22thth InternationalInternational ConferenceConference & EExhibitionxhibition AdvancedAdvanced GGeospatialeospatial ScienceScience & TechnologyTechnology (2th(2th TeanGTeanGeeoo 22018)018) 26-2826-28 SeptemberSeptember 20182018 TEANGEO 2018 CONFERENCE TOPICS We invite you to participate at the International Conference on Advanced New trends in GIS technologies and research Geospatial Science & Technology, scheduled to take place in , , 3D modeling. September 26-28, 2018. Digital cartography. Digital Earth, Virtual Globes and Spatial oriented augmented reality. The program will offer parallel paper presentation sessions, keynote Laser scanning and Applications. sessions, poster sessions and pre-conference workshops to share your ideas, explore on-going research, future developments, including state-of-the-art Environmental, Urban, Health, Renewal energy, applications, and to network with the professionals from academia, industry, Logistics applications and Modelling. and government who are interested in Geospatial Science & Technology. Natural Resources Management and Monitoring. Climate change, Disaster and Risk Management. The abstract: Abstracts and papers will be accepted on the basis of a refereed Mining and Oil exploration. review, and abstracts should be between 400 and 600 words. The deadline for receiving abstracts is 15/04/2018. Smart cities. The paper must be original work and must be written in English, French or Geospatial Technology Education and Training. Arabic. Space Policy and strategies in Africa. Spatial data quality. Accepted papers will be published in the TeanGeo proceedings volume Big Geo-data. (with ISSN). Papers must be written in English, French or Arabic according to Geo-Data Mining. the submission template and formatting guidelines. Geo-spatial technology. All submissions must be sent in electronically via the online conference Earth observation technology and systems manager available at http://www.teangeo.org/En/. Spatiotemporal Data Acquisition, Processing, Modelling, and Analysis. Spatial decision support systems. Authors of the best papers will be invited after the conference to submit Spatial Data Infrastructures. extended version of their papers. After evaluation and peer review, the Geo-spatial Web Services and applications. successful papers will be published in special issues of: Wireless and mobile GIS. Euro-Mediterranean Journal for Environmental Inte gra t ion: Location Based Services and Mobile Geographical information Applications http://www.springer.com/41207 Integration of remote sensing, GIS and GPS. Earth Systems and Environment: http://www.springer.com/41748 Representation and visualization of geospatial data. Questions regarding abstracts and papers submission should be e-mailed to info@ teangeo.org . TRAINING COURSES On the occasion of the conference 2nd TeanGeo 2018, the Regional Center for At the TEANGEO 2018 conference an industrial equipment exhibiton will be Remote Sensing of North Africa States will organize two training courses on provided for related products and services in the field of Geospatial Science 24, 25 and 26 September 2018 in Tunis in the following areas: and Technology. Training Course (1): Spatio-temporal data processing and modeling. Training Course (2): The Role of Remote Sensing and Emerging Technologies in The TEANGEO 2018 will provide a venue for business and non-profit the Management and Protection of Water Resources. organizations to make contact with the international community on Geospatial Science and Technology (more than 300 participants). IM PORTANT DATES First call for papers 15/10/2017 The TEANGEO 2018 Conference is pleased to again welcome exhibitors to Deadline for Abstract Submission 30/06/2018 participate in the conference. Potential exhibitors should contact the organizer Acceptance Notification 10/07/2018 for further information at info@ teangeo.org If you are interested in a booth for Deadline for Full paper submission 31/07/2018 the TEANGEO 2018 Conference, please reserve a space before they run out. Notification of full paper acceptance 15/08/2018 Early Registration 31/07/2018 SPONSORS Late Registration 26/09/2018 Conference 26/09/2018 PARTNERS

Contact Us Email : info@ teangeo.org Phone : + 216 71 236 575 / 71 237 466 Fax : + 216 71 238 882 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Contents

5 60 - 68 Editorial QUALITY ASSESSM ENT OF BRDF M ODIS PRODUCT AND THE EFFECT 6 - 18 ON WATER VEGETATION M ONITORING WATER RESOURCES APPLICATIONS OF GIS IN NORTH WESTERN COAST OF EGYPT 69 - 77 STUDY OF TURBULENT FLOW 19 - 28 THROUGH LARGE POROUS M EDIA PRÉVISION HYDROLOGIQUE PAR RÉSEAUX DE NEURONES 78 - 91 APPLICATION POUR LE BASSIN DEVELOPM ENT OF WATER TURBIDITY DE M ELLÈGUE, TUNISIE INDEX (WTI) AND SEASONAL CHARACTERISTICS OF TURBIDITY DISTRIBUTION IN LAKE ICHKEUL, 29 - 36 A SHALLOW BRACKISH LAKE, MAPPING SOIL CHEMICAL NORTHERN-EAST TUNISIA PROPERTIES AND ARBUSCULAR M YCORRHIZAL FUNGI RICHNESS : A SOIL FERTILITY EVALUATION USING A SPATIAL INTERPOLATION M ETHOD 92 - 102 GIS APPLICATION FOR OPTIM IZATION OF HOUSEHOLD WASTE COLLECTION: 37 - 47 CASE STUDY OF AL BOUSTEN DISTRICT IN COM M UNE OF URBANISATION ET RISQUE D'INONDATION: LE CAS DE JEDDAH EN ARABIE SAOUDITE 103 - 114 ETUDE COM PARATIVE DE DEUX M ÉTHODES POUR LA M ODÉLISATION DES RUISSELLEM ENTS DES EAUX DE 48 - 59 SURFACE : CAS DU BASSIN AN AUTOM ATIC TRANSITION FROM TRANSFRONTALIER TUNISO-ALGÉRIEN THE DESIGN OF THE SPATIAL DATA DE L'OUED SARRAT WAREHOUSE TO ITS IM PLEM ENTATION

www.crtean.org.tn 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

JOURNAL OF SCIENCE SPACE TECHNOLOGIES

Editor in chief of the Journal of Science Space Technologies Dr. El Hadi Gashut Director General of the Regional Center for Remote Sensing of the North African countries

Scientific Commission for arbitration magazine space science and technology 1 - Prof. Mustafa El Haj Arab Scientific Research Councils - Fasrc Fasrc President 2 - Prof . Rached Boussema Al-Manar University in Tunis Tunis Member National Authority for Remote Sensing 3 - Prof. Abdallah Gad Egypt Member and Space Sciences 4 - Prof. Bahloul El Yaagoubi Tripoli University Libya Member University of Science , Technology Mauritania Member 5 - Prof. Menny Baha and Medicine Remote Sensing Authority and 6 - Dr. Amna Hamed Sudan Member Seismological Scientific Center at the University of Morroco Member 7 - Dr . Anas Emran Mohammed V, Rabat Regional Center for Remote Sensing of 8 - Dr. Mohamed Ghaddah Crtean Member the North African states - Crtean Association of Remote Sensing Centers ARSCAW Member 9 - Dr. Akram Elkaseh in the Arab World

www.crtean.org.tn 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

www.crtean.org.tn 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

www.crtean.org.tn 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC EDITORIAL

The Regional Center for Remote Sensing of North Africa States (CRTEAN), together with the Federation of Arab Scientific Research Councils (FASRC), made a great effort in order to publish the fourth issue of the Space Science and Technology Magazine.This issue is rich with many applied scientific and technological researches and studies which meet the requirements of academics and researchers in the field of space science, its applications and the systems available to them.The magazine provides this audience with accurate and comprehensive researches,within the framework of research and academic institutions and specialized technical structures in our great Arab homeland, to help participate in establishing full digital economic and social development and building a society of knowledge and information.

The magazine's scientific committee puts in your hands, with sincerity and devotion, this issue to present new releases in these sciences and what our experts, researchers and innovators have reached in this field. This modest effort aims to be crowned by achieving the goals of this specialized magazine. We hope that this work would push scientific research in our region forward and to create a healthy competitive research ground according to the scientific methodology adopted for publishing this magazine, in order to facilitate the acquisition of information for the reader within the approved rules for publication in three languages, (Arabic, English and French). The Committee also wishes to apology for any errors beyond its will and hopes that this effort would meet your satisfaction and achieve your goals.

Until we meet in the fifth issue, please do not hesitate to provide advice, guidance and scientific material suitable for publication and to promote this unique magazine on the national and regional level.

We send our prays to God the Almighty for blessings and guidance.

Dr. El Hadi Gashut Editor of the magazine General Director of the Regional Center

www.crtean.org.tn 5 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

WATER RESOURCES APPLICATIONS OF GIS IN NORTH WESTERN COAST OF EGYPT Dr.Abd-Alla Attia1 , Geo.Dawlet Abdel Latif 2 - Eng. Lamia Anass 3 1 Advisor of technical affairs, [email protected] 2 Geologist , [email protected] 3 Engineer , [email protected] (Egyptian Mineral Resources Authority (Geological Survey of Egypt))

ABSTRACT Once celebrated as the “gift of the Nile”, is For such crisis this paper tries to get an in the grips of a serious water crisis. With a applicable solution by concentrating on the rising population and a fixed supply, the best usage of the rain water that fall on country has less water per person each year. Egypt seasonally along the North West The country's annual water supply dropped coast that recording the highest average to an average of 660 cubic meters a person rain fall annually. in 2013, down from over 2,500 cubic The most benefits of this paper are: meters in 1947, according to official - To identify the ways in which GIS can figures. Egypt is already 'below the United facilitate more effective and/or more Nations water poverty threshold, and by efficient water resource management. 2025 the UN predicts it will be approaching - To develop GIS-based methods that a state of “absolute water crisis”. address specific water resource challenges and problems.

www.crtean.org.tn 6 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 1. INTRODUCTION Egypt is characterized by its arid condition. Intense stream networks distinguish the desert geomorphology, which is subjected to harsh climatic conditions, and extreme water scarcity. However, different stream networks, especially along the sea coasts and the Red Sea Mountains, are subjected to extreme precipitation events in the form of flash floods, where a considerable amount of rainfall occurs, suddenly, for a short duration, and with a relatively long time period. Flood management has mainly two objectives: (1) Benefit of the available flood water during water scarce period, and (2) Flood attenuation to minimize the damage occurred by flash floods. A methodology for flood predictions, risk assessment, and vulnerability estimation is extremely important. In the last few years, attention has been devoted to the North western coast due to the large urbanization activities in it. The government spares no effort to develop it. Many comprehensive planning studies have been conducted. Many luxurious tourist spots have been built. So, flood management and analysis of this area had become a must.

Figure .1 Location Map of the study area.

www.crtean.org.tn 7 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 2. STUDY AREA The North Western coast is characterized by the presence of some streams networks, which is subjected to harsh climatic conditions, and extreme water scarcity. Temperatures range between an average minimum of 13° C in winter and an average maximum of 30° C in summer. Rainfalls receive along the coast, but even the wettest area, around Alexandria, receives only about 200 millimeters of precipitation per year. Alexandria has relatively high humidity, but sea breezes help keep the moisture down to a comfortable level, moving westward, the amount of precipitation decreases. Some areas will go years without rain and then experience sudden downpours that result in flash floods. Fourteen metrological stations are used in this study, six of them are on the main streams and the rest are in the main surrounding cities (Sallum, Sidi Barrani, Marsa Matruh, Ras EL Hikma, El Dabaa, and Siwa). From the topographical maps scale 1:50000 and the , the streams and basins were digitized, and used as a guide for the streams and basins calculated from the Digital Elevation Model DEM, with cell size 75 meter.

The North Western coast basins are categorized in three main areas due to its geographic locations. Figure.1 shows the location map of the study area. The structures in the Western Desert are related to the plate tectonic motions between Africa and Eurasia. There were three main stage of motion, which was reflected the significant structural features in the Western Desert these three stages are; 1. Jurassic – pre – Turonian sinistral motion that is oriented mainly northwest. 2. East – West post – Turonian dextral motion. 3. Middle – Late Tertiary compression related to the Alpine tectonism. The first two stages were mainly extensional forces (wrenching). In addition, it might be expected that Tertiary extensional features could have occurred in relation to the opening of Red Sea/Gulf of Suez rift system. The structural trends in the heterogeneous crystalline basement beneath the Western Desert no doubt also affected the structural picture of the Western Desert.

3. METHODOLOGY The different streams networks and basins in the North Western Coast are studied here to compute its morphological and hydrological parameters as to assess their risk degree and classify their relative vulnerability. The flood risk assessment methodology comprises ranking the studied watershed according to its flood risk based on the previously computed morphological and hydrological parameters using the Watershed Modeling System (WMS 7) software. 1 - The base map used in this work was a mosaic produced from 20 scenes of TM data acquired in 2001 of the path and rows as follows (176/40, 176/41,177/38,177/39, 177/40,177/41, 178/39,178/40, 178/41, 179/38, 179/39,179/40,179/41,180/38,180/39,180/40,180/41,181/38,181/39,181/40). Figure. 2 2 - Another working sheets were prepared by using SRTM data ( Shuttle Radar Topographic Map) acquired in 2002 of ground resolution 75 meter to produce the digital Elevation Model that used to prepare ( The Slope Map, The Aspect Map, and the Shade Relief Map) www.crtean.org.tn 8 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 3- New vector coverage has been created above the Satellite Image to delineate the drainage network and the basins catchments area. 4- The Shade Relief Map used to verify the delineation of the drainage network from the Satellite Image (TM mosaic) 5- The meteorological data of the period 1912-2002 were used for the rate and the maximum events of the rain precipitation for the 37 stations. 6- And also the rate of evaporation per day has been used.

Figure .2 Location Map of TM Scenes Figure .3 A Digital Elevation Model Mosiaced Covering the study area from SRTM data

Figure .4 Drainage network in the Study Area Figure .5 The Basin Catchments Area in the Study Area

Figure .6 Risk analysis Map in the Study Area www.crtean.org.tn 9 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 4. CALCULATION METHOD: The method of calculating the risk can be summarized in the following steps: 1. The slopes of basins were sorted in ascending order and the highest in slope is the highest in risk as it mean that the increasing of the slope will increase the velocity of water current.

2. The Bifurcation ratio is sorted in ascending order and the highest of bifurcation ratio is highest in risk.

3. The Density is sorted in ascending order and the highest of Density is highest in risk.

4. The Frequency ratio is sorted in ascending order and the highest of Frequency ratio is highest in risk.

5. The Shape factor is sorted in ascending order and the nearest number to the value of integer 1 is highest in risk, while the further fraction is lowest in risk. Where the shape factor is the result of dividing the maximum length of each basin over the maximum width of the same basin.

6. the total Risk is the mean of all the previous risks

At the end of that method we have to insist on the fact that the impact risk will not be calculated or happen if one of the following factors verified

1. Enough amount of water precipitation i.e. high rate of rain falls in short time span. 2. Presence of any strategic building or projects dissected by the wadis pass. 3. Presence of external and mature drainage network.

www.crtean.org.tn 10 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

Table 1 shows the Total Rain Fall precipitated over the study area

www.crtean.org.tn 11 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Table 2 shows the Maximum Rain Fall precipitated over the study area

www.crtean.org.tn 12 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Table 3 shows the Monthly Rate of Evaporation the study area

www.crtean.org.tn 13 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Table 4: Morphometric analysis of the basins in the study area

www.crtean.org.tn 14 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

www.crtean.org.tn 15 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

Where is the basins assigned by its number, Area is the basin area in sq. Kilometer, perimeter is the outline perimeter of each basin, max. elevation is the maximum elevation level of basin catchment area, Min. Elevation is the minimum elevation in the same basin catchment area, Elevation Mean is the mean of elevation of the same basin catchment area, and Elevation Range is the range of elevation in each basin catchment area, max. length is the maximum length of the drainage segment that takes place from the up stream to the end www.crtean.org.tn 16 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC of the wadi, Max. width is the maximum width of basin catchment area, Slope Factor is the main slope over the basin area, Tot. Dr. No. is the summation of all the drainage segment length in each basin, order 1,2,3,4,5,6 is the number of each order in each basin ordered according to Hurton classification, Frequency is the ratio between the number of drainage segments in individual basin area, bifurcation ratio is the summation of the ratios between each two successive orders divided over the number of ratios, Tot. Dr. L is the summation of the drainage segment lengths in each basin, while the Density is the result of dividing the total drainage lengths in a basin over its area, the slope is the result of dividing the elevation difference over the the maximum length of each basin.

5. RESULT AND DISCUSSION The factors that control the risk were verified only in 7 sheets of the study area, from north to south are (Matruh, Sidi Barrani, As Sallum, Al Fayyum, Ghard Ar Rammak, Almenya and Al Wahat Al Bahariya. As the rate of rain fall precipitation increase in the north and decrease in the south. In the same time the rate of evaporation recorded high values in the south stations and low values in the northern stations so we will notice that the northern areas of flooding risks concentrated mainly along the northern part of the study area. The last point has to be mentioned that some areas has delineated with the flood risk to be considered in future during planning and development. The using of GIS techniques allows us to read and comment all the resulting maps As we overlay the following layers i. Roads layer ii. Urban layer iii. Shore line layer iv. Risk grade layer v. Gazetteer of Egypt. It will show the following facts · At Matruh sheets the degree of risks ranging from low to moderate risk degree at the same time there are many numbers of underground wells that can be charged by the amount of surface run off water by making some engineering works such as rock fill dams based on the layer of DEM. The underground water wells there such as (Az Zumlah, El Wahl , El Tayif, Abâr El Tauif, Bîr el Sioda, Bîr El arâ¬na, Bi'r Sanøsy, Bîr Rahil, Bîr Omar Mahammad, , Bi'r Mayyår, Bîr el Mansûri, Åbår Ma±mød Abø Bakr, Abâr Kraiyim Himeida, Bîr Kharrît, Bîr el Khâssa, Åbår Hårøn, Åbår 'åmid, Bîr Ghineiwa Rihaiyim, Bi'r Faraj Hayøb, Bîr Ellet Abu Huweim, Bîr Eilet Similli, Bîr Eilet Firkash, Bi'r Dughaym, Bîr Dgheim, Bîr ¯ Ali ¯ Omâr, Bîr Ali el Qâdi , Bîr ¯ Ali ¯ Atîya, Bîr Abu Smeit and Åbår Abø Bakr Jødah . all of the previous wells surrounding Ras El Hekma area while other south Matruh city such as (Abâr Husein el Âsi, Bîr Zaqâwa, Abâr Zaolûk Bey, Bîr Yâdim el Garrâri, Abâr el Wisheika, Bîr Umm el Rakham, Bîr Sigîfa, Abâr el Shôlahi Bîr Shâmekh, Bi'r as Sajifah, Abâr Sa¯ d Abu Shinâf, Bi'r Qaryat Då'od, Bîr el Hashîma, Bîr Gâryet Dâwûd, Bîr Eilet Similli, Bîr Eilet Ilwâni.) and the risk shows high grade at Haggag El Midar Area. www.crtean.org.tn 17 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC · In sidi Barrani Sheet the Risk Degree also ranges between Low to moderate and there are many wells also can be recharged using the runoff water such as(Bir Qitani, Bir Nasib, bir Nasri, and Bir Lakhan) · In As Sallum Sheet the risk recorded low grade along the road connecting between Barrani and Sallum while it records moderate risk degree upon Sallum city from the south west direction. · Along Cairo Al Wahat Al Baharyia road the risk is low to moderate except the area near the Conical Hill and Bluff Hill it recorded high grade of risk. · Around Al Fayyum area the risk low to moderate. · South al Fayyum and in Asyut and Al Minya sheets recorded high grade of risk along the cultivated land parallel to the Nile River near to Sidi Al Ashi and Arab Yaqoub, Sidi Ahmed, Sidi abu Al Nour, and Kôm el Hâsil villages.

