Towards a Mitogenomic Phylogeny of Lepidoptera ⇑ Martijn J.T.N

Total Page:16

File Type:pdf, Size:1020Kb

Towards a Mitogenomic Phylogeny of Lepidoptera ⇑ Martijn J.T.N Molecular Phylogenetics and Evolution 79 (2014) 169–178 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Towards a mitogenomic phylogeny of Lepidoptera ⇑ Martijn J.T.N. Timmermans a,b, , David C. Lees c, Thomas J. Simonsen a a Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom b Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom c Department of Zoology, Cambridge University, Downing Street CB2 3EJ, United Kingdom article info abstract Article history: The backbone phylogeny of Lepidoptera remains unresolved, despite strenuous recent morphological and Received 13 January 2014 molecular efforts. Molecular studies have focused on nuclear protein coding genes, sometimes adding a Revised 11 May 2014 single mitochondrial gene. Recent advances in sequencing technology have, however, made acquisition of Accepted 26 May 2014 entire mitochondrial genomes both practical and economically viable. Prior phylogenetic studies utilised Available online 6 June 2014 just eight of 43 currently recognised lepidopteran superfamilies. Here, we add 23 full and six partial mitochondrial genomes (comprising 22 superfamilies of which 16 are newly represented) to those Keywords: publically available for a total of 24 superfamilies and ask whether such a sample can resolve deeper tRNA rearrangement lepidopteran phylogeny. Using recoded datasets we obtain topologies that are highly congruent with Ditrysia Illumina prior nuclear and/or morphological studies. Our study shows support for an expanded Obtectomera LR-PCR including Gelechioidea, Thyridoidea, plume moths (Alucitoidea and Pterophoroidea; possibly along with Pooled mitochondrial genome assembly Epermenioidea), Papilionoidea, Pyraloidea, Mimallonoidea and Macroheterocera. Regarding other controversially positioned higher taxa, Doidae is supported within the new concept of Drepanoidea and Mimallonidae sister to (or part of) Macroheterocera, while among Nymphalidae butterflies, Danainae and not Libytheinae are sister to the remainder of the family. At the deepest level, we suggest that a tRNA rearrangement occurred at a node between Adeloidea and Ditrysia + Palaephatidae + Tischeriidae. Ó 2014 Elsevier Inc. All rights reserved. 1. Introduction includes a number of biological model organisms, many severe pest species, and comprises many of the best known and most Reconstructing a stable phylogenetic framework for Lepidop- popular invertebrates, emphasising that studies into lepidopteran tera at the superfamily level is an ongoing process that, despite phylogeny and evolution are of both scientific and public interest. considerable effort over recent years, is still far from complete. It is therefore not surprising that the past few years have seen sev- Kristensen and Skalski (1999) overview summarised the most eral attempts to resolve the higher-level phylogeny of Lepidoptera comprehensive morphology-based hypothesis of the last century based on comprehensive molecular datasets. The ‘‘LepTree project’’ for the phylogeny of the order. While the early part of Lepidoptera has already resulted in a number of benchmark publications evolution was presented as a well-resolved ‘‘Hennigean comb’’, the focused both at the superfamily level (e.g. Regier et al., 2009, phylogeny of the vast majority of the order (the suborder Ditrysia 2013; Cho, et al. 2011; Bazinet et al., 2013; Sohn et al., 2013) and which comprise more than 95% of all known species) was almost for clusters of several larger superfamilies (Zwick et al., 2011; entirely unresolved apart from a few higher-level clades. This Regier et al., 2012a,b). The ‘‘Ditrysia project’’ has so far resulted