. In addition to taking nectar from angiosperm sources, many species take up fluids from overripe or sound fruit, plant sap, animal dung, and moist soil. The proboscis is assembled after eclosion of the adult from the pupa by linking together two elongate galeae to form one tube with a single food canal. How do lepidopterans maintain the integrity and function of the proboscis while foraging from various substrates? The research questions included whether lepidopteran species are capable of total self- repair, how widespread the capability of self-repair is within the order, and whether the repaired proboscis is functional. I demonstrated the capability of butterfly and moth species from families throughout the Apoditrysia to completely repair a totally separated proboscis. Generally, the repaired proboscis was capable of taking up fluid. Because self-repair is a process that has been modeled for nature-inspired designs of microfluidic devices, further questions involve the mechanisms used in repair. I found that labial palps, coiling, and wetting were not required for repair for Danaus plexippus and Vanessa cardui (Nymphalidae). Wing movements facilitated repair for V. cardui but not for D. plexippus. Self-cleaning has applications in bioinspirational research. How is the proboscis kept clean and free of debris during foraging? I found bacterial inhibition by the proboscises of V. cardui and Agraulis vanillae (Nymphalidae) on poured plates inoculated with Bacillus sutbtilis and Pseudomonas aeruginosa. The adaptive value of self-repair and self-cleaning of the proboscis goes beyond continued uptake of fluids. Lepidopterans with separated galeae would be excluded from foraging from narrow flower corollas. Additionally, the ability to coil the proboscis would optimize the aerodynamics of flight by reducing drag. Structural or chemical features of the proboscis that resist bacterial contamination would help protect from infection. ii DEDICATION I dedicate this work to my husband, Tony, with gratitude for his trust in God’s providence and goodness, and for his enduring support and encouragement through both phases of my career. Tony was dedicated and supportive in every way of our decision for me to stay home with our children throughout their formative years, and afterwards, he enthusiastically supported my efforts to pursue graduate studies. iii ACKNOWLEDGMENTS I offer deep gratitude to my committee, Dr. Adler, Dr. Benson, Dr. Blob and Dr. Gerard, for their instruction, guidance and efforts throughout my doctoral program. I greatly benefited from the breadth of their experience and the perspectives offered from their various disciplines. I especially thank Dr. Peter H. Adler for inspiring and facilitating my research and study in every way. Without his recognition of personal interest, I would not have been able to pursue graduate studies in Entomology. I model my teaching and research on his excellent example. I thank Dr. Konstantin G. Kornev for his close collaboration throughout this project and for funding this research through a joint grant with Dr. Adler. I thank Dr. Charles “Eddie” Beard for daily help with every aspect of the research including collection and rearing of specimens, solving computer issues, guiding statistical work, and providing extra hands whenever needed. Thank you to Dr. Brian Scholtens, College of Charleston, for his professional assistance with moth identification. Thank you to John Abercrombie, Senior Lecturer in Biological Sciences at Clemson University, for advice on planning the bacterial study, training in methodology, provision of supplies and lab space, and preparation of the inocula. Thank you to Justin Scott, Flow Cytometry Research Associate at the Clemson Light Imaging Center, for instruction in the use of ImageJ. Thank you to Dr. Anthony L. Pometto, III, professor in the Department of Food, Nutrition and Packaging Science at Clemson University, for guidance on the bacterial study and review of the manuscript. Thank you to Dr. Patricia Zungoli for hiring me as the instructor for ENT 2000 and for encouraging me to continue my graduate studies. iv LIST OF TABLES Table Page 3.1 Repeated measures ANOVA for rate of repair (change in percent galeal union/minute) in each of six species of Lepidoptera (controls: treatments): Danaus plexippus (11:11), Vanessa cardui (11:10), Papilio cresphontes (11:12), Phoebis sennae (5:6), Heliothis virescens (11:12) and Manduca sexta (7:10). Proboscises of controls were not separated (total n=56) and persisted at 100% union. ............................................. 54 3.2 Factors involved in proboscis repair for two species of nymphalid butterflies. ............................................................................ 58 4.1 The absorbance at 600 nm for each bacterial inoculum to determine the relative cell density. Inocula were prepared by adding 100 µL of each bacterial culture (or 175-200 µL for Bacillus subtilis) to 7 ml of warm, sterile tryptic soy agar liquid media. ........................................... 