Acknowledgment The Author would like to express his gratitude to Professor Miss Lamia Anas and Miss Dawlat Abdel Latif, Senior Geologists in the GIS department, Egyptian Ministry of Survey who have helped in completing this project and provided guidance along the way.

References [1] Project for the Capacity Building of The Egyptian Geological Survey and Mining Authority (EGSMA) and The National Authority for Remote Sensing and Space Sciences (NARSS) In Cooperation with UNDP and UNESCO" (EGY /97/011).

www.crtean.org.tn 18 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

PRÉVISION HYDROLOGIQUE PAR RÉSEAUX DE NEURONES APPLICATION POUR LE BASSIN DE MELLÈGUE, TUNISIE

ABSTRACT Les réseaux connexionnistes sont de déterminer les entrées du modèle. constitués d'éléments de calcul, appelés E n s u i t , u n m o d è l e P e r c e p t r o n neurones formels ou artificiels, répartis en MultiCouches est appliqué pour prédire les couches. La fonction d'un tel réseau est de débits mensuels dans le bassin de modéliser la transformation entre un espace Mellègue. Divers mécanismes, appelés d'entrée, représenté par les variables méthodes d'apprentissage, permettent explicatives et un espace de sortie, d'ajuster les poids synaptiques. Un des plus représenté par la(es) variable(s) à utilisés est la méthode de rétropropagation. expliquer. Le fonctionnement d'un réseau Le principe d'apprentissage de cette de neurones formels est défini par sa méthode est d'appliquer des corrections aux structure et par la valeur des connexions qui poids synaptiques selon un algorithme de relient les neurones entre eux, appelée gradient stochastique visant à minimiser poids synaptiques. Tout d'abord, une l'erreur quadratique moyenne. On a analyse d'autocorrélation temporelle sur les constaté que le modèle arrive à bien simuler précipitations et les débits est effectuée afin les débits.

www.crtean.org.tn 19 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 1. INTRODUCTION Le comportement hydrologique d'un hydrosystème donné est complexe. Cette complexité résulte d'une part, de l'hétérogénéité du milieu proprement dit, dont l'ensemble des caractéristiques physiques et géomorphologiques joueront un rôle important dans la réponse hydrologique du bassin à une sollicitation des précipitations; et d'autre part, les facteurs climatiques tels que la nature des précipitations, la distribution temporelle et/ou spatiale de la pluie et le trajet des orages vont influencer fortement la réponse de l'hydrosystème.

Dans les quatre dernières décennies la modélisation pluie-débit a suscité un intérêt croissant dans la communauté des hydrologues. La plupart des modèles de prévision conventionnelles sont basées sur des méthodes déterministes ou bien statistiques linéaires. Le succès pratique de ces approches est limité par les données entrées nécessaires ou bien leur linéarité. Face à la non-linéarité de la relation pluie-débit, les recherches se sont approfondies vers de nouvelles approches non déterministes, comme l'illustrent les réseaux de neurones artificiels (RNA), qui nous intéresse particulièrement ici. Ils constituent une nouvelle méthode d'approximation de système complexe, particulièrement utile lorsque ces systèmes sont difficiles à modéliser à l'aide des méthodes statistiques classiques. Les réseaux de neurones font partie de la catégorie des modèles « boîtes noires ». Ils ont été bâtis en s'inspirant des systèmes nerveux biologiques mais c'est en s'éloignant de cette inspiration biologique pour prendre une tournure purement mathématique que les réseaux de neurones ont connu un essor.

Anderson et Rosenfeld (1988) ont effectué une compilation de 43 articles permettant de suivre l'évolution des réseaux de neurones de 1890 jusqu'à 1987. Les réseaux de neurones sont nés de la publication de l'article de McCulloch et Pitts (1943). Leurs travaux ont montré qu'avec de tels réseaux, on pouvait en principe, calculer n'importe quelle fonction arithmétique ou logique. En 1949, Hebb propose une théorie fondamentale pour l'apprentissage alors que la proposition du réseau de neurones dit perceptron permettait des applications concrètes.

Dans les années 1980, l'apparition de l'algorithme rétro-propagation relançait fortement l'activité sur les réseaux de neurones. La mise au point de cet algorithme est généralement attribuée à Rumelhart (1986) qui l'a rendu populaire, depuis ce temps, le domaine des réseaux de neurones foisonne de nombreuses théories. Nous proposons ici une méthode de modélisation basée sur l'un des types de réseaux neuronaux, réseau de type perceptron multicouche sans rétroaction entraîné par l'algorithme de rétro-propagation. Suivant leurs architectures, les RNA peuvent remplir des tâches bien différentes telles que classification et modélisation par exemple. Ils sont aujourd'hui largement utilisés pour la modélisation de systèmes complexes non linéaires. Les performances des réseaux de neurones artificiels (RNA) dans la modélisation des phénomènes non-linéaire ont été prouvées dans plusieurs domaines de l'ingénierie et dans la modélisation de la relation pluie-débit en particulier aux différents pas de temps. www.crtean.org.tn 20 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC L'objectif principal de cette étude est la mise en place d'un modèle pluie-débit basé sur l'approche connexionniste par les réseaux neuronaux sur le bassin versant d'oued Méllègue dont le but est d'évaluer sa capacité de simulation des débits observés au niveau de la station hydrométrique Méllègue K13 et produire ainsi un modèle RNA capable de prédire les inondations.

2. MATÉRIELS ET MÉTHODES La zone d'étude est le bassin versant de l'Oued Méllègue situé au nord-ouest de la Tunisie (Dorsale). C'est un bassin Algéro-Tunisien, il est entouré par les gouvernorats de et au Nord-Est, par du Sud-Est dont Tala y fait partie. En ce qui concerne la partie Algérienne, du côté Nord-Ouest il délimité par Souk-Ahras et par Oum EL Bouaghi et Kenchela du côté Sud-Ouest. L'oued Méllègue est un affluent rive droite de la Medjerda. C'est un cours d'eau qui prend son départ en Algérie, il draine un bassin versant d'une superficie de 10560 km2 dont environ 677 km2 qui sont situés en Algérie. Les affluents de l'Oued Mellegue sont Oued er Rmel et Oued Serrat rive droite qui prend son départ en Algérie et traverse le gouvernorat de Kasserine et Oued El Melah et oued el Alik (rive gauche). Le bassin versant Méllègue fait partie de la grande région de la Dorsale. Ce bassin versant frontalier se caractérise par un relief accidenté et compartimenté avec des plateaux ondulés et des plaines alluviales souvent isolées qui s'étendent entre les montagnes.

Les principales caractéristiques du relief du Méllègue sont présentées par deux grandes unités morphologiques : * Méllègue amont (partie Algérienne) formée par 4 secteurs : - Le secteur de haute altitude (supérieure à 1400 m) qui correspond aux massifs montagneux il est orienté sensiblement selon la direction SO-NE. - Le secteur d'altitudes moyennes qui varient entre 1000 et1400 m qui correspondent aux zones de piedmonts des zones de transitions entre les montagnes et les plaines ; - Le secteur d'altitudes entre 600 et 1000 m qui correspondent aux zones de plaine et qui s'étend au Nord et à l'Est ; - Le secteur de d'altitude inférieure à 600 m qui correspond exclusivement aux vallées. * Méllègue aval (partie tunisienne)

L'altitude des montagnes varie entre 700 et 1200 m, alors que celle des plaines varie de 450 à 600 m, ce qui indique qu'il s'agit de hautes plaines. D'autre part le relief qui se caractérise par une alternance de montagnes et de plaines ou des plateaux, est orienté en général du Sud-Ouest au Nord-Est, de même direction que l'ensemble des plis de l'Atlas Tunisien. En conséquence, il existe un grand contraste morphologique entre la zone de production située en Algérie orientale et couverte par des reliefs montagneux (1500 m) et les zones de transfert et de stockage dans les plaines en Tunisie (127 m).

www.crtean.org.tn 21 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC La majorité de la superficie du bassin reçoit entre 420 et 600 mm par an de précipitations. Les valeurs varient entre 320 mm et 700 mm respectivement pour les stations Méllègue et Souk Ahras. La répartition spatiale de la pluviométrie annuelle moyenne indique une distribution suivant la répartition topographique du bassin. Trois parties sont distinguées : - La région la plus pluvieuse se trouve dans les zones de l'Ouest du bassin ; - Une région centrale du bassin où nous retrouvons une pluviosité moins importante que dans la région de l'Ouest ; - Une dernière région située à l'Est du bassin qui est celle qui présente la plus faible pluviosité.

Plusieurs stations des mesures hydro-climatologiques ont été installées dans le bassin versant de Méllègue pour les mesures et l'annonce des crues. On dispose d'environ 50 stations pluviométriques dans la partie tunisienne, la station la plus ancienne est celle de Cité de Méllègue (1964). Les données collectées sont fournies à partir de la direction générale des ressources en eau (DGRE). Ces stations ont des différentes dates de mise en service et donc différentes périodes d'observations, elles présentent des lacunes assez importantes d'une station à une autre.

La base de données pluviométrique retenue comporte 15 stations tunisiennes et 18 stations algériennes dont la période d'observations varie de 1993 à 2008 (Figure 1). Pour évaluer l'influence de chacune de ces stations pluviométriques sur l'ensemble de notre bassin versant, il est nécessaire de faire le passage des pluies ponctuelles aux pluies moyennes sur une surface à l'échelle du bassin. Parmi les méthodes généralement proposées pour calculer la moyenne des pluies à partir des mesures ponctuelles à partir de plusieurs stations pluviométriques nous utilisons la méthode du polygone de Thiessen.

Figure1. Stations hydro-pluviométriques www.crtean.org.tn 22 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Dans la figure ci-dessous, nous avons présenté l'évolution des précipitations moyennes sur toutes les stations et du débit sur O. Mellegue de 1993 jusqu'à 2004.

Figure 2. Stations hydro-pluviométriques

Les réseaux de neurones artificiels (RNA) apparaissent comme des modèles inspirés du fonctionnement du cerveau humain, composé de plusieurs unités de calcul simples appelées neurones et fonctionnant en parallèle dont le but est de traiter les informations de façon analogues au système biologique. Les RNA sont des modèles stochastiques non linéaires, de type « boîte noire», capables de déterminer des relations entre données par la présentation répétée d'exemples (à savoir des couples constitués par une information d'entrée et une valeur de sortie que l'on voudrait approcher par le modèle). La modélisation à l'aide de RNA permet de calculer et d'établir la complexité des relations entrée-sortie d'un système. Les RNA sont constitués d'un ensemble d'éléments de calcul (neurones artificiels), organisés dans une structure spécifique, les paramètres du réseau (les poids) étant représentés par les valeurs associées aux connections de ces éléments de calcul.

Un élément de calcul du RNA comporte une ou plusieurs entrées et une sortie. La valeur de sortie est obtenue par l'application d'une relation mathématique (fonction d'activation) sur la somme pondérée d'entrée. Dans la modélisation à l'aide de réseaux de neurones artificiels, on peut choisir le type de fonctions d'activation, le nombre de neurones et l'arrangement de leurs connexions (à savoir la structure de réseau). Généralement, on utilise des fonctions d'activation de type « sigmoïde ». Le RNA ne présente pas un modèle explicite physiquement, mais il présente une technique durable pour développer des simulations d'entrées-sorties.

www.crtean.org.tn 23 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Cette technique se base sur les étapes principales suivantes : construction, apprentissage, validation et exploitation du modèle RNA. Le perceptron multicouche est un réseau à architecture particulière : toutes les entrées sont connectées à tous les neurones d'une première couche de neurones cachés. Tous les neurones d'une couche sont connectés à tous les neurones de la couche suivante. Les neurones cachés sont non-linéaires alors que les neurones de sortie sont linéaires ou non linéaires. Aussi les neurones sont connectés de sorte qu'il n'y ait pas un retour de l'information d'une manière ou d'une autre vers l'arrière. Un PMC est définit par le nombre de ses entrées, le nombre de ses couches et le nombre de nœuds pour chacune de ses couches.

3. RÉSULTATS ET DISCUSSIONS D'abord les données doivent être normalisées ou standardisées entre 0 et 1 pour apporter toutes les variables en proportion. Alors un traitement préalable des variables est indispensable pour la prise en compte des fortes et faibles valeurs et pour éviter ainsi la saturation de la fonction de transfert « sigmoïde » avec les valeurs importantes de données. Par conséquent le modèle donnera de meilleurs résultats après cette normalisation.

Ensuite, différents modèles (Tableau 1) sont testés sur le jeu de données en changeant chaque fois le vecteur entrée.

La réalisation de différentes architectures d'un modèle RNA, nous amènera à connaitre le modèle le plus performant. Dans cette étape de calcul nous avons choisi de lancer les simulations avec un pas de 1 neurone entre les vecteurs. La sortie est toujours le débit Q(t). Les entrées sont les différentes combinaisons entre les variables de pluie, débit et ETP.

Tableau 1. Différents modèles de RNA

Pour les modèles proposés, nous avons en prévision du Q(t). Ils assurent que les total 24 combinaisons différentes. Les données des pluies-débits antérieurs de la résultats trouvés ont de bons critères de station Méllègue K13 contiennent une performances (tableau 2). Ces critères quantité importante de valeurs indiquent que les différentes combinaisons informatives avec des RMSE minimales ont une bonne qualité vis-à-vis de la par rapport à celles des autres modèles.

www.crtean.org.tn 24 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

Tableau 2. Evaluation des différents modèles de RNA

L'évaluation de la modélisation RNA a été C'est un excellent modèle RNA de effectuée à partir des résultats de la prévision, il montre une capacité validation. Le tableau précèdent montre les remarquable pour la prévision des crues au différents résultats évalués selon les niveau de la station K13. Les résultats de la critères de performance numérique prévision des débits au niveau de la station (NASH, RMSE, MARE, et Cp). Pour une K13 pour ce modèle ont été évalués prévision de débit Q(t), le modèle ayant les graphiquement. La figure 3 présente une meilleurs critères de performance est le comparaison des débits observés. La phase modèle d'architecture (12-3-1) avec un analysée ici est la phase de validation (15% critère de NASH de 96.2% et une erreur aléatoire de la base de données de calage). RMSE égale à 0.05.

www.crtean.org.tn 25 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

Figure 3. Comparaison des débits observés et débits simulés

Une deuxième validation doit être appliqué de la phase de calage. Le tableau 3 présente à ce modèle afin d'évaluer la fiabilité de ce les résultats du modèle RNA sur la crue de dernier. Pour cela, nous avons appliqué Mai 2005. Les critères de performances l'architecture optimale du RNA (12-3-1) de déterminés dévoilent une bonne qualité de prévision des crues avec les poids de prévision RNA de débit Q(t). connexions inter-neuronaux calculés lors

Tableau 3. Deuxième validation du modèle

Les critères de performance du modèle allures des hydrogrammes des crues. La RNA retenu sont diminués, (Nash de 96.2% figure 4 illustre les résultats de la prévision à 94.7%) mais cette simulation reste de débit Q(t). Elle exprime une acceptable avec un coefficient de comparaison entre les débits observés et corrélation de 97% et avec un pouvoir ceux calculés par le modèle. remarquable de prévision des pics et des

www.crtean.org.tn 26 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

Figure 4. Comparaison des débits observés et débits simulés L'application directe du modèle de validation (avec 10% de la base de données prévision des crues RNA sur une base de de calage) indiquent que le modèle RNA a données extérieure à la base de calage une grande capacité de prédiction des montre une bonne stabilité des calculs en débits Q(t). Les résultats numériques et allant d'une base à une autre. En effet, une graphiques indiquent que la modélisation comparaison entre les critères de réalisée par le modèle RNA est satisfaisante performances calculés pour la première et admissible.

4. CONCLUSION La présente étude a pour objet, dans un premier temps, d'évaluer la technique de réseaux des neurones artificiels (RNA) dans la modélisation hydrologique et prévision des crues qui est un problème hydrologique ancien et difficile à résoudre.

Dans un second temps de développer un modèle opérationnel à base RNA basé sur des données hydro-climatologiques du bassin versant Méllègue. Ce modèle doit être fiable, rapide et simple d'usage pour garantir de meilleurs résultats de prédétermination des crues. Notre domaine d'expérimentation est la prévision des crues au niveau de la station hydrométrique Méllègue K13.

Cette prévision se fait en fonction des données pluvio-hydrométriques et des données de l'évapotranspiration au pas du temps mensuel. Pour atteindre cet objectif, une description de cadre physique du bassin versant Méllègue a été mené afin d'identifier les différents paramètres influençant leur fonctionnement hydrologique.

www.crtean.org.tn 27 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

Cette description a permis de comprendre la complexité résultante de l'intervention directe ou indirecte des paramètres physiques (topographie, et climatologique) dans le déroulement du phénomène hydrologique du bassin Méllègue. Une méthodologie sur la technique des réseaux de neurones artificiels (RNA) a été développée dans laquelle nous avons présenté les différentes étapes nécessaires pour la création des modèles RNA de prévision des crues ainsi l'optimisation de réseaux RNA afin de produire un modèle de fiable. Les réseaux de neurones artificiels (RNA) ont le pouvoir de dépasser les limites physique de système hydrologique.