overview made it abundantly clear that large-scale molecular in a superfamily-level molecular phylogeny (Mutanen et al., analyses were needed to resolve the higher-level phylogeny of 2010) and a phylogeny of Papilionoidea (Heikkila et al., 2012), ditrysian Lepidoptera. while associated studies have focused on the superfamilies With more than 157,000 described species (van Nieukerken Gelechioidea (Kaila et al., 2011) and Noctuoidea (Zahiri et al., et al., 2011), Lepidoptera (butterflies and moths) represent one of 2011, 2012, 2013a,b), as well as the large family Gelechiidae the evolutionarily most successful lineages of phytophagous (Karsholt et al., 2013). Both the LepTree project and the Ditrysia insects (e.g. Grimaldi and Engel, 2005). Furthermore, the order project have provided considerable new resolution to the higher phylogeny of Ditrysia, but many groupings have been mutually exclusive between the studies and others were not well supported. ⇑ Corresponding author. E-mail addresses: [email protected] (M.J.T.N. Timmermans), Many of these poorly supported groupings are found in the same [email protected] (D.C. Lees), [email protected] (T.J. Simonsen). parts of the Lepidoptera Tree of Life where morphology alone has http://dx.doi.org/10.1016/j.ympev.2014.05.031 1055-7903/Ó 2014 Elsevier Inc. All rights reserved. 170 M.J.T.N. Timmermans et al. / Molecular Phylogenetics and Evolution 79 (2014) 169–178 failed to yield conclusive evidence for evolutionary relationships. It representatives of 22 Lepidoptera superfamilies (Table 1). PCR is therefore clear that despite considerable efforts, we still remain reactions were performed with Takara LA taq and followed cycling far from a unified consensus of the phylogeny of the higher conditions described in Timmermans et al. (2010). Two primer Lepidoptera. For example, sister groups of some of the most prom- pairs were used for long-range PCR: One pair (SytbF/reverse inent lepidopteran radiations (Papilionoidea and Gelechioidea) complement of Jerry, JerryRC: Simon et al., 1994) targeting a 7 kb remain as yet unknown. To maximise our chances for arriving at fragment running from COI to CytB across the AT-rich region, such a ‘‘consensus hypothesis’’, we need to look at broadening both and one pair (Jerry: Simon et al., 1994/SytbR) targeting the oppo- taxon and character sampling in future phylogenetic studies. site 9 kb half of the circular genome (Fig. 1). Not all PCRs were Within the realm of molecular characters, full mitochondrial successful, and for some species one fragment was obtained genomes can be a data-rich and relatively accessible source of (Table 1; Fig. 2). For Pennisetia hylaeiformis the JerryRC-SytbR PCR information, and promising results have been obtained for other failed and a shorter fragment was targeted by replacing the JerryRC insect families and orders (e.g. Timmermans et al., 2010; Haran primer with stevCO3F (GCWTGATAYTGACAYTTYGT) located in et al., 2013; Simon and Hadrys, 2013). So far, the mt-phylogenomic COIII. In contrast to Timmermans et al. (2010), who used Roche’s studies with the most comprehensive lepidopteran taxon sampling 454 platform, sequencing was performed using Illumina’s Solexa remain the Kim et al. (2011), Lu et al. (2013) analyses that focused technology. Fragments were pooled before TruSeq library almost entirely on the polyphyletic group ‘‘Macrolepidoptera’’ construction (800 bp insert size) and paired-end sequenced (PE: (essentially Papilionoidea plus Macroheterocera sensu van 2 Ã 250 bp; V2 Reagent Kit) on an Illumina Miseq aiming for 1% Nieukerken et al., 2011). of the machines run capacity. In addition to these Lepidoptera Here we characterise full mitochondrial genomes using a samples, the pool also contained 22 partial beetle mitochondrial method that