75 4.2 The proportions of inhibition area to proboscis area were compared for each species of butterfly and bacteria assayed. .................................................................................... 81 4.3 Comparison of the areas of inhibition associated with hemolymph samples taken before or after dissection of the proboscis from live specimens of Vanessa cardui and tested with Pseudomonas aeruginosa. If there was no inhibition, the area was reported as 0 mm2. ....................................................................................................... 81 A.1 Species of lepidopterans tested for ability to repair the proboscis. Specimens were collected at the Clemson University Insectary or South Carolina Botanical Gardens. ................................................................................................. 87 v LIST OF FIGURES Figure Page 2.1 Artwork by Allison Stoiser (used with permission) incorporates ecological interactions. A. Ants march along a Passiflora vine in the Peruvian Amazon as heliconian caterpillars consume the leaves (upper right). B. Clearwing butterflies of the tribe Ithomiini (Danainae, Nymphalidae) on Boraginaceae plants. The adult butterflies scratch the plant to release plant fluids, then use the proboscis to take up the fluids to obtain chemical protection. ......................................................6 2.2 Cross section of the proboscis of Manduca sexta, labeled to show the internal structures and the legulae (photograph by C.E.Beard). ....................................................20 3.1 Types of union of the galeae; schematic drawings in dorsal view on the left, photographs in lateral view from a single specimen of Danaus plexippus on the right. A. Fully united galeae; total length (Lt) equals the united portion of the galeae (Lu), Lu = Lt. B. Partially united galeae, Lu<Lt. C. Partially united galeae with a medial separation; the united portions are summed for Lu. D. Totally separated galeae, Lu = 0. .......................................................................................................46 3.2 Experimental setup for testing the effect of coiling on proboscis repair. The specimen’s wings and legs were restrained with two overlapping glassine sleeves held with a clothes pin. The butterfly was positioned on a Styrofoam stage in a groove ending in an open chamber. To prevent coiling, the proboscis was extended over a contiguous row of insect pins mounted on a plastic support. Two crossed insect pins prevented elevation of the head. The plastic support with row of pins and the two crossed pins were removed for controls and for the wetting experiments. ............................................................................51 vi List of Figures (Continued) Figure Page 3.3 Repair of the proboscis was followed as percent union of galeae (mean ± standard error), measured as U = (Lunited/Ltotal)*100 where Lunited is the united length of the proboscis and Ltotal is the total length of the proboscis, for six species of Lepidoptera after total galeal separation (controls: treatments): Danaus plexippus (11:11), Vanessa cardui (11:10), Papilio cresphontes (11:12), Phoebis sennae (5:6), Heliothis virescens (11:12)
Recommended publications
  • Fatty Acid-Amino Acid Conjugates Diversification in Lepidopteran Caterpillars
    J Chem Ecol (2010) 36:319–325 DOI 10.1007/s10886-010-9764-8 Fatty Acid-amino Acid Conjugates Diversification in Lepidopteran Caterpillars Naoko Yoshinaga & Hans T. Alborn & Tomoaki Nakanishi & David M. Suckling & Ritsuo Nishida & James H. Tumlinson & Naoki Mori Received: 30 September 2009 /Revised: 29 January 2010 /Accepted: 11 February 2010 /Published online: 27 February 2010 # Springer Science+Business Media, LLC 2010 Abstract Fatty acid amino acid conjugates (FACs) have the presence of FACs in lepidopteran species outside these been found in noctuid as well as sphingid caterpillar oral families of agricultural interest is not well known. We con- secretions; in particular, volicitin [N-(17-hydroxylinolenoyl)- ducted FAC screening of 29 lepidopteran species, and found L-glutamine] and its biochemical precursor, N-linolenoyl-L- them in 19 of these species. Thus, FACs are commonly glutamine, are known elicitors of induced volatile emissions synthesized through a broad range of lepidopteran cater- in corn plants. These induced volatiles, in turn, attract natural pillars. Since all FAC-containing species had N-linolenoyl-L- enemies of the caterpillars. In a previous study, we showed glutamine and/or N-linoleoyl-L-glutamine in common, and that N-linolenoyl-L-glutamine in larval Spodoptera litura the evolutionarily earliest species among them had only plays an important role in nitrogen assimilation which might these two FACs, these glutamine conjugates might be the be an explanation for caterpillars synthesizing FACs despite evolutionarily older FACs. Furthermore, some species had an increased risk of attracting natural enemies. However, glutamic acid conjugates, and some had hydroxylated FACs. Comparing the diversity of FACs with lepidopteran phylog- eny indicates that glutamic acid conjugates can be synthe- N.