En effet, l'application cette technique RNA à des données pluie-débit-ETP du bassin versant de Méllègue a produit un modèle RNA de prévision des crues fiable dont la difficulté est de fixé l'architecture optimale de ce dernier, ainsi que la détermination des neurones d'entrées qui est l'étape la plus sensible. Les modèles de prévision des crues produits pour la station Méllègue K13 ont été exploités sur une base de données extérieure à celle utilisée pour le calage. Ils sont gardés leurs capacités et leurs pouvoirs de modéliser correctement les évènements extrêmes. La technique de réseaux neuronaux a montré une capacité marquante de prévoir les débits au niveau de la station K13.

Nous avons évalué et pour la phase de calage 24 modèles proposés avec différentes architectures. Les résultats trouvés montrent que le modèle le plus performant parmi 24 modèles est celui des entrées Pluie-Débit antérieurs transformés avec une normalisation [0, 1] et avec une architecture optimale de RNA (12-3-1) comportant 12 neurones dans la couche d'entrée (6 en pluie et 6 en débit antérieurs), 3 neurones dans la couche cachée et un seul neurone qui est le débit Q(t) dans la couche de sortie. Ce modèle montre sa grande capacité à prévoir les débits extrêmes au niveau de la station Méllègue K13.

www.crtean.org.tn 28 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC MAPPING SOIL CHEMICAL PROPERTIES AND ARBUSCULAR MYCORRHIZAL FUNGI RICHNESS : A SOIL FERTILITY EVALUATION USING A SPATIAL INTERPOLATION METHOD ABSTRACT Soil chemical properties and arbuscular and indicating that soils are alkaline. 2/ a mycorrhizal fungi (AMF) richness are of high EC varying from 1.98 to 2.16 milli- big importance in the soil fertility Simens.cm-1 , with a isotropic spatial evaluation. Thus, spatial interpolation is distribution and suggesting that sampled required for analyzing their contribution on soils are very saline. 3/ low levels of OM, soil management. OC and AL ranging from 1.55 to 2%; from 0.9 to 1.13% and from 9 to 17.4% In this study, soil samples were collected respectively representing a low soil from a depth of 0-30 cm in the study field fertility. located in the North-Est of Tunisia. Spatial distribution of soil chemical characteristics The number of extracted AMF spores such as pH, electrical conductivity (EC), ranged from 41 to 57 spores.10 g-1 of soil active lime (AL), organic matter (OM), with an anisotropic spatial distribution. The organic (OC) and biological properties spatial variability of AMF spores density such as AMF spores density was studied. A showed negative relations between spores Map for each parameter was dressed. number and soil pH (r= -0.472, p<0.05), EC (r= -0.127) and AL (r= -0.504, p<0.05). Results highlighted an important intrinsic However, a positive correlation was variability of all studied soil parameters and observed between AMF spores number and showed: 1/ a high pH ranging from 7.75 to soil OM and OC levels (r= 0.286). 8.10, with a anisotropic spatial distribution

www.crtean.org.tn 29 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 1. INTRODUCTION Soil chemical properties and arbuscular mycorrhizal fungi (AMF) richness are of big importance for soil fertility evaluation in the sustainable agriculture. However, their determination is time, material and environment wasting.

Soils are very variable in the same region, the same farm and/or in the same bloc due to natural factors (climate, topography, biological activity…) and inducing factors (pasture, waste deposition, fertilization…) (Brown, 1999). Therefore, soil chemical properties spatial distribution is imperative for environmental management in arid and semi-arid region. In this region, soils are calcareous and with high pH showing a high risk of elements deficiencies such as phosphorus (P), potassium (K), zinc (Zn), iron (Fe)…(Fabian et al., 2014; Mao et al., 2014; Chandrasekaran et Ravisankar, 2015).

Arbuscular mycorrhizal fungi can form symbiosis with more than 80% of plant species. Their role on plant mineral and water nutrition and soil structure correction have been largely proved (Schreiner, 2005; Smith et al. 2015). In addition, the spatial distribution of AMF communities is significantly depending on soil properties (Alguacil et al., 2015; De Beenhower et al., 2015).

In addition, geomatic and geostatic which are precise geo-spatial techniques for natural resources management which are considered as a new tool in the modern agriculture (Cosandey et al,. 2003 ; Wang et al., 2006) . These techniques are time and environmental preserving.

In this study, we focused on mapping soil properties and AMF richness distribution for soil fertility evaluation. It may be considered as a new practical approach on soil management in the modern agriculture.

2. MATERIAL AND METHODS

2.1 Study area The study area is located in the North of Tunisia at 36°54'53.20'' of latitude (N), 10°03'55.42''of longitude (E) and 354 of altitude (m). The region is under a semi-arid climate. The experimental site is a ten years old peach (Prunus persica L. Batsch) orchard - variety Flordastar. All peach trees are grafted on the Garnem peach rootstock. The orchard surface is of 10000m2 .

For the four last years, the average rainfall and maximum temperature in the study area were 414mm and 35°C respectively.

www.crtean.org.tn 30 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 2.2 Soil sampling and analysis Soil sampling was established at the beginning of the blooming stage of the Flordastar peach trees variety (first of March). Nine peach trees were randomly chosen and considered as sampling points. Each point was geo-referenced using a GPS “Juno st Trimble”.

Soil samples were collected from four holes on each side of the tree at 30cm of depth. Each soil sample was divided on two fractions: the first fraction was air dried and then grinded and the second one was used for AMF spores extraction and richness determination.

All soil chemical parameters were determined according to methods sited by Pawels et al. (1992). The pH and the EC were determined for 1/2.5 and 1/5 water extracted soil solution using a pH meter and conductivimeter respectively. The rate of the active lime (AL) was determined by the calcium titration using a solution of potassium permanganate after soil reaction with ammonium oxalate.

Fresh soil samples were considered for spores extraction and numeration according to the Gerdman et Nicolson (1963) method.

2.3 Map making Maps for pH, EC, AL, OM and OC were drawn using the Inverse Distance weighting (IDW) interpolation method (Webster et Olivier, 2007).

3. RESULTS AND DISCUSSION

The maps of soil chemical pH_H2 O and EC spatial distribution are represented in Figure1. The AL and OM spatial distribution are represented in the Figure2 and the OC and AMF spores richness are illustrated in the Figure3.

Results showed an important intrinsic variability of all studied soil parameters. The soil orchard is alkaline, very saline with low levels of OM and OC and with high AL rates.

The measured soil pH for samples taken at 30cm of depth was very high and ranged from 7.75 to 8.10. This is indicating that soils are very alkaline (Hazelton et Murphy, 2007) with a high risk of iron deficiency occurrence which may affect vegetative growth, plant nutrition and yield production (Fabian et al., 2014). In the other hand, high soil pH may cause soil biological imbalance. The pH distribution is anisotropic showing an increase from the North to the West and the East of the orchard.

The soil EC ranged from 1.98 to 2.16milli-simens.cm-1 at 30cm of depth suggesting that studied soils are very saline (Chandrasekaran et Ravisankar, 2015) probably due to their richness on calcium and potassium (Kamble et al., 2014). Its distribution is centroïde showing higher salinity from the boundary to the centre of the orchard suggesting a negative interaction with the pH value as it was enounced by Nur Aini and al. (2014).

www.crtean.org.tn 31 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

(A)

(B)

Figure 1. (A) pH_H2 O spatial interpolation for soil at 30cm of depth; (B) Electrical conductivity (EC) interpolation for soil at 30cm-depth. Numbers indicate the sampling points. www.crtean.org.tn 32 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC The obtained AL concentration showed highest value ranging from 9 to 17 % at 30cm of depth. This may inhibit the symbiosis establishment between AMF and host plant. In fact, spores germination, hypha elongation and roots colonization are affected by high CaCO3 concentration (Labidi et al., 2011). In addition, the spatial distribution of the AL illustrates high variability and value raised on the orchard in the South and the North direction.

The OM and OC values ranged from 1.55 to 2.00 % and from 0.9 to 1.13% respectively showing that soils are with very low fertility.

(A) (B)

Figure 2. (A) Active lime (AL) spatial interpolation for soil at 30 cm of depth; (B) Organic matter (OM) interpolation for soil at 30cm ofdepth. Numbers indicate the sampling points.

The AMF spores density is low and varied from 41 to 57 spores.10g-1 of soil. This confirms results obtained by Mohammad et al. (2003) demonstrating that AMF density is low in arid regions. The spatial distribution demonstrated that AMF richness is significantly dependent on the pH. In fact, high pH enhances bacteria growth in favor to the fungi (Kamble et al., 2014).

www.crtean.org.tn 33 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

(A) (B)

Figure 3. (A) Organic carbon (OC) spatial interpolation for soil at 30cm of depth; (B) Spores density interpolation for soil at 30cm of depth. Numbers indicate the sampling points. 4. CONCLUSION The spatial representation of soil chemical properties and spores richness showed high spatial variation. This study represents a preliminary research which can be considered a new reference for soil management.

5. REFERENCES Alguacil, MM., Torrecillas E, Lozano Z and Roldàn A, 2015, Arbuscular mycorrhizal fungi communities in a coral cay system « Morrocoy », Venezuela and their relationship with environmental variables, Sciences of the total environmental, vol. 505, pp. 805-813.

Brown AJ, 1999, Soil sampling and sample handling for chemical analysis, in Peverill, K.I., Sparrow, L.A., Reuter, D.J. (eds.), Soil Analysis: An Interpretation Manual. CSIRO, Collingwood, Australia, pp. 35-53.

Chandrasekaran A et Ravisankar R, 2015, Spatial distribution of physico-chemical properties and function of heavy metals in soils of Yelagiri hills, Taminlnadu by energy dispersive X-ray florescence spectroscopy (EDXRF) with statistical approach, Spectrochimica Acta Part A: Molecular and biomolecular spectroscopy, vol. 150, pp. 586- 601. www.crtean.org.tn 34 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Cosandey AC, Guenat C, Bouzelboudjen M, Maître V and R Bovier, 2003, the modelling of soil-process functional units based on three-dimensional soil horizon cartography, with an exemple of denitrification in a riparian zone, Geoderma, vol. 112, pp. 111-129.

De Beenhower M, Van Geel M, Ceulemans T, Muleta D, Lievens B and Honnay O, 2015, Changing soil characteristics alter the arbuscular mycorrhizak fungi communities of Arabica coffee (Coffea Arabica) in Ethipia across a management intensity gradient, Soil biology and biochemistry, vol. 91, pp 133-139.

Fabian C, Reimann C, Fabian K, Brike M, Bartiz R and Haslinger E, 2014, The GEMAS Project Team. GEMAS: spatial distribution of the pH of European agricultural and grazing land soil, Applied geochemistry, vol. 48, pp 207-216.

Gerdemann, JW and Nicolson TH, 1963, Spores of mycorrhizal Endogone extracted from soil by wet sieving and decanting, Trans. Brit. Mycol. Soc., vol. 46, pp 235-244

Hazelton P and Murphy B, 2007, Interpreting Soil Test Results: What do all the Numbers Mean? CSIRO Publishing, Collinwood, Victoria

Kamble PN, Gaikwad VB, Kuchekar SR and Bååth, 2014, Microbial growth, bomoass, community structure and nutrient limitation in high pH and salinity soils from Paravaranagar (India), European journal of soil biology, vol. 65, pp 87-95.

Labidi S, Calonne M, Ben Jeddi F, Debiane D, Rezqui S, Laruelle F, Tisserant B, Grandmougin-Ferjani A and Sahraoui AL-H, 2011, Calcareous impact on arbuscular mycorrhizal fungus development and on lipid peroxidation in monoxenic roots, Phytochemistry, vol. 72, pp 2335-2341

Mao Y, Sang S, Liu S and Jia J, 2014, Spatial distribution of pH and organic matter in urban soils and its implications on site-specific land uses in Xuzhou, China, Comptes rendus biologie, vol. 337, pp 332-337 Mohammad MJ, Hamad SR and Malkawi HI, 2003, Population of arbuscular mycorrhizal fungi in semi-arid environment of Jordan as influenced by biotic and abiotic factors, Journal of arid environment, vol. 53, pp 409-417.

Nur Aini I, Ezrin MH and Aimrun W, 2014, Relationship between soil apparent electrical conductivity and pH value of Jawa Series in Oil Palm Plantation, Agriculture and agricultural science procedia, vol. 2, pp 199-206.

Pawels JM, Van Ranst E, Verloo M, and Mvondo Z.E. A, 1992, Manuel de Laboratoire de Pédologie. Méthodes d'analyses de sols et de plantes, équipement, gestion de stocks de verrerie et de produits chimiques, Publications Agricoles - 28. Administration Générale de la Coopération au Développement (AGCD), Bruxelles. www.crtean.org.tn 35 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Schreiner RP, 2005, Mycorrhizas and mineral acquisition in grapevines. In : Christensen L.P., Smart, D.R.. Proceedings of the soil environment and vine mineral nutrition symposium. American society for enology and Viticulture, Davis, pp 49-60

Smith SE, I Jakobsen, M Grønlund and Smith FA, 2011, Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition, Plant Physiology, vol. 156, pp 1050–1057.

Wang, XJ, Liu RM, Wang KY, Hu JD, Ye YB, Zhang SC, Xu FL and Tao S, 2006, Application of multivariate spatial analysis in scale-based distribution and source stydy of PAHs in the topsoil : an exemple from Tianjin, China, Environment and geology, vol. 49, pp 1208-1216.

Webster R and Olivier MA, 2007, Geostatistics for environmental scientists (2nd ed.) Chichester, England: Jhon Wiley and sons, Ltd.

www.crtean.org.tn 36 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC URBANISATION ET RISQUE D'INONDATION: LE CAS DE JEDDAH EN ARABIE SAOUDITE Faouzi AMEUR Faculty of Environmental Design, King Abdulaziz University, Saudi Arabia, [email protected] RÉSUMÉ L'Arabie Saoudite et selon la carte de classification mondiale de Koppen (Peel MC et al., 2007) se trouve dans une zone climatique aride caractérisée par une haute température et une précipitation inférieure à l'évapotranspiration. La plus grande partie des précipitations annuelles du pays se produit sous forme de quelques événements orageux intenses et de courte durée. Les dites précipitations se concentrent dans les régions Ouest et Sud-Ouest (région de Jeddah), et couvre la période qui s'étale entre le mois d'octobre et avril pouvant ainsi causer des risques d'inondations dans les centres urbains qui connaissent une forte concentration économique et démographiques. Parmi ces agglomérations, on cite la ville de Djeddah. Cette dernière a été secouée par de graves inondations soudaines ; deux grandes crues ont eu lieu en 2009, et en 2011. Les dégâts humains et matériels étaient considérables, puisque ces évènements ont causé la mort à des centaines de personnes, ont endommagé des milliers de bâtiments construits sur des bassins versants, qui, pourtant avaient les autorisations nécessaires. A partir de ces faits exceptionnels, les autorités publiques locales et nationales, ainsi que certains chercheurs ont mis l'accent sur ce phénomène, en vue de faire le diagnostic, pour essayer de trouver les solutions adéquates.

Dans ce contexte, l'analyse de la croissance urbaine de Jeddah peut apporter une contribution importante à la compréhension du phénomène de l'inondation dans cette ville.

ABSTRACT Saudi Arabia and according to the World classification map of Koppen (Peel MC et al., 2007) is in an arid climate zone characterized by high temperatures and less precipitation to evapotranspiration. Most of the annual rainfall in the country occurs in the form of some intense stormy events of short duration, it is concentrated in the West and Southwest regions where Jeddah is located. These rainfalls occur in the period that lies between the month of October and April and may cause floods in urban areas experiencing rapid economic and demographic concentrations. Among these urban areas we have Jeddah which was hit by severe flash floods in 2009 and 2011. The human and material damage was considerable, since these events have caused the death of hundreds of people, damaged thousands of buildings constructed in river basins, which though had the necessary permits. From these exceptional events, local and national authorities, and some researchers have focused on this phenomenon in order to make the diagnosis, to try to find appropriate solutions.

In this context, the analysis of Jeddah's urban growth can make an important contribution to the understanding of the phenomenon of flooding in this city. www.crtean.org.tn 37 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 1. INTRODUCTION Selon le rapport publié par la banque mondiale en 2012 (K Jha A., 2012), les inondations constituent les catastrophes naturelles les plus fréquentes. Leur nombre ne cesse d'augmenter.

Au cours des 20 dernières années, le nombre de victimes, les dégâts financiers et économiques et les coûts d'indemnisation des sinistres sont eux aussi en augmentation. Pour la seule année 2010, 1978 millions de gens ont été victimes d'inondation. De 1998 au 2010, les pertes totales ont dépassé 40 milliards de dollars. Les inondations frappent partout: campagnes, petits villages, bourgs, les villes, les mégalopoles et les zones métropolitaines. Il existe de réelles différence entre les inondations rurales et celles qui frappent les villes. Si les inondations en campagnes touchent généralement, les zones les plus vastes, et les victimes sont principalement parmi les plus pauvres. Les inondations urbaines sont plus coûteuses et plus difficile à gérer. En effet, les inondations urbaines ont leurs spécificités que les villes sont caractérisées par une grande concentration de population et de biens. Les dommages y sont donc plus importants et plus coûteux. Les impacts directs des grandes inondations constituent le plus gros risque pour la vie humaine et pour les biens. Les effets indirects, tels que la maladie, les problèmes alimentaires, le recul des possibilités d'éducation et la perte des moyens de subsistance, peuvent entamer la résistance des populations et contrecarrer les objectifs de développement. 2. ZONE D'ÉTUDE

2.1 Situation Géographique Jeddah, au Sud-Ouest de l'Arabie Saoudite (figure 1), est la plus grande ville portuaire de la mer Rouge et la deuxième ville d'Arabie Saoudite, après Riadh la capitale. Avec une population proche de 4 millions et un taux croissance annuelle de 3,5%, ce qui représente 14 % de la population de l'Arabie saoudite habitants, la ville bénéficie de plusieurs atouts économiques du fait surtout de sa position de transit vers les hauts lieux saint de l'Islam: La Mecque. L'été, cette métropole se transforme en capitale politique et en lieu de tourisme pour les Saoudiens

Figure 1. Carte de localisation de Jeddah

www.crtean.org.tn 38 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 2.2 Le Climat de Jeddah Jeddah est située dans une zone du climat désertique. Cette dernière est caractérisée par une sècheresse, une aridité presque permanente qui dure presque toute l'année. L'été torride est allongé dans la durée. Pendant, les mois les plus chauds de l'année, les températures les moyennes maximales dépassent souvent les 40°C et elles peuvent atteindre parfois les 50°C et les 53°C. La période hivernale a une faible importance. La température moyenne journalière (maximale et minimale) du mois le plus froid n'est jamais inférieure à 10°C. Quant aux précipitations, elles sont très faibles, imprévisibles ainsi que très irrégulières , mais elles peuvent être très intenses pendant les orages locaux (Mahmoud S et al., 1993).