relies on the in silico separation of DNA sequence genomes, which are not further discussed here. Three ‘baits’ were data from pooled PCR fragments (Timmermans et al., 2010). We generated to assign anonymous contigs to the voucher specimens. acquired mitochondrial genomes of a diverse set of lepidopterans These baits included a 400 bp fragment of CytB (primer pair: and present the most comprehensive mt-phylogenomic study of SytbF + SytbR) and two COI fragments (primer pairs LepCoxF1: Lepidoptera to date (mainly focused on the subgroup Heterone- ACNAATCATAARGATATTGGNAC + JerryRC and Jerry + sCOIR: CARA- ura). We explore the evolutionary patterns of the different genes TTTCDGARCATTG) (Fig. 1). ‘Bait’ sequences were bi-directionally in the mt-genome across heteroneuran Lepidoptera and assess sequenced using Sanger technology and edited in Geneious version the utility of mt-genomes in lepidopteran phylogenetics. 5.6 (Biomatters, Auckland, New Zealand). 2. Materials and methods 2.2. Sequence assembly and annotation 2.1. PCR amplification and sequencing Raw sequence reads were pre-processed using the Trimmomat- ic (Lohse et al., 2012) and Prinseq-lite (Schmieder and Edwards, Wet-lab methods are based on those described in Timmermans 2011) perl scripts. Bases with a Phred quality score below 20 were et al. (2010). Mitochondrial genomes were PCR amplified from trimmed. Sequence reads with a high quality length below 150 bp Table 1 Details of Lepidoptera samples (29) subjected to mitochondrial genome sequencing. Superfamily Family Genus Species Voucher number Sequence length (bp) Mean coverage Accession number 1À Papilionoidea Papilionidae Papilio dardanus BMNH746800 15,337 405 JX313686 2 Geometroidea Geometridae Chloroclysta truncata BMNH1043250 15,828 428 KJ508061 3 Drepanoidea Drepanidae Drepana arcuata CWM-96-0579* 15,300 254 KJ508053 4 Incertae sedis Doidae Doa BOLD:AAC3419 05-srnp-63413* 15,228 185 KJ508058 5 Noctuoidea Noctuidae Acronicta
Recommended publications
  • DNA Barcodes Reveal Deeply Neglected Diversity and Numerous Invasions of Micromoths in Madagascar
    Genome DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in Madagascar Journal: Genome Manuscript ID gen-2018-0065.R2 Manuscript Type: Article Date Submitted by the 17-Jul-2018 Author: Complete List of Authors: Lopez-Vaamonde, Carlos; Institut National de la Recherche Agronomique (INRA), ; Institut de Recherche sur la Biologie de l’Insecte (IRBI), Sire, Lucas; Institut de Recherche sur la Biologie de l’Insecte Rasmussen,Draft Bruno; Institut de Recherche sur la Biologie de l’Insecte Rougerie, Rodolphe; Institut Systématique, Evolution, Biodiversité (ISYEB), Wieser, Christian; Landesmuseum für Kärnten Ahamadi, Allaoui; University of Antananarivo, Department Entomology Minet, Joël; Institut de Systematique Evolution Biodiversite deWaard, Jeremy; Biodiversity Institute of Ontario, University of Guelph, Decaëns, Thibaud; Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Montpellier–Université Paul-Valéry Montpellier–EPHE), , CEFE UMR 5175 CNRS Lees, David; Natural History Museum London Keyword: Africa, invasive alien species, Lepidoptera, Malaise trap, plant pests Is the invited manuscript for consideration in a Special 7th International Barcode of Life Issue? : https://mc06.manuscriptcentral.com/genome-pubs Page 1 of 57 Genome 1 DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in 2 Madagascar 3 4 5 Carlos Lopez-Vaamonde1,2, Lucas Sire2, Bruno Rasmussen2, Rodolphe Rougerie3, 6 Christian Wieser4, Allaoui Ahamadi Allaoui 5, Joël Minet3, Jeremy R. deWaard6, Thibaud 7 Decaëns7, David C. Lees8 8 9 1 INRA, UR633, Zoologie Forestière, F- 45075 Orléans, France. 10 2 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS Université de Tours, UFR 11 Sciences et Techniques, Tours, France.