    [Show full text]
  • Butterflies of Ontario & Summaries of Lepidoptera
    ISBN #: 0-921631-12-X BUTTERFLIES OF ONTARIO & SUMMARIES OF LEPIDOPTERA ENCOUNTERED IN ONTARIO IN 1991 BY A.J. HANKS &Q.F. HESS PRODUCTION BY ALAN J. HANKS APRIL 1992 CONTENTS 1. INTRODUCTION PAGE 1 2. WEATHER DURING THE 1991 SEASON 6 3. CORRECTIONS TO PREVIOUS T.E.A. SUMMARIES 7 4. SPECIAL NOTES ON ONTARIO LEPIDOPTERA 8 4.1 The Inornate Ringlet in Middlesex & Lambton Cos. 8 4.2 The Monarch in Ontario 8 4.3 The Status of the Karner Blue & Frosted Elfin in Ontario in 1991 11 4.4 The West Virginia White in Ontario in 1991 11 4.5 Butterfly & Moth Records for Kettle Point 11 4.6 Butterflies in the Hamilton Study Area 12 4.7 Notes & Observations on the Early Hairstreak 15 4.8 A Big Day for Migrants 16 4.9 The Ocola Skipper - New to Ontario & Canada .17 4.10 The Brazilian Skipper - New to Ontario & Canada 19 4.11 Further Notes on the Zarucco Dusky Wing in Ontario 21 4.12 A Range Extension for the Large Marblewing 22 4.13 The Grayling North of Lake Superior 22 4.14 Description of an Aberrant Crescent 23 4.15 A New Foodplant for the Old World Swallowtail 24 4.16 An Owl Moth at Point Pelee 25 4.17 Butterfly Sampling in Algoma District 26 4.18 Record Early Butterfly Dates in 1991 26 4.19 Rearing Notes from Northumberland County 28 5. GENERAL SUMMARY 29 6. 1990 SUMMARY OF ONTARIO BUTTERFLIES, SKIPPERS & MOTHS 32 Hesperiidae 32 Papilionidae 42 Pieridae 44 Lycaenidae 48 Libytheidae 56 Nymphalidae 56 Apaturidae 66 Satyr1dae 66 Danaidae 70 MOTHS 72 CONTINUOUS MOTH CYCLICAL SUMMARY 85 7.