Suite à des températures extrêmement élevées durant presque toute l'année, de l'atmosphère très sèche, des vents fréquents et réguliers ainsi que de l'exposition continue au soleil, l'évaporation y est très élevée.

3. LES INONDATIONS À JEDDAH: UNE RÉALITÉ Pendant longtemps, les habitants de la ville de Jeddah ont crû être en état de sécurité. Ils sentent tranquille, à l'abri de tout risque et de tout danger. Les événements hydroclimatiques de 2009 et 2011 viennent de bouleverser cette donnée.

En effet, des pluies torrentielles ont frappé la ville de Jeddah en Novembre 2009 et Janvier 2011. Elles ont duré que quelques heures et n'ont pas dépassé les 110 mm (Ahmed M. Youssef A et al., 2015). Elles ont créé des marées d'eau provenant des collines à l'Est (Al Saud, 2015) et se dirigeant vers l'Ouest. On assiste à une montée rapide et importante de niveau des cours d'eau. Les eaux qui viennent de montagnes portant des sédiments, des boues ainsi que des débris de roche. Les sédiments les plus lourds se déplacent vers le fond en roulant et les plus légers sont emportés par le courant en suspension dans l'eau augmentant l'énergie d'écoulement de l'eau courante provoquant des inondations déviatrices. Plusieurs cités ont été submergés à savoir la cité de l'Université, la cité Ennessim, la cité Beni Melik, etc. Les dommages ont été inattendus. Ces derniers peuvent être classés sous trois catégories : Les pertes humaines, les dommages matériels et les problèmes psychologiques.

3.1 Les Pertes Humaines Les inondations ont fait plusieurs morts. Les sources officielles telles que le ministère de l'intérieur et la défense civile parlent de 132 morts. Ce chiffre est confirmé par journal électronique Arab News (2012). Le journal " The Guardian" (2009) a indiqué qu'à 2009 seulement, des centaines de personnes ont étaient disparues. Le nombre exact des décès reste toujours inconnu. Lors des inondations de 2009, Un homme et trois enfants ont été emportés par un oued en crue. 200 autres personnes ont été secourues dans différentes zones de sa région, certaines par des hélicoptères de la protection civile.

www.crtean.org.tn 39 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 3.2 Les Dommages Matériels Au plus fort de la crise, l'eau s'est infiltrée dans plusieurs maisons. Selon un bilan officiel et lors les inondations de 2009, de milliers de familles ont perdu leurs habitations (Al Saud, 2010). Elles ont été hébergées dans des appartements meublés. 10.913 de voitures ont été détruites. Des centaines de voitures sont tombées en panne. Plusieurs routes sont bloquées et de tunnels ont été submergées. La circulation s'est arrêtée, Le trafic commercial a été paralysé. Les ventes dans quelques boutiques sont tombées environ à 60% (Le parisien, 2010).

3.3 Les Problèmes Psychologiques Après un retour à la vie normale, les victimes des inondations pourraient passer des années à combattre des effets psychologiques douloureux. Les questions telles que la perte d'objets personnels, les soucis financiers et la recherche d'un nouveau lieu de résidence peuvent provoquer l'apparition du syndrome de stress post-traumatique, de la dépression et de l'anxiété. Ces blessures psychologiques peuvent également comporter des conséquences physiques, comme l'insomnie, les maladies cardiaques et des gains ou des pertes excessives de poids. Ces effets psychologiques peuvent persister pendant au moins 15 ans après une catastrophe naturelle. 4. LE RÉGIME PLUVIOMÉTRIQUE DE JEDDAH

Figure 2. Cumul de précipitation annuelle à Jeddah de 1970 à 2014

Figure 3. Précipitation mensuelle à Jeddah de 1970 à 2014 www.crtean.org.tn 40 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC D'après les figures 2 et 3, on peut constater que le régime pluviométrique à Jeddah est caractérisé par une grande variabilité interannuelle (Daoudi, 2014). Cette dernière est marquée par une alternance entre des années humides à savoir en 1972, 1996, 2009 et 2011, des années sèches comme en 1975 et 1990. Quant à la saisonnalité des pluies et d'après la figure 3 on constate que les précipitations commencent au mois d'octobre et se terminent au mois d'avril et que le mois de novembre enregistre le maximum de précipitations. Ce climat est relatif aux climats des zones tempérées et méditerranéennes (Daoudi, 2014).

5. RISQUE ET URBANISATION Ces trente dernières années on assiste à des nombreux évènements endommageables, qui ont suscité un intérêt social grandissant pour la question des risques. Les villes semblent cependant concentrer et favoriser les risques. Il est clair que la variété des risques et l'expansion de l'urbanisation semblent synchrones et nous assistons à une croissance historique inédite tant des risques que de populations urbaines. La généralisation mondiale de l'urbanisation qui se traduit par une expansion spatiale, la concentration des effets humains, une complexité grandissante due à la multiplication des flux de toute nature et la croissance accrue des fonctions urbaines, augmente la vulnérabilité tant pour les hommes que pour les bien ( November V ,2002), L'urbanisation est aujourd'hui le principal facteur du risque. En effet, les risques urbains sont liés à la fois à un renforcement de densité d'occupation diversifiée et à une multiplication de toutes les formes d'échanges au sein de la ville avec les espaces voisins. La densité de la population contribue à l'augmentation des valeurs foncière ce qui explique en partie l'ampleur des dommages.

5.1. La ville d'un Lieu de Refuge à un Lieu de Danger et de Risque 5.1.1. La ville- Refuge (Reghezza M, 2006) La naissance des cités peut être pensée comme une réponse au besoin de sécurité des hommes, chacun peut vivre heureux et sentir protéger contre la violence» Pour Machiavel, la raison première et fondamentale de la constitution des sociétés et des villes, c'est l'impossibilité pour les hommes de résister à leurs semblables : « le peu de sûreté que les naturels trouvent à vivre dispersés, l'impossibilité pour chacun d'eux de résister isolément, soit à cause de leur situation, soit à cause du petit nombre, aux attaques de l'ennemi qui se présente, la difficulté de se réunir à temps à son approche, la nécessité alors d'abandonner la plupart de leurs retraites, qui deviennent le prix des assaillants : tels sont les motifs qui portent les premiers habitants d'un pays à bâtir des villes pour échapper à ces dangers. ». La ville constitue une rupture avec l'ordre naturel. Elle est le résultat de l'arrachement de l'homme de la nature et le lieu où les habitants et les paysans des alentours peuvent sentir protéger ainsi que de pérenniser son existence et ses lies. D'une manière générale la ville représente: - L'idéal d'ordre et de rationalité: l'ordre est vu comme l'expression de la rationalité humaine imposée au désordre du monde naturel. Il est la condition sans laquelle les hommes ne peuvent vivre ensemble. La ville est un monde policé, administré, où règnent la raison, donc la justice. Cette idée d'ordre est consubstantielle à l'idée de la ville. www.crtean.org.tn 41 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Au contraire la nature, volontiers assimilée au monde rurale, est l'espace sauvage du désordre et de la violence. - L'idéal de maîtrise de la nature: la ville est la forme par excellence de la maîtrise par l'homme de l'élément naturel, qu'il s'agisse des passions ou des forces de la nature. C'est le lieu où l'homme passe de l'état animal soumise aux caprices d'une nature sauvage et malveillante à l'état d'animal politique, d'être raison.

5.1.2. La ville est un Lieu de Danger et du Risque La ville a toujours connu des dangers qui ne lui étaient pas forcément propres, mais qui, du fait de la concentration des hommes, entraînaient des conséquences sans commune mesure avec celles que ces mêmes dangers pouvaient induire dans le monde rural. C'est en ce sens d'ailleurs que l'on pouvait parler de risque urbain. Jusqu'à l'époque moderne, trois dangers étaient récurrents au point d'être considérés comme des risques urbains spécifiques. Il s'agissait de l'incendie, de la famine (ou des disettes) et de l'épidémie. À ces risques s'ajoutaient l'inondation et de façon très ponctuelle, les séismes (Lisbonne en 1755) et le volcanisme (Pompéï en 79). En revanche, les dimensions restreintes de la plupart des organismes urbains expliquent que les autres grandes catastrophes naturelles (sécheresses, canicules, grêle, tempêtes, etc.) qui ont marqué régulièrement les campagnes n'ont provoqué en ville que des pertes restreintes. Enfin, la ville était le lieu d'agitations sporadiques: émeutes sociales, liées le plus souvent aux crises frumentaires, émeutes politiques. Les émeutes frumentaires pouvaient déstabiliser fortement le corps social et politique au-delà des simples limites territoriales de la ville.

Avec le progrès scientifique, les risques anciens sont progressivement maîtrisés. L'incendie devient peu à peu un accident. Si certains risques comme les risques sanitaires perdurent dans les couches les moins favorisées de la population, on ne les considère plus comme des risques urbains spécifiques, en dehors de quelques pathologies comme le saturnisme. En revanche, de nouveaux risques apparaissent en lien avec les nouvelles fonctions industrielles de la ville. Les risques industriels deviennent le danger urbain par excellence. À regarder de plus près, ces dangers apparaissent comme le fruit du progrès technique et technologique, le prix à payer pour le développement économique et humain dont la ville contemporaine a longtemps été le symbole, par opposition à une campagne perçue comme économiquement et culturellement arriérée. Mais la question que se pose est la suivante: ces dangers sont-ils principalement propres à la ville? On peut citer trois types de danger qui sont vus comme spécifiquement urbains à savoirs: - Les risques technologiques et en particuliers les risques industriels restent le risque urbain par excellence. - Les risques sanitaires et environnementaux: liés aux modes de vie urbains: pollutions, bruit, stress, stress, dégradation des paysages. - Les risques liés à la fracture du corps social il peut s'agir de violences sporadiques, qui rappellent les émeutes urbaines du passé, d'insécurité rampante prenant des formes diverses et aux personnes), d'actes terroristes, etc. www.crtean.org.tn 42 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Il apparaît que ces dangers ne sont pas spécifiquement urbains au sens strict : il existe des industries ailleurs qu'en ville. De même, les dangers sanitaires, environnementaux et sociétaux ne sont pas spécifiques à la ville. Mais ils sont associés à l'environnement urbain dans la mesure où c'est là qu'ils s'expriment avec le plus d'intensité, là où ils créent les perturbations plus importantes, là où les éléments qui leur donnent naissance sont vus comme spécifiquement urbains. Par opposition à ces dangers, l'aléa naturel semble étranger à la ville. Il s'agit de l'irruption de la nature en ville, alors même que la ville est pensée comme l'arrachement à la nature

5.2. L'Étalement Urbain D'une manière générale l'étalement urbain désigne le développement des surfaces urbanisées qui se manifeste par l'extension de tissu urbain. Il s'agit d'un processus de densification de territoire situé de plus en plus loin du cœur de la ville (Valy, 2010). Cet étalement urbain a touché particulièrement les zones inondables, augmentant la vulnérabilité face au risque d'inondation. Valérie Novembre (1994) considère qu'en milieu urbain les risques naturels ont tendance à avoir des conséquences plus lourdes catastrophes de toutes sortes. Jeddah ne fait pas exception.

Figure 4. Jeddah avant la destruction de ses murailles Figure 5. La veille ville de Jeddah (El Balad)

Figure 6. Étalement urbain de Jeddah www.crtean.org.tn 43 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Jeddah a été limité à la vieille ville connue sous le nom "El-Balad" (figure 5). Elle est caractérisée par une forte structure spatiale, fondée sur l'existence d'un centre, puissamment organisé autour de la mosquée. C'est là que sont rassemblées les principales activités économiques urbaines (marchés spécialisés, caravansérails où se tient le commerce de gros). L'avènement de la destruction des murailles de la ville (figure 4) va déclencher le processus d'étalement urbain de Jeddah. Depuis 1973 date qui marque l'augmentation des prix du pétrole et en quelques décennies, la ville de Jeddah va connaitre une extension urbaine rapide qui va entrainer des grands changements spatiaux (figure 6).

Désormais, Jeddah va se transformer d'une petite ville portuaire située au bord de la mer rouge et qui abrite moins de 40000 habitants à une métropole nationale qui compte aujourd'hui près de 4 millions de personnes. Mais cet étalement urbain de Jeddah est brutal . Il est caractérisé par des aménagements gourmands de l'espace et grignotant petit à petit les espaces libres des zones inondables. Dès lors, le processus hydrologique est perturbé, l'usage des sols est modifié et deviennent de plus en plus imperméables. Ainsi, la capacité d'infiltration est réduite et l'évacuation des eaux constitue une cause majeure. Population, logements, autres bâtiments, infrastructure des transports et industrie sont de plus en plus vulnérables aux risques d'inondation (figure 7)

Figure 7: Schéma explicatif sur la relation urbanisation et risque d'inondation 5.3. L'Qbsence d'une Culture de Risque chez les Décideurs de l'Aménagement Urbain Selon l'UNESCO (1982) « dans son sens le plus large, le culture peut aujourd'hui être considérée comme l'ensemble des traits distinctifs, spirituels et matériels, intellectuels et affectifs, qui caractérisent une société ou un groupe social. Elle englobe en outre les arts et les lettres, les modes de vie, les droits fondamentaux de l'être humain, les systèmes de valeurs, les traditions et les croyances ». Pour Sandrine Glatron (2003) « mentionner l'existence d'une culture des risques, c'est faire référence à un savoir, un bagage collectif commun à tous ceux qui appartiennent à une société : les membres de celle-ci auraient une manière particulière de concevoir le risque » Le terme de risque est apparu en Europe dans un contexte bien particulier, celui de l'essor du grand commerce vers l'Asie au XIIIème siècle et au XIVème siècle. De même les institutions de gestion des risques sont mises en place progressivement (Nancy Meschinet et Richemons, 2003). www.crtean.org.tn 44 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Dans le domaine des risques d'une manière générale et les risques hydrologiques d'une façon particulière, l'efficacité de prévention passe par une formation des acteurs de l'aménagement. Ces derniers élaborent et mettent en application des plans de prévention des risques naturels prévisibles à savoir les inondations. Ces plans ont pour objet en tant que besoin de : ? Délimiter les zones exposées aux risques. ? Délimiter les zones qui ne sont pas directement exposées aux risques ? Définir des mesures de prévention, de protection et de sauvegarde qui doivent être prises dans les zones à risque.

5.4. La Planification Urbaine et l'Absence d'une Politique de Prévention des Risques La ville de Jeddah a enregistré une expansion spatiale phénoménale. Cette urbanisation rapide, massive et dans tous les sens ne peut que susciter des graves problèmes des gestions, de fonctionnement et d'équipement. Pour y faire face, les autorités ont recours à la planification comme outil de prévision et d'anticipation (Gadou et Quazi M. A, 2009 ,Al Sulami, 2010). Selon Garba (2004) les différents plans directeurs élaborés ont réalisé faite décisions pour résoudre les problèmes visibles tel que la construction des bâtiments gouvernementaux et les routes de la ville). Pendant longtemps les aménageurs, les urbanistes et pouvoir publique ont ignoré le risque d'inondation dans tout le processus d'aménagement urbain (figures 8 et 9). Quant à la politique de planification urbaine de Jeddah elle est marquée par la centralisation et gérée par deux ministères. La première connue sous le nom de ministère des affaires municipales et rurales. Elle est chargée du développement de l'aspect physique de l'Arabie Saoudite. La deuxième porte le nom ministère de l'économie et de la planification. Elle s'occupe de développement économique du pays.

Figure 8. L'absence d'une protection de la zone Est Figure 9. La réalisation d'une digue de protection de Jeddah contre les inondations de 2009 et 2011 de la zone Est de Jeddah contre les inondations après les évènements de 2009 et 2011 CONCLUSION Ce n'est pas à cause des conditions naturelles que la ville de Jeddah se trouve de plus en plus vulnérable aux inondations, mais plutôt à l'absence de prise en compte des données climatiques (les données pluviométriques) lors de l'élaboration des plans d'extension de la ville. L'existence d'un risque naturel constitue une question essentielle d'aménagement du territoire (Beucher S, Rode S, 2009). La reconnaissance de risque d'inondation par l'ensemble des acteurs concernés par le développement de la ville de Jeddah, permettra de mieux gérer les futures situations critiques (Serrat Pierre et Calvet Mar, 1999). www.crtean.org.tn 45 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Bibliographie Al Sulami, M., 2010. La transformation socio-spatiale à Djeddah (Arabie saoudite). Thèse de doctorat en Géographie, Université Paris IV - Sorbonne, France, 563 pages

Bucher S, Rode S, 2009, L'aménagement des territoires face au risque d'inondation: regards croisés sur la Loire moyenne et le Val-de- Marne, M@ppemonde, N°94, http mappemonde.mgm./num22/ art09202.html

Magali Reghezza 2006, R´eflexions autour de la vuln´erabilit´e m´etropolitaine : la m´etropole parisienne face au risque de crue centennale, Thèse de doctorat en Géographie, Université de Nanterre - Paris X, France, 385 pages.

Mohamed DAOUDI,2014, Risque d'inondation et vulnérabilité de la ville de Djeddah, Arabie saoudite, Geo-Eco-Trop,vol 38, n°2, pp. 259-270

K Jha A, Bloch Robin et Lamond Jessica, 2012, Villes et inondations: Guide de gestion intégrée du risque d'inondation en zone urbaine pour le XXIe siècle; Banque mondiale, Washington, 66 pages.