    [Show full text]
  • Fatty Acid-Amino Acid Conjugates Diversification in Lepidopteran Caterpillars
    J Chem Ecol (2010) 36:319–325 DOI 10.1007/s10886-010-9764-8 Fatty Acid-amino Acid Conjugates Diversification in Lepidopteran Caterpillars Naoko Yoshinaga & Hans T. Alborn & Tomoaki Nakanishi & David M. Suckling & Ritsuo Nishida & James H. Tumlinson & Naoki Mori Received: 30 September 2009 /Revised: 29 January 2010 /Accepted: 11 February 2010 /Published online: 27 February 2010 # Springer Science+Business Media, LLC 2010 Abstract Fatty acid amino acid conjugates (FACs) have the presence of FACs in lepidopteran species outside these been found in noctuid as well as sphingid caterpillar oral families of agricultural interest is not well known. We con- secretions; in particular, volicitin [N-(17-hydroxylinolenoyl)- ducted FAC screening of 29 lepidopteran species, and found L-glutamine] and its biochemical precursor, N-linolenoyl-L- them in 19 of these species. Thus, FACs are commonly glutamine, are known elicitors of induced volatile emissions synthesized through a broad range of lepidopteran cater- in corn plants. These induced volatiles, in turn, attract natural pillars. Since all FAC-containing species had N-linolenoyl-L- enemies of the caterpillars. In a previous study, we showed glutamine and/or N-linoleoyl-L-glutamine in common, and that N-linolenoyl-L-glutamine in larval Spodoptera litura the evolutionarily earliest species among them had only plays an important role in nitrogen assimilation which might these two FACs, these glutamine conjugates might be the be an explanation for caterpillars synthesizing FACs despite evolutionarily older FACs. Furthermore, some species had an increased risk of attracting natural enemies. However, glutamic acid conjugates, and some had hydroxylated FACs. Comparing the diversity of FACs with lepidopteran phylog- eny indicates that glutamic acid conjugates can be synthe- N.
    [Show full text]
  • Self-Repair and Self-Cleaning of the Lepidopteran Proboscis
    Clemson University TigerPrints All Dissertations Dissertations 8-2019 Self-Repair and Self-Cleaning of the Lepidopteran Proboscis Suellen Floyd Pometto Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Pometto, Suellen Floyd, "Self-Repair and Self-Cleaning of the Lepidopteran Proboscis" (2019). All Dissertations. 2452. https://tigerprints.clemson.edu/all_dissertations/2452 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. SELF-REPAIR AND SELF-CLEANING OF THE LEPIDOPTERAN PROBOSCIS A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy ENTOMOLOGY by Suellen Floyd Pometto August 2019 Accepted by: Dr. Peter H. Adler, Major Advisor and Committee Co-Chair Dr. Eric Benson, Committee Co-Chair Dr. Richard Blob Dr. Patrick Gerard i ABSTRACT The proboscis of butterflies and moths is a key innovation contributing to the high diversity of the order Lepidoptera. In addition to taking nectar from angiosperm sources, many species take up fluids from overripe or sound fruit, plant sap, animal dung, and moist soil. The proboscis is assembled after eclosion of the adult from the pupa by linking together two elongate galeae to form one tube with a single food canal. How do lepidopterans maintain the integrity and function of the proboscis while foraging from various substrates? The research questions included whether lepidopteran species are capable of total self- repair, how widespread the capability of self-repair is within the order, and whether the repaired proboscis is functional.
    [Show full text]
  • SYSTEMATICS of the MEGADIVERSE SUPERFAMILY GELECHIOIDEA (INSECTA: LEPIDOPTEA) DISSERTATION Presented in Partial Fulfillment of T
    SYSTEMATICS OF THE MEGADIVERSE SUPERFAMILY GELECHIOIDEA (INSECTA: LEPIDOPTEA) DISSERTATION Presented in Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Sibyl Rae Bucheli, M.S. ***** The Ohio State University 2005 Dissertation Committee: Approved by Dr. John W. Wenzel, Advisor Dr. Daniel Herms Dr. Hans Klompen _________________________________ Dr. Steven C. Passoa Advisor Graduate Program in Entomology ABSTRACT The phylogenetics, systematics, taxonomy, and biology of Gelechioidea (Insecta: Lepidoptera) are investigated. This superfamily is probably the second largest in all of Lepidoptera, and it remains one of the least well known. Taxonomy of Gelechioidea has been unstable historically, and definitions vary at the family and subfamily levels. In Chapters Two and Three, I review the taxonomy of Gelechioidea and characters that have been important, with attention to what characters or terms were used by different authors. I revise the coding of characters that are already in the literature, and provide new data as well. Chapter Four provides the first phylogenetic analysis of Gelechioidea to include molecular data. I combine novel DNA sequence data from Cytochrome oxidase I and II with morphological matrices for exemplar species. The results challenge current concepts of Gelechioidea, suggesting that traditional morphological characters that have united taxa may not be homologous structures and are in need of further investigation. Resolution of this problem will require more detailed analysis and more thorough characterization of certain lineages. To begin this task, I conduct in Chapter Five an in- depth study of morphological evolution, host-plant selection, and geographical distribution of a medium-sized genus Depressaria Haworth (Depressariinae), larvae of ii which generally feed on plants in the families Asteraceae and Apiaceae.