    [Show full text]
  • Modular Structure, Sequence Diversification and Appropriate
    www.nature.com/scientificreports OPEN Modular structure, sequence diversifcation and appropriate nomenclature of seroins produced Received: 17 July 2018 Accepted: 14 February 2019 in the silk glands of Lepidoptera Published: xx xx xxxx Lucie Kucerova1, Michal Zurovec 1,2, Barbara Kludkiewicz1, Miluse Hradilova3, Hynek Strnad3 & Frantisek Sehnal1,2 Seroins are small lepidopteran silk proteins known to possess antimicrobial activities. Several seroin paralogs and isoforms were identifed in studied lepidopteran species and their classifcation required detailed phylogenetic analysis based on complete and verifed cDNA sequences. We sequenced silk gland-specifc cDNA libraries from ten species and identifed 52 novel seroin cDNAs. The results of this targeted research, combined with data retrieved from available databases, form a dataset representing the major clades of Lepidoptera. The analysis of deduced seroin proteins distinguished three seroin classes (sn1-sn3), which are composed of modules: A (includes the signal peptide), B (rich in charged amino acids) and C (highly variable linker containing proline). The similarities within and between the classes were 31–50% and 22.5–25%, respectively. All species express one, and in exceptional cases two, genes per class, and alternative splicing further enhances seroin diversity. Seroins occur in long versions with the full set of modules (AB1C1B2C2B3) and/or in short versions that lack parts or the entire B and C modules. The classes and the modular structure of seroins probably evolved prior to the split between Trichoptera and Lepidoptera. The diversity of seroins is refected in proposed nomenclature. Te silk spun by caterpillars is a composite material based on two protein agglomerates that have been known for centuries as fbroin and sericin.
    [Show full text]
  • Lepidoptera of North America 5
    Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains,
    [Show full text]
  • Insects of Western North America 4. Survey of Selected Insect Taxa of Fort Sill, Comanche County, Oklahoma 2
    Insects of Western North America 4. Survey of Selected Insect Taxa of Fort Sill, Comanche County, Oklahoma 2. Dragonflies (Odonata), Stoneflies (Plecoptera) and selected Moths (Lepidoptera) Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Survey of Selected Insect Taxa of Fort Sill, Comanche County, Oklahoma 2. Dragonflies (Odonata), Stoneflies (Plecoptera) and selected Moths (Lepidoptera) by Boris C. Kondratieff, Paul A. Opler, Matthew C. Garhart, and Jason P. Schmidt C.P. Gillette Museum of Arthropod Diversity Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, Colorado 80523 March 15, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration (top to bottom): Widow Skimmer (Libellula luctuosa) [photo ©Robert Behrstock], Stonefly (Perlesta species) [photo © David H. Funk, White- lined Sphinx (Hyles lineata) [photo © Matthew C. Garhart] ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences, Colorado State University, Fort Collins, Colorado 80523 Copyrighted 2004 Table of Contents EXECUTIVE SUMMARY……………………………………………………………………………….…1 INTRODUCTION…………………………………………..…………………………………………….…3 OBJECTIVE………………………………………………………………………………………….………5 Site Descriptions………………………………………….. METHODS AND MATERIALS…………………………………………………………………………….5 RESULTS AND DISCUSSION………………………………………………………………………..…...11 Dragonflies………………………………………………………………………………….……..11
    [Show full text]
  • Insect Survey of Four Longleaf Pine Preserves
    A SURVEY OF THE MOTHS, BUTTERFLIES, AND GRASSHOPPERS OF FOUR NATURE CONSERVANCY PRESERVES IN SOUTHEASTERN NORTH CAROLINA Stephen P. Hall and Dale F. Schweitzer November 15, 1993 ABSTRACT Moths, butterflies, and grasshoppers were surveyed within four longleaf pine preserves owned by the North Carolina Nature Conservancy during the growing season of 1991 and 1992. Over 7,000 specimens (either collected or seen in the field) were identified, representing 512 different species and 28 families. Forty-one of these we consider to be distinctive of the two fire- maintained communities principally under investigation, the longleaf pine savannas and flatwoods. An additional 14 species we consider distinctive of the pocosins that occur in close association with the savannas and flatwoods. Twenty nine species appear to be rare enough to be included on the list of elements monitored by the North Carolina Natural Heritage Program (eight others in this category have been reported from one of these sites, the Green Swamp, but were not observed in this study). Two of the moths collected, Spartiniphaga carterae and Agrotis buchholzi, are currently candidates for federal listing as Threatened or Endangered species. Another species, Hemipachnobia s. subporphyrea, appears to be endemic to North Carolina and should also be considered for federal candidate status. With few exceptions, even the species that seem to be most closely associated with savannas and flatwoods show few direct defenses against fire, the primary force responsible for maintaining these communities. Instead, the majority of these insects probably survive within this region due to their ability to rapidly re-colonize recently burned areas from small, well-dispersed refugia.