November Valérie, 1994, Risques naturels et croissance urbaine : réflexion théorique sur la nature et le rôle du risque dans l'espace urbain, Revue de géographie alpine, vol 82, n°4, 1994. pp. 113-123.

Serrat Pierre et Calvet Mar, 1999, L'urbanisation d'une plaine inondable : le risque oublié ? La Salanque (Pyrénées-Orientales) face à la crue des 12 et 13 novembre 1999, Géocarrefour, vol. 75, n°3, 2000, p. 209-220

Valy Janique, 2010, Croissance urbaine et risque inondation en Bretagne., thèse de doctorat en géographie, université européenne de Bretagne, France, 544 pages

GLATRON S, 2003, Culture des risques, V. Moriniaux (dir.), Questions de géographie : les risques, Éditions du Temps M, France pp.71-87.

Meschinet de Richemond N, 2003, Statut et perception des catastrophes passées : vers une histoire géopolitique des risques naturels, Les Risques, Éd. du Temps, Nantes, France pp. 138-156.

Al Saud M 2015, Flood Control Management for the City and Surroundings of Jeddah, Saudi Arabia, The Springer Natural Hazards, 177 pages.

Al Saud M, 2010, Assessment of Flood Hazard of Jeddah Area 2009, Saudi Arabia, Journal of Water Resource and Protection, No 2, pp 839-847.

www.crtean.org.tn 46 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Ahmed M.Youssef, Saleh A. Sefry, Biswajeet Pradhan and Emad Abu Alfadail, 2015, Analysis on causes of flash flood in Jeddah city (Kingdom of Saudi Arabia) of 2009 and 2011 using multi-sensor remote sensing data and GIS, Geomatics, Natural Hazards and Risk, DOI: 10.1080/19475705.2015.1012750

Garba, S. B 2004, Managing urban growth and development in the Riyadh metropolitan area, Saudi Arabia Habitat International, vol 28, pp. 593–608 http://dx.doi.org/10.1016/j.habitatint.2003. Gadou Hisham M A and Quazi Akef M. A, 2009,Role of planning and management in promoting development: case study of Jeddah, Saudi Arabia, Journal of Engineering Sciences, Assiut University, Vol. 37, No. 1, pp.193 -215.

Mahmoud S, Aalyamani and Zekai S, 1993, Regional Variations of Monthly Rainfall Amounts in the Kingdom of Saudi Arabia, Hydrogeology Department, of Earth Sciences, King Abdulaziz University Jeddah, Kingdom of Saudi Arabia, earth science, vol 6, pp. 113-133

Peel MC, Finlayson BL, and McMahon TA, 2007, Updated world map of the Köppen Geiger climate classification., Hydrology Earth Syst Sci, vol 11, n°5, pp.633-644

UNESCO, 1982, World Conference on Cultural Policies, Mexico City, 6 August 1982

Arab News (2012), Jeddah flooding to be a thing of the pas, http://www.arabnews.com/editorial-jeddah-flooding-be-thing-past

The Guardien (2009), Jeddah flood deaths shame Saudi royal http://www.theguardian.com/, commentisfree/2009/dec03/ Jeddah-floods-sewage-al- saud

www.crtean.org.tn 47 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

AN AUTOMATIC TRANSITION FROM THE DESIGN OF THE SPATIAL DATA WAREHOUSE TO ITS IMPLEMENTATION

ABSTRACT Existing approaches in the literature have The principal steps are: (i) to use the not considered decision maker's formalism of the platform independent requirements in the design and the model to design the Spatial Data implementation of a Spatial Data Warehouse (ii) to describe the Warehouse. Furthermore, they do not implementation of the Spatial Data present formal methods based on existing Warehouse with the standard Model Driven standards to describe the design and the Architecture named platform specific implementation of a Spatial Data model and (iii) to pass automatically from Warehouse. Also, they don't describe a the design model to the implementation one logical model for a Spatial Data with the standard the Query View Warehouse. transformations.

In this paper, we adress a part of these A case study which applies the different limits and we propose an approach based on steps of our approach is presented. We models of the Model Driven Architecture to describe requirements of a sales manager transit automatically from the design of the who wants to analyze sales operations in S p a t i a l D a t a Wa r e h o u s e t o i t s stores situated 2 km around the airport. We i m p l e m e n t a t i o n . T h e m o d e l o f integrate the profile, the spatial and the implementation takes into account user descriptive needs of this decision Maker in requirements because it is automatically the design and the implementation model of generated from the design of the Spatial a Spatial Data Warehouse. Data Warehouse which integrates decision maker's requirements. Requirements An evaluation of the proposal is describe spatial and descriptive needs and described using the diffusion method to the user's profile. show the advantages and to discuss the results. Our aims are: (i) to model the Spatial Data Warehouse's implementation with a Keywords: Spatial Data Warehouse, standard method (ii) to integrate decision maker's requirements, design, automatically the spatial and the implementation, M odel Driven descriptive requirements in the Architecture, automatically generated, implementation of the Spatial Data Query View transformations, platform Warehouses (iii) to transit from the design independent model, platform specific of the Spatial Data Warehouse to the model. implementation which is based on the relational platform.

www.crtean.org.tn 48 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 1. INTRODUCTION Many approaches were proposed in the literature to design a Spatial Data Warehouse (SDW), but most of them did not propose standard framework and did not integrate spatial and non spatial decision maker's (DM) requirements to design and implement a SDW. The first attempt integrated spatial information and ensured correct aggregation over spatial measures (Bimonte et al., 2006a, 2006b, 2008).

Other works defined a multidimensional analysis tool that modelled spatial data in a SDW (Escribano et al., 2007; Gomez et al., 2007; Malinowski and Zimanyi, 2004, 2007). Alternatively, authors defined a query language (Da Silva et al., 2007; Stefanovic et al., 2000) that allowed the use of multidimensional and spatial and topological operators such as GeoMDQL (Rivest et al., 2001).

All these approaches did not define formal and standard transformations between the design and the implementation of SDWs in a specific platform. Moreover, they did not suggest an automatic transformation from the conceptual model to the possible logical representation. In addition, they did not consider needs related to the spatial DMs requirements.

Recently, some approaches have tried to overcome these limitations, mostly based on the standard framework of the Model Driven Architecture MDA. MDA provides a set of guidelines to structure specifications expressed as models. An alignment of multidimensional spatial model with MDA is proposed in Glorio and Trujillo (2008). As a conceptual model of a SDW, the second MDA model, the platform independent model (PIM), is used.

The same approach is extended (Glorio and Trujillo, 2009) to include spatial data at the SDW design level. It allows DM to define his geographical queries independently of the logical presentation. Mazon and Trujillo (2009) proposed to consider the DMs aims and defined (Glorio et al., 2010) some spatial elements describing the top DMs goals. In the same context, a case tool based on unified modelling language (UML) standard was used by Fidalgo and Cuzzocrea (2012) to model both spatial and non-spatial data in the SDW design. Cuzzocrea et al. (2011) focused on the use of transformations based on MDA to automatically generate the data and the analysis models.

These methods outlined some limits since they did not consider all DM's requirements in the design and the implementation of a SDW. To overcome these problems, Ezzedine et al proposed (2013) to include automatically DM's requirements in the design of the SDW using the standard model of MDA, the Computation Independent Model (CIM). Requirements are integrated by means of transformations which define some automatic rules between the requirements model and the design of a SDW.

www.crtean.org.tn 49 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Some works in the literature started with the idea of the integration spatial requirements of the user in the SDW construction. These approaches are stopped in the design stage (Ezzedine et al., 2015). The present work aims to generate automatically the implementation of SDW from the design of a SDW which integrates DM's requirements.

To reach this goal, we use the standard Query View Transformation (QVT) to transit from the design model, the PIM, to the implementation of SDW. The generated implementation model is expressed with the standard Platform Specific Model PSM. Necessary elements of the PIM appear in the work of Ezzedine et al. (2013).

This paper is organized as follows: in Section 2, we state the main steps of our approach. In Section 3, we describe the elements of the design model of a SDW. In section 4, we define classes of a relational platform. In section 5, we present the most relevant transformations between the design of the SDW and the implementation of the SDW. In Section 6, we illustrate the proposed approach through a case study dealing with an implementation of a SDW in relational platform. The SDW is related to a sales manager. Finally, we draw our conclusions and projects on our future work.

2. OVERVIEW OF THE PROPOSAL Several approaches provided conceptual models in order to obtain a SDW design and implementation. However, the study of the existing literature reveals that the integration of DMs requirements in the design and the implementation is not developed enough neither for descriptive nor spatial requirements (Ezzedine et al., 2010). (Ezzedine et al., 2014) proposed the first part of the integration of spatial needs in the design of SDW. The present approach consists in integrating spatial and non spatial requirements in the implementation of the SDW.

The proposed approach uses the standard model of the SDW's design, the PIM which is taken from(Ezzedine et al., 2014). Then, we develop some transformations to pass from PIM's classes to the PSM. The first process is achieved by using the formalism of the standard QVT of MDA in order to obtain formal, automatic and understandable transformations. The second one uses rules to pass from one Geographic PIM (Geo PIM) to the corresponding (Geo PSM).

Figure 1. Steps of the proposed approach www.crtean.org.tn 50 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC As shown in Figure 1. We can transit from the design model, GeoPIM, to different platforms. We choose in this paper to define transformations between the GeoPIM and the relational Platform.

3. GEOPIM DEFINITION In the proposed approach, the SDW design is presented by the Geo PIM. This model describes the conceptual level of a SDW and hides all details related to a specific platform or technology that can be used later to implement the system. Our work is based on the formalism defined by the PIM presented by Ezzedine et al. (2013). The most important and necessary stereotypes presented in this model are Facts ( ) and Dimensions ( ). The measure or the attribute presented in a Fact corresponds to FactAttribute ( ). With respect to dimensions, each aggregation level of a hierarchy is specified by classes stereotyped as Base ( ). The attributes corresponding to dimensions are stereotyped as Dimension Attribute ( ). A dimension has a description attribute stereotyped as Descriptor ( ). An association between Bases is stereotyped as Rolls-up to ( ).

The role R represents the direction in which the hierarchy rolls up, whereas D represents the direction in which the hierarchy drills down. The spatial level ( ). is introduced as a hierarchy level with the attribute Geometry. They also introduced the spatial measure to support multidimensional analysis for geometric objects. The same authors presented another element describing adjacent spatial objects. This element is stereotyped as Layer ( ).

Ezzedine et. al (2014) proposed to add to the design model the Spatial Hierarchy ( ). which introduce spatial objects when the DM update his model.

Geometric types (point, line, polygon and collection) are grouped in an enumeration element called GeometricTypes. We defined also all projection types in the enumeration element called ProjectionType such as Lambert and UTM. Thus, they present all the Presentation Formats as Raster and Vector in the enumeration element PresentationFormat. In addition, they describe System Coordinates Types as Cartesian Cylindrical Spherical Ellipsoidal and Cartographic.

They integrate requirements in the PIM model, such as the Spatial Cover fact, DM Characteristics, Application, Equipment, Presentation and Semantic dimensions. They

4. GEO PSM DEFINITION As shown in Figure 1, we can define different Geo PSMs for a Geo PIM. It depends on the implementation platform. In this work we model the GeoPSM with a geographic relational platform.

www.crtean.org.tn 51 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Figure 2 describes a Geo PSM based on the relational model. A relational model is composed of a set of relational table. A relational table has different columns which contain attributes. Among the columns, one is dedicated to primary key and others for foreign key if it is necessary. A primary key and foreign key are defined with the SQLType or GeoType.

A column contains Geographic Attributes (GeoAttribute) and non geographic attributes. GeoAttribute has a Geographic Type (GeoType).

Figure 2. Relational Geo PSM Definition

5. FORMAL TRANSFORMATIONS FROM GEO PIM TO GEO PSM Defining formal transformations allows to automatically deriving Geo PSMs from the Geo PIM. To perform transformations, we adopt the QVT with graphical notation that allows readable, understandable, adaptable and maintainable transformations. We use the QVT because it is the standard of MDA which allows transformations between models.

We present in this section 2 examples of transformations from the GeoPIM to the GeoPSM: DimensionAttribute2Attribute and Dimension2RelationalTable. The transformations are printed out in Figures 3 and 4. We do not provide a detailed description of each transformation, only the DimensionAttribute2Attribute relation is further explained. The remaining transformations are easily understood thanks to the readability of the QVT.

The graphical notation for the DimensionAttribute2Attribute relation can be seen in Figure 4. On the left hand side of this relation, we can see the source model, and the target model on the right hand side. The source model is the part of the Geo PIM that has to match with the part of the Geo PSM which presents the target model. In this case, we use a set of elements from the UML profile that represents the DimensionAttribute stereotype. The terminal level corresponds to the Attribute stereotype.

www.crtean.org.tn 52 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

Figure 3. Dimension2RelationalTable

Figure 4. DimensionAttribute2Attribute

This relation determines the transformation in the following way: it is checked (C arrow) that the pattern on the left side (source model) exists in the Geo PSM. The transformation subsequently enforces (E arrow) and the following stereotypes (and their associations) are created according to the Geo PSM.

6. CASE STUDY We apply in this section different proposed step. First of all, we choose a Geo PIM model related to a salesman that presents the DM in our case. The sales manager wants to analyze sales operations in stores situated 2 km around the airport.

Figure 5 presents the Geo PIM which integrates sales manager requirements. We use this model and QVT transformations to obtain automatically the Geo PSM model of the relational platform.

www.crtean.org.tn 53 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

Figure 5. The Geo PIM of the sales manager DM Figure 6 and figure 7 present 2 parts of the obtained Geo PSM after applying several relations.

The use of the proposed approach enables an automatic generation of the SDW implementation. The resulting Geo PSM integrates the entire DMs requirements existing in the design model.

Figure 6. Part 1 of the Geo PSM of the sales Figure 7. Part 2 of the Geo PSM of the sales www.crtean.org.tn 54 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC framework because it uses UML notation, the standard XMI and the MDA architecture. In addition, it integrates spatial attributes in the design and the implementation models. In our approach, we consider also the spatial and non spatial requirements of a DM. Only our approach enables an implementation by considering the requirements in a relational platform.

To evaluate this approach, we use an empirical evaluation of the proposed approach with the valuation method because it synthesizes the characteristics of all the evaluation approaches of an innovation.

The valuation method is defined on the basis of the diffusion Theory (Rogers; 1995) which examines the rate and the motivations of the adoption of a technological innovation by a group of potential users. The diffusion Theory demonstrates that the technological innovation has a chance to succeed if its quality is appreciated by the community of the users. The theory of diffusion defines five characteristics (Rogers; 1995) which would determine the adoption of a new technology: - The relative Advantage: the degree in which an innovation is perceived as being better than those who already exist. - The Compatibility: the degree of the approach's compatibility with the existing values and experiences of the users. - The complexity: shows the degree of the approach's complexity. - The Testability: consist in the possibility of testing and modifying an innovation before using it. - The Observability: the results and the profits of an innovation should be clear. When the profits of the adoption of the innovation are clear when users will adopt it easily.

On the basis of these attributes, an evaluation is performed focusing on the quality of the approach.

We choose to realize this evaluation with students specialized in computer science. During a session of course, we present them the approach in detail and through examples. In return, we ask them to supply a structured feedback concerning the appreciation of the proposed approach. On the basis of all the known criteria indicated, we develop a questionnaire of the approach.

The evaluation of the approach contains five questions. Question 1: Do you think that the adoption of the indicated approach can help to improve the design and the implementation phases of the SDW? Question 2: Is the described approach compatible and coherent with the existing practices shared in your discipline? Question 3: Do you think that the approach is difficult to understand and to use?

www.crtean.org.tn 55 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Question 4: Do you think that the approach supplies enough elements to be tested before adoption? Question 5: Do you think that the results of the application of the approach proposed at the level of the design and the implementation of SDW are visible? For every question, the student can choose among the following options to express their level of satisfaction: very satisfied (TS) / Satisfied (S) / unsatisfied (NS). The authors did not define voluntarily the neutral level to incite the students to express their judgment.

Generally, the proposed approach is considered effective and having high quality. We give, in what follows (Figure 8), an overview on the result of the evaluation.

Figure 8. Synopsis of the results

www.crtean.org.tn 56 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC The Criterion advantage: 45 % of the "Novice" students found that the approach presents an advantage in the improvement of the quality of the SDW due to a better guide and a good cover of the various aspects of SDW design and implementation. However, only 24 % of the "Expert" students judged the "not satisfaction" of this work.

The Criterion Compatibility: 54 % of the “Expert" students find that the adopted approach is not compatible with the way that they are used to design and develop DW and SDW. The discussions with the students who followed the session of presentation of the approach revealed that if 45 % of them consider that the approach is not compatible, it is because they had not knowledge on the formalism of the MDA.

The Criterion Complexity: only 30 % of the "Novice" students and 30 % of the "Expert" students answered "Unsatisfied". This justifies the ease of use of the proposed approach what makes possible it adoption by a large number of users.

The Criterion Testability: 33 % of the "Expert" students consider that the approach is "not satisfied" with this criterion; this is due to the limited number of users profiles used in the implementation.

The Criterion Observability: more than 60 % of the "Expert" and "Novice" students covered by the questionnaire were convinced of the results and the profits of the approach.

CONCLUSIONS AND FUTURE WORK An overview of the existing literature reveals that there are no methods which allow the automatic transition from the requirements model to the conceptual one and from the conceptual model to the SDW implementation.

On the basis of these limitations, we developed in this paper an approach allowing automatic transition from the conceptual level to the implementation level of SDW by the means of model transformations. This new implementation, automatically generated, is appropriate for a DM requirements and a specific platform.

The main contribution of this paper is to provide an implementation model for the SDW that can be adequate for spatial requirements of a DM. In addition, it provides an automatic integration of spatial and descriptive requirements in the SDW implementation without a DM intervention.

A case study is presented in order to demonstrate the feasibility of our proposal and the importance of the generated SDW implementation.

Our proposal can be generalised to cover others platforms such as Oracle platform.

www.crtean.org.tn 57 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC REFERENCES Bimonte, S., Tchounikine, A. and Bertolotto, M 2008, 'Integration of geographic information into multidimensional models', ICCSA, pp.316–329, 2008.