    [Show full text]
  • Modular Structure, Sequence Diversification and Appropriate
    www.nature.com/scientificreports OPEN Modular structure, sequence diversifcation and appropriate nomenclature of seroins produced Received: 17 July 2018 Accepted: 14 February 2019 in the silk glands of Lepidoptera Published: xx xx xxxx Lucie Kucerova1, Michal Zurovec 1,2, Barbara Kludkiewicz1, Miluse Hradilova3, Hynek Strnad3 & Frantisek Sehnal1,2 Seroins are small lepidopteran silk proteins known to possess antimicrobial activities. Several seroin paralogs and isoforms were identifed in studied lepidopteran species and their classifcation required detailed phylogenetic analysis based on complete and verifed cDNA sequences. We sequenced silk gland-specifc cDNA libraries from ten species and identifed 52 novel seroin cDNAs. The results of this targeted research, combined with data retrieved from available databases, form a dataset representing the major clades of Lepidoptera. The analysis of deduced seroin proteins distinguished three seroin classes (sn1-sn3), which are composed of modules: A (includes the signal peptide), B (rich in charged amino acids) and C (highly variable linker containing proline). The similarities within and between the classes were 31–50% and 22.5–25%, respectively. All species express one, and in exceptional cases two, genes per class, and alternative splicing further enhances seroin diversity. Seroins occur in long versions with the full set of modules (AB1C1B2C2B3) and/or in short versions that lack parts or the entire B and C modules. The classes and the modular structure of seroins probably evolved prior to the split between Trichoptera and Lepidoptera. The diversity of seroins is refected in proposed nomenclature. Te silk spun by caterpillars is a composite material based on two protein agglomerates that have been known for centuries as fbroin and sericin.
    [Show full text]
  • Lepidoptera of North America 5
    Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains,
    [Show full text]
  • The Biology of Casmara Subagronoma (Lepidoptera
    insects Article The Biology of Casmara subagronoma (Lepidoptera: Oecophoridae), a Stem-Boring Moth of Rhodomyrtus tomentosa (Myrtaceae): Descriptions of the Previously Unknown Adult Female and Immature Stages, and Its Potential as a Biological Control Candidate Susan A. Wineriter-Wright 1, Melissa C. Smith 1,* , Mark A. Metz 2 , Jeffrey R. Makinson 3 , Bradley T. Brown 3, Matthew F. Purcell 3, Kane L. Barr 4 and Paul D. Pratt 5 1 USDA-ARS Invasive Plant Research Laboratory, Fort Lauderdale, FL 33314, USA; [email protected] 2 USDA-ARS Systematic Entomology Lab, Beltsville, MD 20013-7012, USA; [email protected] 3 USDA-ARS Australian Biological Control Laboratory, CSIRO Health and Biosecurity, Dutton Park QLD 4102, Australia; jeff[email protected] (J.R.M.); [email protected] (B.T.B.); [email protected] (M.F.P.) 4 USDA-ARS Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL 32608, USA; [email protected] 5 USDA-ARS, Western Regional Research Center, Invasive Species and Pollinator Health Research Unit, 800 Buchanan Street, Albany, CA 94710, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-954-475-6549 Received: 27 August 2020; Accepted: 16 September 2020; Published: 23 September 2020 Simple Summary: Rhodomyrtus tomentosa is a perennial woody shrub throughout Southeast Asia. Due to its prolific flower and fruit production, it was introduced into subtropical areas such as Florida and Hawai’i, where it is now naturalized and invasive. In an effort to find sustainable means to control R. tomentosa, a large-scale survey was mounted for biological control organisms.