    [Show full text]
  • Any Reader Who Knew the British Butterflies in The
    VOLUME 50, NUMBER 2 ]53 Any reade r who knew the British butterflies in the 1950s and before will have memories of rich localities, of pastures, woods and downland from which once common species have long vanished, even if the land seems superficially to have survved. This book misses no opportunity for optimism, however: a few expanding ranges, of the Essex Skipper (Thymelicl1s lineola), the Speckled Wood (Pararge aegeria), and perhaps the White Admiral (Ladoga camilla), are recorded, together with current conservation efforts to keep now highly restricted and threatened species on the British l.'st. To read this book in conjunction with South or Frohawk reveals the general and rapid decline of a fauna, for long relatively stable, for which the blame lies almost entirely with habitat change and degradation, in their richly varied aspects. The illustrations, by Richard Lewington, have neve r, ill my vi.cw, been surpassed. Each butterfly is shown by an upperside (of both sexes where appreciably dimorphic) in "set" position, and by an underside in "perching" pose. British lepidopterists have for long paid much attention to aberrations, and many very remarkable examples of these variants are shown. Other figures, illustrating the butterflies at rest or nectaring are particularly striking through Lewington's use of black and white pencil for the plart or other perching site, against which the beauty of the painted butterflies is seen to best advantage. The effect achieved, for example, by a mating pair of Black Hairstreaks (Strymonidia pruni) on a penciled blackthorn twig, of a male Purple Hairstreak (Ql1ercl1sia quercus) basking on a an oak twig, or the once widespread but now endange red High Brown Fritillary (Argyrmis adippe) perching on a bramble, selected for the title page, is brilliant.
    [Show full text]
  • Supplementary Documentation on Phylogenetic Relations Used to Build the Working Tree
    Supplementary documentation on phylogenetic relations used to build the working tree: 'Non-Ditrysian' and 'Lowest Ditrysian' families in the traditional sense were adapted as far as possible after Yen et al (2005), Niehuis et al (2006), Turner et al (2010), Kawahara et al (2011) , Grehan (2012), Regier et al (2012a), Sohn et al (2013), Moraes & Duarte M (2014): Grehan JR (2012) Morphological evidence for phylogenetic relationships within the Hepialidae (Lepidoptera: Exoporia). Bulletin of the Buffalo Society of Natural Sciences 42: 33-62. Kawahara AY, Ohshima I, Kawakita A, Regier JC, Mitter C, Cummings MP, Davis DR, Wagner DL, De Prins J, Lopez-Vaamonde C (2011) Increased gene sampling strengthens support for higher-level groups within leaf-mining moths and relatives (Lepidoptera: Gracillariidae). BMC Evolutionary Biology 11: 182. Moraes SS, Duarte M (2014) Phylogeny of Neotropical Castniinae (Lepidoptera: Cossoidea: Castniidae): testing the hypothesis of the mimics as a monophyletic group and implications for the arrangement of the genera. Zoological Journal of the Linnean Society 170: 362-399. Niehuis O, Yen SH, Naumann CM, Misof B (2006) Higher phylogeny of zygaenid moths (Insecta : Lepidoptera) inferred from nuclear and mitochondrial sequence data and the evolution of larval cuticular cavities for chemical defence. Molecular Phylogenetics and Evolution 39: 812-829. Regier JC, Brown JW, Mitter C, Baixeras J, Cho S, Cummings MP, Zwick A (2012a) A molecular phylogeny for the leaf-roller moths (Lepidoptera: Tortricidae) and its implications for classification and life history evolution. PLoS ONE 7(4): e35574. Sohn J-C, Regier JC, Mitter C, Davis D, Landry J-F, Zwick A, Cummings MP (2013) A molecular phylogeny for Yponomeutoidea (Insecta, Lepidoptera, Ditrysia) and its implications for classification, biogeography and the evolution of host plant use.