Bimonte, S., Tchounikine, A. and Miquel, M. 2006a, 'Geocube, a multidimensional model and navigation operators handling complex measures: application in spatial OLAP', Advances in Information Systems (ADVIS), pp.100–109, 2006.

Bimonte, S., Wehrle, P., Tchounikine, A. and Miquel, M 2006b, 'Gewolap: a web based spatial OLAP proposal', OTM Workshops, pp.1596–1605, 2006.

Cuzzocrea, A., Mazon, J., Trujillo, J. and Zubcoff, J 2011, 'Model-driven data mining engineering: from solution-driven implementations to 'composable' conceptual data mining models', Int. J. of Data Mining, Modelling and Management, vol. 3, no. 3, pp.217–251, viewed 12 February 2013.

Da Silva, J., Times, V.C., Salgado, A.C., Souza, C., do Nascimento Fidalgo, R. and de Oliveira, A.G 2007, 'Querying geographical data warehouses with GeoMDQL', SBBD, pp.223–237, 2007.

Escribano, A., Gomez, L., Kuijpers, B., and Vaisman A2007, 'Piet: a GIS-OLAP implementation', DOLAP '07: Proceedings of the ACM Tenth International Workshop on Data Warehousing and OLAP, pp.73–80, 2007.

Ezzedine, S., Turki, S.Y. and Faiz, S 2010, 'An approach based on model driven engineering for data integration in a spatial data warehouse', the 2010 International Arab Conference on Information Technology (ACIT'2010), 2010.

Ezzedine, S., Turki, S.Y. and Faiz, S 2013, 'An automatic transition from geographic CIM to Spatial Data Warehouse', IEEE - 2013 International Conference on Control, Decision and Information Technologies CODIT'13, 2013.

Ezzedine, S., Turki, S.Y. and Faiz, S2014, 'Enriching Dimension Hierarchies with Topological Relations to Improve the Development of Spatial', Data WarehouseThe Sixth International Conference on Advances in Databases, Knowledge, and Data Applications, DBKDA2014, 2014.

Ezzedine, S., Turki, S.Y. and Faiz, S2015, 'An approach based on the clustering of spatial requirements' models and MDA to design spatial data warehouses', Int. J. Data Mining, Modelling and Management, vol. 7, no. 4, pp.276–292, 20 January 2016.

Glorio, O. and Trujillo, J2008, 'An MDA approach for the development of spatial data warehouses', DaWaK '08, 2008. www.crtean.org.tn 58 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Glorio, O. and Trujillo, J2009, 'Designing Dhata warehouses for geographic OLAP querying by using MDA', ICCSA '09, 2009.

Malinowski, E. and Zimanyi, E 2004, 'Representing spatiality in a conceptual multidimensional model', GIS '04: Proceedings of the 12th Annual ACM International Workshop on Geographic Information Systems, pp.12–22, 2004.

Malinowski, E. and Zimanyi, E 2007, 'Implementing spatial data warehouse hierarchies in object-relational DBMSs', ICEIS, pp.186–191, 2007.

Mazon, J. and Trujillo, J 2009, 'A hybrid model driven development framework for the multidimensional modeling of data warehouses', SIGMOD, vol. 38, no. 2, pp.12–17, 2009.

Rivest, S., Bedard, Y. and Marchand, P 2001, 'Toward better support for spatial decision making: defining the characteristics of spatial on-line analytical processing (SOLAP)', Geomatica, vol. 55, no. 4, pp.539–555, viewed 20 March 2013.

www.crtean.org.tn 59 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

QUALITY ASSESSMENT OF BRDF MODIS PRODUCT AND THE EFFECT ON WATER VEGETATION MONITORING ABSTRACT

Monitoring of vegetation moisture is is achieved by local and adaptive fitting being an active research subject as the functions. Results of time-series vegetation vegetation spectral responses are showed to indices processing by TIMESAT had been be highly correlated to physical indicators analyzed in terms of profile variation of water content such as EWT “Equivalent within field plots. The corrections have Water Thickness”. The MODIS Terra been made first by spikes removal due to satellite provides MOD09A1 product of abrupt change of MVI variations. The BRDF used in computing moisture adaptive Savitsky Golay function filter vegetation indices MVI. The exploration of compared to local filtering process time-series of MVI showed important noise produces variations that conserve local that had to be removed. Amongst methods variations for all the tested MVI. The for removing these imperfections, correction of time series vegetation indices TIMESAT tool was designed for correcting derived from the BRDF product proves to time-series of satellite data. The be necessary as the regression coefficient methodology of smoothing functions to fit between MODIS vegetation indices and the the time series data is based on two stages. EWT computed at field scale was highly First, a least square fit to the upper envelope improved when the time series data are of the vegetation indices series is applied. corrected. The second stage of time series corrections

www.crtean.org.tn 60 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 1. INTRODUCTION MODIS bands 5 and 6 are well suited for canopy water monitoring because of the plant water sensitivity in these wavelengths combined with the high atmospheric water vapor transmittance (Fensholt and Sandholt, 2003). Monitoring of vegetation moisture is being an active research subject in various studies within natural and cultivated areas where the vegetation spectral responses are showed to be highly correlated to physical indicators of water content such as “Equivalent Water Thickness” (Gao and Goetz, 1995; Datt, 1999). Despite the wide use of MODIS sensors, many users reported that time-series MODIS products can be subject to errors due to gaps, clouds and noise (e.g. Atzberger et al., 2015; Yuan et al., 2011). An adequate use of this product require then a correction of time-series of remotely sensed data. Local fitting methods are based on surrounding value of data in a time-series determined by median smoothing approaches (Reed et al., 1994) or by Savitzky-Golay filter approach (Chen et al., 2004; Jönsson and Ek- lundh, 2004). Global approaches fit the data to long time scale of observations such as Fourier filtering. In the present study, local approaches are tested within the tool TIMESAT developed by Jönsson and Ek- lundh (2004). The objective of the present work is to make a time-series filtering of moisture vegetation indices MVI derived from the BRDF product MOD09A1 using the TIMESAT tool, and to evaluate the most performing filtering functions to make necessary corrections of the imperfections of the used data.

2. DATASETS AND BACKGROUNDS 2.1. MODIS datasets The studied region is the northern ecoregion of Tunisia known as the Kroumirie forest, belonging to the Mediterranean North African forests (Figure 1). A time-series of MODIS images of BRDF were downloaded from the website covering the period 2004-2010 from the online USGS Global Visualization Viewer (GloVis) (http://reverb.echo.nasa.gov/). The MOD09A1 product of bidirectional reflectance corresponds to 8 days with a spatial resolution of 500 m. Tiles covering North Africa region were clipped to the extent of Tunisia.

Figure 1. Localization of the Kroumirie study zone. www.crtean.org.tn 61 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 2.2. Water vegetation monitoring Monitoring of vegetation moisture is possible through moisture vegetation indices based on BRDF combination in the various spectral wavelengths. The most used MVI reported in the literature are (i) the NDWI: Normalized Difference Water Indice, (ii) the NDII: Normalized Difference Infrared Indices and (iii) the GVMI: Global Moisture Vegetation Indices. The expression of the various MVI are in Table 1 (for more details on the particularities and conditions of MVI use, refer to Chakroun et al., 2015).

The MVI from remote sensing are generally compared to filed-based measurements of vegetation water content during a vegetative season. The two most used expression are: the fuel moisture content (FMC) linking the water vegetation content to dry matter (in %); and the equivalent water thickness (EWT) quantifying the equivalent depth of water contained in the plants (in mm). In Chakroun et al. (2015), an expression of canopy EWT was proposed (equation 1) so that it is possible to search relations between MVI resulting from remote sensing BRDF processing and the field-based vegetation water estimation. EWT values were calculated for 7 sites where the water content had been measured during the period June-September 2010.

[1]

- 3 where ρw : density of pure water (1000 kg·m ); N :number of species in a site; FMCi - 1 - 2 (Fuel Moisture Content (%gH2 O·gC ); LMA i (Leaf Mass Area) (kgC·m ).

Table 1. Moisture vegetation indices from MODIS BRDF (MOD09A1)

3. TIMESAT smoothing TIMESAT software is dedicated to analyze time series satellite sensor data; it was developed in MATLAB and FORTRAN by Jönsson and Eklundh (2004). A free version of TIMESAT is available at (http://www.nateko.lu.se/TIMESAT/ ). The program package was designed primarily for analyzing time-series of satellite data and to extract seasonal information from any kind of time series. The program provides different smoothing functions to fit the time-series data.

www.crtean.org.tn 62 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 3.1. Methodological stages of TIMESAT The methodology of smoothing time series of vegetation indices by TIMESAT is based on three stages to accomplish the correction of the data. These steps are synthesized as follows: - The first step is based on a preliminary processing of data; it is applied to remove values of MVI corresponding to an abrupt change (spikes). - Secondly, a least square fits to the upper envelope of the MVI is used to overcome the fact that vegetation indices generated from remotely sensed data are negatively biased. - The third stage of time series corrections is achieved by one of the three filtering methods: (i) adaptive Savitsky-Golay function, (ii) local model Gaussian asymmetric function and (iii) local model double logistic function.

The filters in TIMESAT tool are of two types: (1) local model fitting based on minima and maxima and (2) adaptive filtering. In the first case, data are fitted to local model functions defined in intervals around maxima and minima in the time-series. The local fitting function uses two types of functions which are: the asymmetric Gaussian function and the double logistic function. The second method is known as the adaptive Savitzky-Golay filter (Press et al. 1994) and uses a linear combination of nearby values in a window to fit locally a polynomial functions by a least square method.

3.2. Setting of TIMESAT parameters The parameters that need to be set in the beginning of time-series filtering by TIMESAT are illustrated by the example of Figure 2. The main parameters that have to be specified are: - Amplitude cutoff value: time-series with smaller amplitude than the cutoff will not be processed (set to 0 to process all data). - Spike method: the median filter method assigns a zero weight to values that are substantially different from both the left and right-hand neighbors and from the median in a window. The difference from the median is measured in units of the standard deviation of the time-series that we set to 2 (“Spike Parameters” = 2). - Number of envelope iterations: this setting allows two additional fits where the weights of the values below the fitted curve is decreased forcing the fitted function toward the upper envelope. - Adaptation strength: this number indicates also the strength of the upper envelope adaptation. After some trials, we set the value 3 for envelope iterations and the strength adaptation was set to 2.

www.crtean.org.tn 63 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

Figure 2 . Setting of parameters for time-series filtering by local and adpative filters in TIMESAT tool

4. RESULTS AND DISCUSSION The moisture vegetation indices MVI had been calculated from BRDF product covering the time-series period from 2004 to 2010. Next, each vegetation indice has been processed in TIMESAT where local and adaptive filtering functions had been tested. For all the sites, we noticed that data variations become more continuous with elimination of spikes. Moreover, the results show that time-series of MVI were corrected to fit the upper envelop considering the hypothesis that vegetation indices are negatively biased as proved on NDVI by Chen et al. (2006). Figure 3 reports an example of filter effects on NDII6 profiles for the time-series 2004-2010. The adaptive Savitzky-Golay filter compared to local filtering process produce variations in time-series that conserve local variations for all the tested MVI.

The validation of smoothing effect by filters has been based on the comparison of MVI without and with Savitzky-Golay filtering when they are confronted to field derived variables such that EWT. For this, we extract from the MVI time-series values for the year 2010 where field measurements have been used in EWT calculation based on FMC measurements.

www.crtean.org.tn 64 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC We determined regression coefficients of the linear relation between MVI for both original time-series and filtered ones by adaptive Savitzky-Golay filter. Table 2 reports the regression coefficients between the canopy EWT determined for the 7 sites during the field campaign conducted in 2010, and the MVI corresponding to the same period calculated at a weekly frequency. For all the tested MVI, there has been an improvement of the R2 coefficients evaluating the linear regression between EWT and the MVI. For NDII6, NDII7, GVMI6, GVMI7, the R2 vary between 0.45 to 0.64 with no filter, and from 0.65 to 0.69 with SG filtering. The least R2 value was observed for NDWI calculated from the MODIS band B5 where regular strips were observed in displaying this band. For this moisture vegetation indice, the Savitzky-Golay filtering has improved the R2 coefficients from 0.03 to 0.39 which, despite this improvement, remains the lowest one amongst the tested MVI.

Table 2. Regression coefficients between EWT and various moisture vegetation indices within the field sites for the year 2010 with and without time-series filtering

www.crtean.org.tn 65 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

Figure 3. Time-series plot of original and filtered NDII6 values in Beni Mtir site. (a) FMT1: Adpative Savitsky-Golay function. (b) FMT2: Asymmetric Gaussian function; FMT3: Double logistic function.

www.crtean.org.tn 66 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 5. CONCLUSION AND FURTHER RECOMMENDATIONS This study presents the results of comparing MVI calculated from MODIS without and with corrections by filtering function in TIMESAT tool. All the tested filtering functions had eliminated spikes and the time-series data were fitted to the upper envelope thus overcoming the negative biases of vegetation indices. Amongst the three methods available in this tool, it has been shown that adaptive Savitzky- Golay method is more appropriate than the others because it simultaneously corrects the imperfections represented by spikes while keeping the variations due to a natural evolution of the vegetation indices. Regression coefficients had been improved for all the tested MVI. The NDII6, NDII7, GVMI6 and GVMI7 are showed to have the highest correlation with EWT calculated within experimental fields. For NDWI, the R2 coefficient does not exceed 0.39 despite the positive effect of filtering by Savitzky-Golay fitting function. More tests should be made to overpass the strip aspect observed in the band B5 of MODIS which has not been fully corrected by time-series filtering. Corrected time-series of MVI could be useful for water stress monitoring, evapotranspiration modeling and drought analysis.

REFERENCES Atzberger, C, Vuolo F, Klisch A, 2015, 'Use of MODIS temporal signatures for regional- scale land cover mapping and crop status monitoring: Activities at Buku University', in IGARSS, July 2015. Ceccato, P, Gobron, N, Flasse, S, Pinty, B, Tarantola, S, 2002, 'Designing a spectral Index to estimate vegetation water content from remote sensing data: Part 1. Theoretical approach', Remote Sensing of Environment, vol. 82, pp. 188-197. Chakroun, H, Mouillot, F, Hamdi, A, 2015, 'Regional equivalent water thickness modeling from remote sensing across a tree cover/LAI gradient in Mediterranean forests of Northern Tunisia', Remote Sensing, vol. 7, pp. 1937-1961. Chen, J, Jönsson, P, Tamura, M, Gu, Z, Matsushita, B, Eklundh, L, 2004, 'A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter', Remote Sensing of Environment, vol. 91, no. 3-4, pp. 332-344. Chen, JM, Deng, F, Chen, M, 2006, Locally adjusted cubic-spline capping for reconstructing seasonal trajectories of a satellite-derived surface parameter', IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 8, pp.2230-2238. Datt, B, 1999, 'Remote sensing of water content in eucalyptus leaves', Australian Journal of Botanics, vol. 47, pp. 909-923. Fensholt, F, Sandholt, I, 2003, 'Derivation of a shortwave infrared water stress Index from modis near and shortwave infrared data in a semiarid environment', Remote Sensing of Environment, vol. 87, pp. 111-121. Gao, BC, 1996, 'Ndwi - A normalized difference water index for remote sensing of vegetation liquid water from space', Remote Sensing of Environment, vol. 58, pp 257-266. Gao, BC, Goetz, AFH, 1995, 'Retrieval of equivalent water thickness and information related to biochemical components of vegetation canopies for AVIRIS data', Remote Sensing of Environment, vol. 52, pp. 155-162.

www.crtean.org.tn 67 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Hardisky, MA, Klemas, V., Smart, RM, 1983, 'The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of spartina alterniflora canopies', Photogrammetric Engineering and Remote Sensing, vol. 49, pp. 77-83. Jönsson, P & Eklundh, L, 2004, 'Timesat - a program for analyzing time-series of satellite sensor data', Computers and Geosciences, vol. 30, pp. 833-845. Reed, BC, Brown, JF, VanderZee, D, Loveland, TR, Merchant, JW, Ohlen, DO, 1994, 'Measuring phenological variability from satellite imagery', Journal of Vegetation Science, vol. 5, pp. 703-714. Savitzky, A & Golay, MJE, 1964, 'Smoothing and Differentiation of Data by Simplified Least Squares Procedures', Analytical Chemistry, vol. 36, pp. 1627-1639. Yuan, H, Dai, Y, Xiao, Z, Ji, D, Shangguan, W, 2011, 'Reprocessing the MODIS Leaf Area Index Products for Land Surface and Climate Modelling', Remote Sensing of Environment, vol. 15, no. 5, pp 1171-1187.

www.crtean.org.tn 68 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC STUDY OF TURBULENT FLOW THROUGH LARGE POROUS MEDIA Jouini Manel1 , Soualmia Amel 1 , Gerald Debenest 2 , Lucien Masbernat 2 1 Université de , Institut National Agronomique de Tunisie, Tunisie, [email protected] 2Fluids Mechanics Institute of Toulouse, France

ABSTRACT In New Caledonia, the mine tailings are were conducted at IMFT. In this paper we protected from flooding by ensuring the present our simulation results only for water flow through riprap. This study refers homogenous porous media made by to high velocity flow in rockfill. It has been spherical particle with mean diameter d= defined by the international firm of 1cm, It is observed that the porous media engineering consultants MECATER under presented a variation of the permeability in contract with the Nickel Company of different flow regimes. The main aim of ERAMET group in New Caledonia (SLN), this study is to restore the permeability to be carried at the National Agronomic variation curve as a function of the Institute of Tunis (INA Tunis) in Reynolds number and simulate the collaboration with the Fluids Mechanics experimental results by Forchheimer, Institute of Toulouse (IMF Toulouse). In Ergun and Barree and Conway relations. A the frame of this study, many experiments comparative analysis between these in different types of porous media and equations was presented. under different hydrodynamics conditions

www.crtean.org.tn 69 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 1. INTRODUCTION Turbulent flows in highly permeable environments such as blade breezes in the protection of beaches, barren rock storage…, make it a very interesting topic of research recently. A literature review showed that Darcy relationship is no longer valid for this type of flow (Soualmia et al. 2015; Cyprien 2012). Other researchers like Ergun, Forchheimer, Barree and Conway... have developed models to calculate the pressure drop concerning the inertial forces by integrating a second term on V2 in Darcy model (Barree & Conway 2004; Sano & Kuroiwa 2009). Each relation depends on physical parameters of the porous media such as permeability, porosity, particle shape.... But it has been shown that the permeability of the studied media is the most important parameter, since it is the most affected by the flow regime (Wang et al. 1998; Yi et al. 2013). The permeability depends so on Reynolds number; an experimental and theoretical study of this factor was carried out to restore the curve of permeability variation as a function of the Reynolds number. To do so various experiments were carried out with balls and homogeneous stones with a mean diameter d = 1cm.