    [Show full text]
  • Spotted Lanternfly Eradication Program in Select Counties of Pennsylvania
    Au United States Department of Agriculture Spotted Lanternfly Marketing and Regulatory Eradication Program in Programs Animal and Plant Health Select Counties of Inspection Service Pennsylvania Supplemental Environmental Assessment March 2018 Spotted Lanternfly Eradication Program in Select Counties of Pennsylvania Supplemental Environmental Assessment March 2018 Agency Contact: John Crowe National Policy Manager Plant Protection and Quarantine – Plant Health Programs Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Road, Unit 134 Riverdale, MD 20737 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action. Additional information can be found online at http://www.ascr.usda.gov/complaint_filing_file.html. To File a Program Complaint If you wish to file a Civil Rights program complaint of discrimination, complete the USDA Program Discrimination Complaint Form (PDF), found online at http://www.ascr.usda.gov/complaint_filing_cust.html, or at any USDA office, or call (866) 632- 9992 to request the form.
    [Show full text]
  • COLEOPTERA COCCINELLIDAE) INTRODUCTIONS and ESTABLISHMENTS in HAWAII: 1885 to 2015
    AN ANNOTATED CHECKLIST OF THE COCCINELLID (COLEOPTERA COCCINELLIDAE) INTRODUCTIONS AND ESTABLISHMENTS IN HAWAII: 1885 to 2015 JOHN R. LEEPER PO Box 13086 Las Cruces, NM USA, 88013 [email protected] [1] Abstract. Blackburn & Sharp (1885: 146 & 147) described the first coccinellids found in Hawaii. The first documented introduction and successful establishment was of Rodolia cardinalis from Australia in 1890 (Swezey, 1923b: 300). This paper documents 167 coccinellid species as having been introduced to the Hawaiian Islands with forty-six (46) species considered established based on unpublished Hawaii State Department of Agriculture records and literature published in Hawaii. The paper also provides nomenclatural and taxonomic changes that have occurred in the Hawaiian records through time. INTRODUCTION The Coccinellidae comprise a large family in the Coleoptera with about 490 genera and 4200 species (Sasaji, 1971). The majority of coccinellid species introduced into Hawaii are predacious on insects and/or mites. Exceptions to this are two mycophagous coccinellids, Calvia decimguttata (Linnaeus) and Psyllobora vigintimaculata (Say). Of these, only P. vigintimaculata (Say) appears to be established, see discussion associated with that species’ listing. The members of the phytophagous subfamily Epilachninae are pests themselves and, to date, are not known to be established in Hawaii. None of the Coccinellidae in Hawaii are thought to be either endemic or indigenous. All have been either accidentally or purposely introduced. Three species, Scymnus discendens (= Diomus debilis LeConte), Scymnus ocellatus (=Scymnobius galapagoensis (Waterhouse)) and Scymnus vividus (= Scymnus (Pullus) loewii Mulsant) were described by Sharp (Blackburn & Sharp, 1885: 146 & 147) from specimens collected in the islands. There are, however, no records of introduction for these species prior to Sharp’s descriptions.
    [Show full text]
  • Lepidoptera: Psychidae)
    Eur. J. Entomol. 111(1): 121–136, 2014 doi: 10.14411/eje.2014.013 ISSN 1210-5759 (print), 1802-8829 (online) Evaluation of criteria for species delimitation of bagworm moths (Lepidoptera: Psychidae) VERONICA CHEVASCO1, JELMER A. ELZINGA1, JOHANNA MAPPES2 and ALESSANDRO GRAPPUTO3 1 Department of Biological and Environmental Science, P.O. Box 35, FI-40014 University of Jyväskylä, Finland; e-mails: [email protected]; [email protected] 2 Center of Excellence in Biological Interactions, P.O. Box 35, FI-40014 University of Jyväskylä, Finland; e-mail: [email protected] 3 Department of Biology, University of Padova, Via Ugo Bassi 58/B, I-35121 Padova, Italy; e-mail: [email protected] Key words. Lepidoptera, Psychidae, Dahlica, Siederia, DNA barcoding, COI Abstract. Accurate identification of species is fundamental for biological research and necessary for species conservation. DNA bar- coding is particularly useful when identification using morphological characteristics is laborious and/or unreliable. However, bar- codes for species are dependent on the availability of reference sequences from correctly identified specimens. The traditional use of morphology to delimit the species boundaries of Finnish bagworm moths (Lepidoptera: Psychidae: Naryciinae: Dahliciini) is contro- versial because there is overlap in their morphological characteristics. In addition, there are no suitable molecular markers. We veri- fied the delimitation of seven out of eight previously described taxa, by using the currently standardized COI barcode and phylogenetic inference based on fragments of mitochondrial (COI) and nuclear genes (MDH). Moreover, we compared the results of molecular methods with the outcome of geometric morphometrics. Based on molecular identification, our findings indicate that there are five sexual species (Dahlica and Siederia spp.) and two parthenogenetic species (D.