    [Show full text]
  • Fruits of the Land 120X80
    Fruits of the Land Les Fruits de la Terre Original flavors of St. Martin Saveurs originales de St. Martin The first foods on St. Martin were here Les premiers aliments sur St. Martin étaient long before the first people. Many là bien avant les premiers habitants. De different native fruits were already part of nombreux fruits indigènes faisaient déjà partie the landscape when the first people came. du paysage lorsque les premiers habitants sont Before the first people, these fruits were arrivés. Avant les premiers habitants, ces fruits food for native birds and other animals. étaient un aliment pour les oiseaux indigènes We can thank the birds for eating these et d’autres animaux. Nous pouvons remercier fruits and then spreading the seeds from les oiseaux d’avoir mangé ces fruits et d’avoir island to island. ensuite disséminé les graines d’île en île. Sea Grape (Coccoloba uvifera) and Coco Mark Catesby, 1754 Le Raisinier Bord De Mer (Coccoloba Plum (Chrysobalanus icaco) are often The Coco Plum (Chrysobalanus icaco) is seen here with uvifera) et l’Icaquier (Chrysobalanus icaco) se found near the sea, and still grow wild the White-crowned Pigeon (Patagioenas leucocephala), trouvent souvent près de la mer et poussent near many of our beaches. Guava a Caribbean bird that eats the fruit and spreads the encore à l'état sauvage près de beaucoup de seeds of many native trees. (Psidium guajava) and Guavaberry nos plages. Le Goyavier (Psidium guajava) et le (Myrciaria floribunda) do well in valleys On voit ici l'Icaque (Chrysobalanus icaco) avec le Guavaberry (Myrciaria floribunda) croissent Pigeon à Couronne Blanche (Patagioenas leucocephala), with rich soil and plenty of water.
    [Show full text]
  • Species Delimitation in Asexual Insects of Economic Importance: the Case of Black Scale (Parasaissetia Nigra), a Cosmopolitan Parthenogenetic Pest Scale Insect
    RESEARCH ARTICLE Species delimitation in asexual insects of economic importance: The case of black scale (Parasaissetia nigra), a cosmopolitan parthenogenetic pest scale insect Yen-Po Lin1,2,3*, Robert D. Edwards4, Takumasa Kondo5, Thomas L. Semple3, Lyn G. Cook2 a1111111111 1 College of Life Science, Shanxi University, Taiyuan, Shanxi, China, 2 School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia, 3 Research School of Biology, Division of a1111111111 Evolution, Ecology and Genetics, The Australian National University, Canberra, Australian Capital Territory, a1111111111 Australia, 4 Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington a1111111111 DC, United States of America, 5 CorporacioÂn Colombiana de InvestigacioÂn Agropecuaria (CORPOICA), a1111111111 Centro de InvestigacioÂn Palmira, Valle del Cauca, Colombia * [email protected] OPEN ACCESS Abstract Citation: Lin Y-P, Edwards RD, Kondo T, Semple TL, Cook LG (2017) Species delimitation in asexual Asexual lineages provide a challenge to species delimitation because species concepts insects of economic importance: The case of black either have little biological meaning for them or are arbitrary, since every individual is mono- scale (Parasaissetia nigra), a cosmopolitan phyletic and reproductively isolated from all other individuals. However, recognition and parthenogenetic pest scale insect. PLoS ONE 12 naming of asexual species is important to conservation and economic applications. Some (5): e0175889. https://doi.org/10.1371/journal. pone.0175889 scale insects are widespread and polyphagous pests of plants, and several species have been found to comprise cryptic species complexes. Parasaissetia nigra (Nietner, 1861) Editor: Wolfgang Arthofer, University of Innsbruck, AUSTRIA (Hemiptera: Coccidae) is a parthenogenetic, cosmopolitan and polyphagous pest that feeds on plant species from more than 80 families.