2. LITTERATURE REVIEW Since Darcy's law is no longer valid for transient and turbulent flow in porous media, many authors proposed different relations of head loss calculation, each one depends on their own experimental results.

2.1 Forchheimer's model (1901) Forchheimer's model is among the first models proposed to calculate the pressure loss when the inertial effects are no longer negligible. It expresses the hydraulic gradient as the sum of two terms, one term is proportional to the speed to simulate Darciens flows, the other one is proportional to the square of the speed (in the case of turbulent flows with dominance of inertial forces) (Betao et al. 2012, Barree & Conway 2004):

(1)

Where c is a constant for a given structure, V is the fluid velocity, k is the apparent permeability, ν is the dynamic viscosity, and g is the gravity acceleration. If we express the length scaled depending on the intrinsic permeability by setting: n is the medium porosity. (2) Equation (1) is written as:

(3)

www.crtean.org.tn 70 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC J is the head loss. The friction coefficient cf introduced in the expression of the hydraulic gradient is thus given by: = −1 + cf R ep nc (4)

If the pore Reynolds number is large (Rep ), the flow is dominated by inertial effects and can even be fully turbulent, and the friction coefficient becomes independent of the Reynolds number, with cf =nc, but varies according to the porous structure.

Forchheimer equation has been the subject of numerous and theoretical studies in the case of porous medium with periodic structure in which the direct flow simulation allows the calculation of the parameters of the pressure drop relationship.

Hydraulic buried wicks are relied on a more empirical approach to the formulation of the loss, requiring experiences especially in highly complex structure riprap in circles.

To understand the phenomenon, it is necessary to study the medium permeability evolution as a function of the Reynolds number. To establish the curve of the permeability change depending on the Reynolds number, a pereametre which is described below was constructed to develop and interpret this curve.

2.2 The Ergun model (1952) Ergun in his model, expressed the pressure drop depending on the physical characteristics of the porous medium, and proposed the following relationship (Dukhan et al. 2014):

(5)

Where, L is the length of the porous medium, e is the porosity, d is the particle diameter, µ is the dynamic viscosity, and V is the average velocity. The Ergun relationship is like the Forchheimer one, it expresses the pressure loss as a function of two terms, the first one depends on V taking into account the viscosity and the second one depends on V2 taking into account the inertial forces. the Ergun model takes into account the laminar and turbulent flow terms. The difference between the Forchheimer model and the Ergun one, lies in the expression of the response of the physical characteristics of the medium analysis, in fact Ergun uses porosity and constants that depend on experimental conditions, while Forchheimer uses its own parameter F, and porous medium permeability.

www.crtean.org.tn 71 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 2.3 Barree and Conway model (2004) A general dimentionless model for head loss was proposed by Barree and Conway which normaly cover the totality of velocity flow ranges from darcy flow to fully turbulent flow. For very heigh velocity flow the model describe a constant permeability plateau, otherwise, it will converge for Forcheimer model. In their model, Barree and Conway expressed the apparent permeability as function of Reynold number by the following expression:

(6)

Where Kmr is the minimum permeability divided by the Darcy permeability (Kd ), as expressed below

(7)

V: the average velocity in the section, T: Barree and Conway constant expressed as the inverse of a length.

In their relation, Reynold number was expressed as function of T which has the dimension of a length inverse [1/L]. This parameter can depends on porous media's mean diameter d. It was expressed as follow:

(8)

They concluded that more interest must be given to study this parameter. And they determined it with non linear regression in their study.

The general proposed Barree and Conway model is expressed as:

(9)

www.crtean.org.tn 72 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 3. EXPERIMENTAL RESULTS 3.1 Experimental Setup The experiment set up is a cylindrical, permeameter it has a circular section with diameter of 67 cm and length L = 65 cm powered down by a fan providing a maximum flow rate of Q = 2000m3 / hr. This fan is attached to a divergent cone to ensure the air distribution throughout the porous medium.

The studied porous media is formed by homogeneous glass beads which mean diameter d = 1cm arranged over a length of 64 cm in the permeameter. The porosity of this medium was measured, n = 0.402. The measurement principle is to modify the air flow rate injected, and to measure the pressure difference between the inlet and the outlet of the porous media.

To reach very high velocity, we realized the same experiments with the same fan in another permeameter with lower diameter D= 10cm so we can obtain fully turbulent flow in the studied porous media. Flow velocity was determined using a hot wire manometer as we can see in the figure 2.

Figure 2. Second used permeameter Figure 1. First IMFT experimental set up and hot wire manometer www.crtean.org.tn 73 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 3.2 Determination of apparent permeability Kapp Kapp is determined by Darcy's law as following:

(10)

V is the flow velocity, ? p is the pressure head, µ is the dynamic viscosity of water and ? x is the wick longth. The following curve of variation of the permeability as a function of Reynolds number in homogenous porous media was obtained.

Figure 3. Experimental results of the permeability changes as a function of the Reynolds number.

The figure above shows that the Reynolds number for these experiments varied between 28 and 1100, it is then not in the Darcy flow regime. Hence the variation in the permeability as a function of Reynolds number. In fact the medium permeability decreases with the increasing of Reynolds number.

We obtained two different flow, transient flow for Reynold number 10

3.3 Simulation results with the Forchheimer, Ergun and Barree & Conway models In the literature in addition to the relations of Forchheimer and barree Conway (Barree &Conway 2004), there are also Ergun model (Sano et al. 2009; Dukhan et al. 2014) who proposed different head loss models in porous media. The permeability variation is plotted as a function of Reynolds number with these models (Fig 3). www.crtean.org.tn 74 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

Permeability is explained in the Forchheimer model as given bellow:

(11)

When it is explained by Ergun's model as:

(12)

A and B are Ergun's constant. Apparent permeability given by Barree and Conway model was given by equation (6). Different parameters for each relation were defined before.

Figure 4. The apparent permeability variation with the Reynolds number simulated by studied models.

The figure above shows a lag between the experimental results and those obtained by studied models, in fact it is shown that, Ergun and Forchheimer models gives the same results where as Barree and Conway model gives the nearest simulation results, we can observe the permeability plateau for Reynolds number bigger then 800.

www.crtean.org.tn 75 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC The table bellow presents different obtained values for each relation.

Table 1 : different simulation parameter

Each parameter of each relation was determined basing on our experimental results which explain the difference between our values and the literature values. Actually we are realizing experiments using a porous media made by pebbles whish mean diameter is d=15cm in another permeameter. A comparative study between these results and new ones will be done.

4. CONCLUSION Several research has been done on flow throught porous media at high Reynold number and several simulations models of these flow have been proposed; but the most used in the literature are those of Forchheimer and Ergun models. The range of validity of these models differs, indeed Barree and Conway in their study showed that the Forchheimer model has a validity limit, and does not determine the head loss for fully turbulent flows; while Ergun's model regards flows in porous media is consisting of homogeneous spherical particles. These empirical relations have been defined based on experimental results, so the coefficients of each model depend on the flow hydrodynamic conditions and especially the physical characteristics of the environment studied.

RÉFÉRENCES Amel .S, Manel .J, Lucien .M. & Denis .D, 2015, 'An analytical model for water profile calculations in free surface flows through rockfills', Journal of theoretical and applied mechanics 53(1): 209-215. Barree R. D. & Conway M. W, 2004, 'Beyond beta factors: A complete Model for Darcy, Forchheimer, and trans Forchheimer flow in porous media', SPE annual technical conference and exhibition, Houston, Texas, 1-8. U. S. A.

Bitao L., Jennifer L. & Yu-shu W, 2012, 'Non Darcy porous media flow according to the Baree and Conway model: laboratory and numerical modeling studies', SPE journal: 70- 79.

Cyprien S, 2012, 'Modélisation des écoulements dans les garnissages structurés : de l'échelle du pore à l'échelle de la colonne' Thèse de doctorat. Institut de mécanique de fluide de Toulouse.

www.crtean.org.tn 76 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Dukhan N. Bagci O. Ozdemir M, 2014, 'Experimental flow in various porous media and reconciliation of Forchheimer and Ergun relations', Experimental, thermal and fluid science 57: 425-433. Sano Y., Noguchi K. & Kuroiwa T, 2009, 'An experimental investigation into the effective permeability of porous media whose matrices are composed of obstacles of different sizes' The open transport phenomena journal 1: 15-19.

Wang X., Thauvin F. & Mohanty K, 1998, 'Non-Darcy flow through anisotropic porous media'. Journal of chemical engineering science, 54:1859-1869.

Yi .W, Shuyu .S. & Bo .Y, 2013, 'On Full-Tensor Permeabilities of Porous Media from numerical Solutions of the Navier-Stokes Equation', Advances in Mechanical Engineering 2013: 1-11.

www.crtean.org.tn 77 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC DEVELOPMENT OF WATER TURBIDITY INDEX (WTI) AND SEASONAL CHARACTERISTICS OF TURBIDITY DISTRIBUTION IN LAKE ICHKEUL, A SHALLOW BRACKISH LAKE, NORTHERN-EAST TUNISIA ABSTRACT In Tunisia, Ichkeul wetland registered as from the wetland bed. Moderate Resolution a natural world heritage site has the Imaging Spectro-radiometer, MODIS problem of ecological changes due to the images were used for the calculation of construction of the dams in upper WTI which indicates turbidity on the catchment area. The increment of salinity surface. Then, the data of wind speed were was induced by the decline of water surface compared with the turbidity distribution level and wetland bed level have increased estimated from WTI. the reverse gravity flow from the connecting bay as results of the reduction of The correlation between the developed freshwater supply and the increase of index and ground-truth (turbidity data suspended solid (SS) from the inflow measured) on the wetland surface was rivers. In the shallow wetland, it is found (R²= 0.66). The image classification supposed that a resuspension driven by of the created index was achieved using wind force contributes the balance of SS. statistical analysis methods. Under the However, the relationship between wind strong wind condition, the spread of high and resuspension of SS in the wetland was turbidity area grew on the surface gradually not observed before. was shown by the WTI. This latter needs further study to be used for the quantitative In this study, satellite image analysis water turbidity estimation of this shallow was applied in order to clarify the influence wind stressed water. of wind stress on the resuspension of SS

www.crtean.org.tn 78 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 1. INTRODUCTION In half a century, according to De Vente et al. (2005), the world's water storage in reservoirs, especially in arid and semi-arid environments, will be half of the current storage capacity, due to sedimentation processes, which will have large economic and environmental consequences. Thus, the significance of sediment resuspension of the fundamental factors governing the ecology of lakes is indisputable (Niemistö, 2008).

In Tunisia, the wetlands have been especially strong hydrological disturbances following the developments of watershed and climate change. Ichkeul Lake which is located in the extreme north of Tunisia, is one of the few wetlands in the world that is listed at three international lists as Biosphere Reserve (UNESCO, 1977), as part of the World Natural Heritage (UNESCO, 1979) and as a Wetland of International interest (Ramsar Convention, 1980).

The construction of dams on rivers contacting Ichkeul Lake increases the pressure on the wetland by reducing the quantity and quality of fresh water. On the one hand, this problem threatens the stability of the ecosystem while the water levels in the lake decrease continuously during drought seasons. Hence, strong winds enhance resuspension of the sediments. The most frequent winds blow from the WNW. During spring and summer, wind speeds are relatively constant, while they are highly variable in autumn and winter. Turbidity is higher during winter. Eutrophication and accumulation of sediments upstream of Tinja have been reported in the lake during periods when the sluice gate is closed (Ben M'Barek and Shimi, 2002).

As a result, in 1996 the site was registered as World Heritage in danger. In 2006, it was removed from this list following to the regeneration of its major ecological and hydrological components. Nowadays, the lack of rainfall in winter and autumn increase the sedimentation danger at the site.

On the other hand, sedimentation and resuspension rates in shallow waters can fluctuate rapidly, according to variations in factors such as wind direction, wind velocity, boat traffic, benthic animals while feeding and moving near to the bottom (but it is not the case in our study area), drainage basin as a result of soil erosion and decomposition of rocks and plants as well as from primary production, etc. Contrariwise, aquatic macrophytes reduce the sediment resuspension, since they depress wave action and hinder the stirring effect of benthivorous fish by lowering water flow velocity and stabilizing the sediment (Trabelsi et al., 2012).

In shallow water storage basins, sediment resuspension is often a direct result of surface wave activity (Trabelsi et al., 2012). A large proportion of wind energy can reach the bottom while occur waves, currents and turbulent oscillations. It occurs when the bottom shear stress exceeds a critical value that is specific to different types of sediment, water content and grain size. Fine particles and newly deposited material are resuspended more easily than larger particles or compacted one (Laenen and LeTourneau, 1996). 79 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Due to the ecological and economic value, the protection of wetlands from sedimentation by assessing the turbidity distribution is required. Traditional methods for suspended matter monitoring consist of using Secchi Disc to discuss the clarity of water column. Further measurements based on multi-parameter to record the rate of physic- chemical parameters in water. However, these methods are tedious, time consuming and in some cases impossible to achieve when water sluice became too shallow for the boat (Somanshi et al., 2011).

From the restricted military use to the civilian earth observation utility, the application of remote sensing techniques in the environmental field started from the 60's. For the purpose to make the collection of data possible from inaccessible areas as the case of Ichkeul Lake especially in summer season, for facilitating the observations and making them possible in a very short time and for large areas, in order to help acquiring quantitative as well as qualitative data, to provide permanently recorded and reproduced data at any time and replaces costly and slow data collection on the ground and ensuring that areas or objects are not disturbed while processing the data collection and dynamic measurement became possible to help in monitoring changes, the satellite imaging analysis prove to be as the promising tool for assessing water resource quality (Somvanshi et al., 2011).

Besides, satellite data analysis is well developed and has a sound basis in monitoring the crop flood damage (Yamagata et al., 1988), optical remote sensing analysis with the ground truth of chlorophyll in order to monitor water quality and the impact of industrial discharges in Golf of Gabes, using MODIS AQUA data (Katlane et al., 2012), estimating crop water deficit and monitoring land cover changes in semi-arid regions (Moran et al., 1994; Diouf et al., 2001), monitoring evapotranspiration over land surface and control of irrigation systems with wireless sensor network (Kustas et al., 1996; Nouri et al., 2013).

Figure 1. Flow chart of the adopted methodology in this work

www.crtean.org.tn 80 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Therefore, the increasing awareness in the field of water and environmental management then the desire to maintain water resources at their highest quality levels, make from the index developed in this paper with further enhancement as a useful tool in evaluating the turbidity and the quality in general of the lake and make it to be utilized for various beneficial uses.

Indeed, the Water Turbidity Index used by Kameyama et al. (2001) in Hokkaido, Japan for turbidity estimation on the mire surface during the snow-melting season, the assessment of suspended matter in water using optical remote sensing methods as the Normalized Difference Turbidity Index created by Somvanshi et al. (2011) are good examples for the utility of turbidity indicators .This work is carried out to estimate the suspended matter distribution on the surface of Ichkeul waters from the space as the study flow chart shown in Figure 1. In this study, the mapping of suspended matter distribution in our site is successfully done using the WTI from 2014 to 2015. This, allow decision makers to monitor the temporary change in Ichkeul Lake.

2. MATERIAL AND METHODS 2.1 Study area Ichkeul Lake is shallow water that covers over 87km2 at its summer minimum. It is located in North West, NW, of Tunisia and lies between 37°09.45'N and 09°04.01'E. The lake basin is very shallow with mean summer and winter depths of 1 and 2m, respectively. The south shore of Ichkeul Lake is dominated by a limestone mountain, Djebel Ichkeul (Figure 2). The ecological interest of this lake is taken from the high number of immigrating birds that nest and live from its wealth (4 migratory species from Central Europe and Holland: The Greylag Goose, widgeon, the Filigule Pochard and coot. By themselves, they represent 90% of the population consists of more than 50 species). Hence, Ichkeul belongs to international important sites for these species.

Moreover, the density of water birds is 5 to 7 times greater than that obtained in any other western basin of the Mediterranean (Guadalquivir, Ebro delta, the Camargue and the Languedoc-Roussillon lagoons).

In the hydrological context, six major rivers feed the lake, of which the , draining 580km2 of the southern Mogods, is the most important, accounting for 43% of the total water input. The rivers flood after the first winter rains, and with the exception of the Sejnane, dry completely during the summer season. Outflow from Ichkeul Lake drains via the Tinja River to Lagoon of Bizert. This river is exceptional because its flow is reversed in summer when the level of Ichkeul falls below that of Lagoon of Bizert. The contribution of Joumine, Douimis, Ghezella and Melah rivers in providing the lake with freshwater is not significant.

www.crtean.org.tn 81 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

Figure 2. The geographic location of Ichkeul Lake, the observed measurements of turbidity on 09/09/2015 and bathymetry of 1993

This reversal is caused by cessation of flow in the major input rivers and the high evaporation rate from the lake. As a consequence, salt water enters Ichkeul. About 340million m3 per year of freshwater was the initial storage capacity of the lake from the catchment when first measured (ANPE, 2009), but after the construction of dams (Joumine built in 1983; Ghezala in 1984; Sejnane in 1994) an important fraction of this flow is now diverted towards agriculture uses and human consumption.

As a consequence, between 1996 and 2003, damming and drought drastically diminished the freshwater supply (ANPE, 2009). To reduce the impacts of these dams, and therefore ensure the sustainability of the Ichkeul ecosystem, a sluice was built in 1993 at the outlet of the lake in Oued Tinja, allowing for the control of the water level and the net outflow. The sluice of Tinja operated for first time in April 1996 by closing its gates (Trabelsi, 2012).