    [Show full text]
  • Acoustic Communication in the Nocturnal Lepidoptera
    Chapter 6 Acoustic Communication in the Nocturnal Lepidoptera Michael D. Greenfield Abstract Pair formation in moths typically involves pheromones, but some pyra- loid and noctuoid species use sound in mating communication. The signals are generally ultrasound, broadcast by males, and function in courtship. Long-range advertisement songs also occur which exhibit high convergence with commu- nication in other acoustic species such as orthopterans and anurans. Tympanal hearing with sensitivity to ultrasound in the context of bat avoidance behavior is widespread in the Lepidoptera, and phylogenetic inference indicates that such perception preceded the evolution of song. This sequence suggests that male song originated via the sensory bias mechanism, but the trajectory by which ances- tral defensive behavior in females—negative responses to bat echolocation sig- nals—may have evolved toward positive responses to male song remains unclear. Analyses of various species offer some insight to this improbable transition, and to the general process by which signals may evolve via the sensory bias mechanism. 6.1 Introduction The acoustic world of Lepidoptera remained for humans largely unknown, and this for good reason: It takes place mostly in the middle- to high-ultrasound fre- quency range, well beyond our sensitivity range. Thus, the discovery and detailed study of acoustically communicating moths came about only with the use of electronic instruments sensitive to these sound frequencies. Such equipment was invented following the 1930s, and instruments that could be readily applied in the field were only available since the 1980s. But the application of such equipment M. D. Greenfield (*) Institut de recherche sur la biologie de l’insecte (IRBI), CNRS UMR 7261, Parc de Grandmont, Université François Rabelais de Tours, 37200 Tours, France e-mail: [email protected] B.
    [Show full text]
  • Phylogeny and Evolution of Lepidoptera
    EN62CH15-Mitter ARI 5 November 2016 12:1 I Review in Advance first posted online V E W E on November 16, 2016. (Changes may R S still occur before final publication online and in print.) I E N C N A D V A Phylogeny and Evolution of Lepidoptera Charles Mitter,1,∗ Donald R. Davis,2 and Michael P. Cummings3 1Department of Entomology, University of Maryland, College Park, Maryland 20742; email: [email protected] 2Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 3Laboratory of Molecular Evolution, Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland 20742 Annu. Rev. Entomol. 2017. 62:265–83 Keywords Annu. Rev. Entomol. 2017.62. Downloaded from www.annualreviews.org The Annual Review of Entomology is online at Hexapoda, insect, systematics, classification, butterfly, moth, molecular ento.annualreviews.org systematics This article’s doi: Access provided by University of Maryland - College Park on 11/20/16. For personal use only. 10.1146/annurev-ento-031616-035125 Abstract Copyright c 2017 by Annual Reviews. Until recently, deep-level phylogeny in Lepidoptera, the largest single ra- All rights reserved diation of plant-feeding insects, was very poorly understood. Over the past ∗ Corresponding author two decades, building on a preceding era of morphological cladistic stud- ies, molecular data have yielded robust initial estimates of relationships both within and among the ∼43 superfamilies, with unsolved problems now yield- ing to much larger data sets from high-throughput sequencing. Here we summarize progress on lepidopteran phylogeny since 1975, emphasizing the superfamily level, and discuss some resulting advances in our understanding of lepidopteran evolution.
    [Show full text]