    [Show full text]
  • Butterfly Gardening Tips & Tricks Gardening for Butterflies Is Fun, Beautiful, and Good for the Environment
    Butterfly Gardening Tips & Tricks Gardening for butterflies is fun, beautiful, and good for the environment. It is also simple and can be done in almost any location. The key guidelines are listed below: NO PESTICIDES! Caterpillars are highly susceptible to almost all pesticides so keep them away from your yard if you want butterflies to thrive. Select the right plants. You will need to provide nectar sources for adults and host plants for caterpillars. See the lists below for inspiration. Keep to native varieties as much as possible. Plants come in lots and lots of varieties and cultivars. When selecting plants, especially host plants, try to find native species as close to the natural or wild variety as possible. Provide shelter. Caterpillars need shelter from the sun and shelter from cold nights. Adults need places to roost during the night. And protected areas are needed for the chrysalis to safely undergo its transformation. The best way to provide shelter is with large clumps of tall grasses (native or ornamental) and medium to large evergreen trees and/or shrubs. Nectar Sources Top Ten Nectar Sources: Asclepias spp. (milkweed) Aster spp. Buddleia spp. (butterfly bush) Coreopsis spp. Echinacea spp. (coneflower) Eupatorium spp. (joe-pye weed) Lantana spp. Liatris spp. Pentas spp. Rudbeckia spp. (black-eyed susan) Others: Agastache spp. (hyssop), Apocynum spp. (dogbane), Ceanothus americanus (New Jersey tea), Cephalanthus occidentalis (button bush), Clethra alnifolia, Cuphea spp. (heather), Malus spp. (apple), Mentha spp. (mint), Phlox spp., Pycanthemum incanum (mountain mint), Salivs spp. (sage), Sedum spectabile (stonecrop), Stokesia laevis (cornflower), Taraxacum officinale (dandelion), Triofolium spp.
    [Show full text]
  • Acoustic Communication in the Nocturnal Lepidoptera
    Chapter 6 Acoustic Communication in the Nocturnal Lepidoptera Michael D. Greenfield Abstract Pair formation in moths typically involves pheromones, but some pyra- loid and noctuoid species use sound in mating communication. The signals are generally ultrasound, broadcast by males, and function in courtship. Long-range advertisement songs also occur which exhibit high convergence with commu- nication in other acoustic species such as orthopterans and anurans. Tympanal hearing with sensitivity to ultrasound in the context of bat avoidance behavior is widespread in the Lepidoptera, and phylogenetic inference indicates that such perception preceded the evolution of song. This sequence suggests that male song originated via the sensory bias mechanism, but the trajectory by which ances- tral defensive behavior in females—negative responses to bat echolocation sig- nals—may have evolved toward positive responses to male song remains unclear. Analyses of various species offer some insight to this improbable transition, and to the general process by which signals may evolve via the sensory bias mechanism. 6.1 Introduction The acoustic world of Lepidoptera remained for humans largely unknown, and this for good reason: It takes place mostly in the middle- to high-ultrasound fre- quency range, well beyond our sensitivity range. Thus, the discovery and detailed study of acoustically communicating moths came about only with the use of electronic instruments sensitive to these sound frequencies. Such equipment was invented following the 1930s, and instruments that could be readily applied in the field were only available since the 1980s. But the application of such equipment M. D. Greenfield (*) Institut de recherche sur la biologie de l’insecte (IRBI), CNRS UMR 7261, Parc de Grandmont, Université François Rabelais de Tours, 37200 Tours, France e-mail: [email protected] B.
    [Show full text]