Nowadays, rainfall rate is decreasing following to the global warming impacts otherwise the sedimentation is increasing when the gate is closed during winter season. This leads to the fluctuation of lake level and salinity throughout the year. Water levels are routinely recorded by National Agency of Protection of the Environment, ANPE, at Tinja station. According to ANPE in 2009, lake's water level increases during the rainy period (January to March), from less than 0.5m in drought years (e.g., 2000) up to 2.5m in rainy years (e.g. 2005), then drops to reach the initial reference level at the end of autumn.

www.crtean.org.tn 82 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Drought from 1999 to 2003 induced the rise of lake salinity to twice more than the seawater which is harmful for the trophic status of this natural resource.

2.2 Field survey The field measurements were carried out during the autumn season on September 9, 2015. The rate of turbidity distributed on the surface of Ichkeul Lake was using a multi- parameter water quality meter (AAQ12, JFE Advantech) with recording each sampling location by GPS. The location of observed data is illustrated in Figure 2. The bathymetry data, which was measured in 1993, was provided by ANPE. The water depth varied from 1.5m to 0.25m going from the center (deepest part) to the shores of the lake (Figure 2).

2.3 Moderate-resolution Imaging Spectro radiometer, MODIS Imagery remote sensing The rates of sedimentation and sediment resuspension are not, however, constant within a lake, but may show large temporal and spatial variations (Niemistö, 2008). Therefore, the estimation of the horizontal turbidity distribution on the surface of shallow wetland seems to be crucial. So, since the water level in Ichkeul Lake in summer season is getting lower than 1m deep, the accesses to shallow shores are obstructed and this hindered direct observations and measurements of turbidity. Thus, the use of remote sensing techniques is the best alternative to overcome this problem.

A common method is to relate remotely sensed reflectance measured by MODIS in the red portion (600–700nm) of the visible spectrum to parameters of water column, sediment or particulate matter concentration. The selection of satellite images data type depends on the purpose of the study, the accessibility and the availability of data. Wavelengths between 600 and 800nm were most useful for determining suspended sediments in surface waters (Ritchie et al., 1976). There is a positive correlation between suspended sediment concentration and spectral reflectance in the visible and near infrared wavelengths (Holyer, 1978; Alfoldi, 1982; Ratnadeep, 2012).

The suspended sediment concentration relationship with reflectance depends on many factors including physical and optical properties of the sediment type and sensor observation angle (Somvanshi et al., 2011). This approach is reasonably robust in coastal and inland waters because scattering from suspended materials frequently dominates the reflectance spectra when compared to pure water and phytoplankton absorption. As highlighted by Miller et al. (2004), 1-km spatial resolution data are often too large to examine coastal horizontal gradients, particularly in estuaries and bays. Despite, the high resolution of Landsat series of instruments (30m) is not useful for mapping water quality evolution since the Landsat yield a revisit time of about 16 days. Hence, Landsat sensors cannot capture the temporal dynamics of coastal waters.

www.crtean.org.tn 83 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Contrariwise, MODIS band 1 provides coverage in the red spectral region at sensitivity sufficient for coastal water studies. Therefore, the characteristics of MODIS band 1 data, such as its medium spatial resolution (250m), red band reflectance, high sensitivity, and near daily coverage, suggest that these images may be well suited for examining suspended particulates in coastal environments. Land and clouds were masked using an empirical threshold algorithm based on band 2 reflectance and images were visually inspected to insure that all pixels were free of sun glint. Atmospheric radiance was removed using a simple clear water (dark-pixel subtraction) technique.

MODIS data for this study were obtained directly from the NASA EOS Data Gateway (EDC). MODIS imagery was obtained for days corresponding to a period from August 2014 to September 2015. The data are stored as data granules in the HDF-EOS format (Miller et al., 2004). The Orbit of MODIS Terra (used in this work) is 705Km, sun synchronous, near polar nominal descending equatorial crossing at 10:30 local time. The MODIS imagery preprocessing is realized by multiplying maps by scale factor of 0, 0001 for the two first bands, red (RED) and near infrared (NIR). Thus, the latter images became ready to be processed and analyzed using Geographic Information System (GIS) software, ArcGIS 10.

2.4 WTI estimation model By analogy to the work of Jackson (1983), we arrive to get the suitable model for WTI. The number of dimensions (n) available in spectral space is the number of wavelength intervals (or bands) for which data are available. The number of spectral indices (m) that may be calculated is also equal to the number of bands (n). The n-space coefficients are unit vectors that give direction, and thus, vector notation is appropriate. However, the terms brightness as used by Kauth and Thomas (1976), will be used here to refer to the turbidity. So, to obtain the required index, an equation for a line through the soil data points must be derived. The extremum of two different water quality points, with differing considerably in reflectance preferred (e.g., turbid and clear water).

The differences between the maximum of reflectance (high turbid water) and the minimum of reflectance (low turbid or clear water) are:

www.crtean.org.tn 84 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 2.5 Statistical data Analysis On one hand, the water distribution index was estimated based on the model described in equation [4]. Using the ArcGIS, we could plot the WTI maps for each available MODIS image. The model validation was done through regression analysis. Based on the correlation between this index and the field survey data of 9th September 2015, we can considerate it as an indicator of water turbidity on the surface of our study area. Besides, the image analysis step was achieved by the use of clustering which is a common technique for statistical data analysis. This method helped us to categorize and classified the resulting images of the spatial distribution of WTI and Normalized Difference Vegetation Index, NDVI. The findings of this technique are shown in the next section of this work (Figure 4).

On the other hand, the combination of remote sensing data and climatic one is illustrated in Figure 5. At this level, we fixed a threshold of 3m/s for wind speed. The rainfall and water depth from January 2014 to the end of September 2015 were collected from the climatic station of Sidi Ahmed Air Base (37°14'42,00”N, 9°47'27,60”E) in Bizert and Tinja station respectively.

3. RESULTS The validation of this index is a key step to enhance its utility in estimating the turbidity distribution in Ichkeul Lake. Thus, we used the field survey data from September 2015 to plot the correlation graph below between WTI and the Ground Truth. The good linear correlation (R²=0.66) can help us to convert this index to the concentration rate of suspended matter (Figure 3). Further study, especially in the field is required to enhance this index. Besides, the correlation between observed data and NDVI reveals low relation between them only 18%. Thus, despite the latter index uses the same bands as WTI, it is obvious that it can only reflect the aquatic plant's absorption.

The Dendrogram resulting from clustering step indicates that we can group the data of WTI into 4 main groups (Figure 4) if we use 60 as linkage distance, 3 groups for 140 linkage distance and just 2 main groups for linkage distance more than 240. Hence, we compared the distribution of these groups within the time series variation of the climatic data and we realized that the groups 1 and 2 detected from the WTI are the same as the group 1 from NDVI. Also, the groups 4 and 5 have the same characteristics as group 4 of NDVI and the third group of each index is matched.

www.crtean.org.tn 85 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

Figure 3. The correlation between observed turbidity and the Water Turbidity Index, WTI

Figure 4. Dendrogram of clustering's result shows the classification of WTI via linkage distance (Euclidean Distance) using ward method

www.crtean.org.tn 86 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

Figure 5. Time series fluctuation of wind speed and precipitation from January 2014 to September 2015. It shows also the distribution of the clustering result groups of WTI and the phenology of the Potamogeton pectinatus Thus, we grouped the data into just 3 main groups according to the clustering results.

Indeed, group 1 is characterized by a wind speed variation between 2 and 8.5m/s, absence to low vegetation (transition phase between degeneration and maximum development) and relatively high water level. For the second group, the wind speed varies between 1.5 and 5.5m/s, the absence of vegetation (degeneration and seedling development phenology phase of Potamogeton pectinatus) and high water level (rainy season) represent the characteristics of this group. Finally, the last group which has the properties of the dry season: wind speed between 2 and 5.5m/s, maximum extension of vegetation and low water level (referring to Figure 4).

Besides, group 1 could be divided into 2 subgroups for finer analysis as shown in Figure 5. Comparing the results of cluster analysis and the scatter plots of the Sum of WTI and the wind speed, we can deduct that the WTI images could be classified into 4 main groups. Group 1 reflects the summer season distribution of WTI on the surface of Ichkeul Lake under high wind speed. Exceptionally, for the circled point, 5/06/2015 (referring to Figure 6 (a)), despite the wind speed is less than the threshold, we can register high turbidity data. This is could be the impact of rainfall at that day or could be the result of an error of time difference between the climatic data and the revisit time of the MODIS satellite. While the second group is characterized by wind speed between 2 and almost 6.5m/s and sum of turbidity is between 175 and 350. In this group, there are three points that intermix with third group. This can be the result of some errors (statistic, atmospheric correction error…).The 3rd and 4 th groups are easily distinguished and they have almost the same wind condition but the turbidity is different. www.crtean.org.tn 87 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC This is indeed the impact of the weather condition and the stability or not of the bed of Ichkeul Lake. Contrariwise, the scatter plot of sum of NDVI vs. wind speed shows that the classification into 4 groups as given by the dendrogram of the clustering analysis result for NDVI, is not easy using this graph (Figure 6 (b)). We can separate between group 4 and the others but the classification among the three first ones is not obvious. Thus, the turbidity could be considered as a good parameter for determining the water quality of shallow waters.

Figure 6. Scatter plots of (a) the sum of WTI, and (b) sum of NDVI (b) with the variation of the wind speed 4. DISCUSSION The vegetation absorption and the Suspended Sediments, SS, reflectance are two main parameters that describe the trophic status and quality of shallow waters. Holyer (1978) affirmed that the most accurately predicted indicator from the volume reflectance was the turbidity. Thus, this work focuses on the SS spatial distribution on the Ichkeul Lake surface for monitoring purposes.

Although there has been considerable effort to use remotely sensed images to provide synoptic maps of suspended matter, there are limited applications of this technology due in part to the low spatial resolution, long revisit period, or in the other part to the cost of the most remotely sensed data. Besides, the clouds and errors in atmospheric correction can affect the accuracy in Total Matter Sediments, TMS, estimation (Ruddick et al., 2008).

In contrast, near daily coverage of medium resolution data is available from the MODIS Terra instrument without charge from several data distribution gateways. However, the integration of remote sensing with in situ sample data leads to the creation of dynamic maps of different water quality parameters including turbidity and facilitates research (Molo et al., 1989). The index created in this work reflects the correlation between the scattering rate of light due to SS and the two sensitive bands (RED and NIR) of MODIS imagery. Indeed, this index maximizes both sensitivity of RED band and the analytical range of NIR band, multispectral approach (Holyer, 1978).

www.crtean.org.tn 88 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Moreover, Ratnadeep (2012) reported that exist three methods for extracting water information from remote sensing imagery such as single band reflectance, multiband reflectance and digital indices. He added that multiband method takes advantage of reflective difference of each band. The WTI of this work is also similar to the index created by Yamagata et al. (1988) in order to evaluate the Paddy Rice Flood Damage in Japan. The findings of this work can help in optimization of dredging of the clogged areas of the lake and assess of the environmental impact of offshore construction activities.

5. CONCLUSION The shallow wetland, Ichkeul Lake is wind-induced stressed water. Even, low change in the wind speed can affect its ecology and the quality of its water. As highlighted by Trabelsi et al. (2012), even small changes in climate can cause major impacts in arid areas, and sedimentation in the Ichkeul would likely be significantly affected by global warming. This impact is successfully shown in this work using MODIS imagery analysis.

Besides, from the statistical analysis, we can easily classified the WTI maps into 4 groups as it is found in the cluster analysis Dendrogram and we can affirm that the water turbidity index created in this work can be considered as an indicator of seasonal variation of turbidity of the lake with 66% accuracy . The inflow from the Rivers, suppling the lake with fresh water (e.g. Sejnane River), can play also a role in occurring the turbulence of the lake's water. In 2012, Trabelsi and the other authors suggested some solution to reduce the sedimentation impact in shallow lacustrine. The sustainable approach, combines the management of agro- and hydro-systems at the watershed scale, and includes soil bioengineering techniques, afforestation, grassed filter strips, revegetation and the development of sustainable agricultural practices which reduce runoff and soil erosion from agricultural lands.

Moreover, further studies can be done using higher resolution satellite data for the monitoring of water quality parameters of surface water (Somvanshi et al., 2011), using geostationary sensors for near complete daily data, automated quality control, vertical extrapolation and powerful algorithm for the atmospheric correction's step (Ruddick et al., 2008). Thus, remote sensing technology as part of this research provided a precise picture of turbidity, a water quality parameter and also facilitated the development of best management practice.

www.crtean.org.tn 89 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 6. REFERENCES Alfoldi, TT 1982, 'Remote Sensing for Water Quality Monitoring', Remote Sensing for Resource Management, America, pp. 317-328.

Ben M'Barek, N & Shimi, SN 2002, 'Evolution des paramètres physico-chimiques des eaux du lac Ichkeul après la realization des aménagements hydrauliques (Tunisie), Tunis'. EPCOWM International Symposium and Workshop on Environmental Pollution Control and Waste Management, (in French), pp. 20-27.

De Vent, J, Poesen, J & Verstraeten, G 2005, 'The application of semi quantitative methods and reservoir sedimentation rates for the prediction of basin sediment yield in Spain', J Hydrol 305, pp. 63-86. Diouf, A & Lambin, EF 2001, 'Monitoring land-cover changes in semi-arid regions: remote sensing data and field observations in the Ferlo, Senegal', Arid Environments, vol. 42, no. 2, pp. 99-110.

Jackson, RD 1983,' Spectral indices in n-space', Remote Sens Environ 13, pp.409-421.

Holyer, RJ 1978,'Toward Universal Multispectral Suspended Sediment Algorithms', Remote sensing of environment 7, pp. 323-338.

Kameyama, S, Yamagata, Y, Nakamura, F & Kaneko, M 2001, 'Development of WTI and turbidity estimation model using SMA application to Kushiro Mire, eastern Hokkaido, Japan', Remote sensing of Environment, vol.77, no. 1, pp.1-9.

Katlane, R, Dupouy, C & Zargouni, F 2012, ' Chlorophyll and Turbidity concentrations as index of water quality of the Gulf of Gabes from MODIS in 2009', Télédétection 11, pp. 265-273.

Kauth, RJ & Thomas, GS 1976, 'The tesseled cap-A graphic description of the spectral- temporal development of agriculture crops a seen by Landsat', LARS symposia, Perdue University, West Lafayatte, Indianna, pp. 41-51 .

Kustas, WP & Norman, JM 1996,' Use of remote sensing for evapotranspiration monitoring over lands surfaces', Hydrological Sciences 41(4), pp. 495-516.

Laenen, A & LeTourneau, AP 1996, 'Upper Klamath Basin nutriment-loading study estimation of Wind-Induced Resuspension of Bed Sediment during Periods of Low Lake Elevation, Portland, Oregon', Open-File Report, pp. 95-414.

www.crtean.org.tn 90 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Miller, R L & Mckee, BA 2004, 'Using MODIS Terra 250m imagery to map concentrations of total suspended matter in coastal waters, USA', Elsevier Remote sensing Environment, vol. 93, pp. 259-266.

Molo, VD, Piccazzo, M, Ramella, A, Giusto, DD & Vernazza, G 1989, 'Monitoring of coastal water quality through integration between 'in situ' measurements and remote sensing data, Luxembourg', Commission of the European communities, Directorate General for science Research and development, pp. 86-91.

Moran, MS, Clarke, TR, Inoue, Y& Vidal, A 1994,'Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index', Remote Sensing of Environment, vol.49, no.3, pp. 246-263.

Niemistö, J 2008, 'Sediment resuspension as a water quality regulator in Lakes', University of Helsinki Finland, Academic dissertation, p.47.

Nouri, H, Beecham, S, Kazemi, F & Hassanli, AM 2013,' A review of ET measurements techniques for estimating the water requirements of urban landscape vegetation', Urban Water Journal, 10(4), pp. 247-459 .

Ratnadeep, R, Sakti, M & Arijit, D 2012, 'Characterization and Mapping of Inland Wetland: A Case Study on Selected Bils on Nadia District', International Journal of Scientific and Research Publications, vol. 2, no. 12, pp. 2250-3153.

Ritchie, JC, Schiebe, FR & McHenry, JR 1976, 'Remote Sensing of suspended sediment in surface water', Photogrametric Engineering and Remote Sensing, vol.42, pp. 1539-1545.

Ruddick, K, Nechad, B, Neukermans, G, Park, Y, Doxaran, D, Sirjacobs, D & Beckers, JM 2008, 'Remote sensing of suspended particulates matter in turbid water: State of the Art and Future Perspectives', in Ocean Optics XIX conference, Barga, 6-10 October, 2008.

Shimomai, T, Endo, Y, Sakai, K, Sakuno, Y & Kozu, T 2010,'Near-Real time monitoring of coastal Lagoon Turbidity Distribution Using MODIS data , Kyoto Japan', International Archives of the Photogrammetry, Remote Sensing Spatial Information Science 38, Part 8.

Somvanshi, S, Kunwar, P, Singh, NB & Kachhawaha, TS 2011, 'Water Turbidity Assessment in Part of Gomti River Using High Resolution Google Earth's Quickbird satellite data, India', Geospatial word forum, Hyderabad, pp. 18-21.

Trabelsi, Y, Reguigui N, Mabit L & Abril, JM 2012, 'Recent sedimentation rates in Garaet El Ichkeul Lake, NW Tunisia, as affected by the construction of dams and a regulatory sluice', Journal of soils and sediments 12, pp. 784-769. www.crtean.org.tn 91 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

GIS APPLICATION FOR OPTIMIZATION OF HOUSEHOLD WASTE COLLECTION: CASE STUDY OF AL BOUSTEN DISTRICT IN COMMUNE OF SFAX Rim Sallem1 , Mohamed Jamel Rouis2 ,

1University of Sfax, Tunisia, [email protected] 2University of Sfax, Ecole nationale d'ingénieurs de Sfax, Tunisia,[email protected]

ABSTRACT In the waste management system, the garbage collection of household and transport account for 80% of total expenses of the system, thus constituting a pupil amount for the municipality.

It is therefore crucial to improve the collection and transportation system by routing optimization.

The Geographic Information System (GIS) provides an advanced modeling framework for policy makers to analyze and simulate various spatial problems, including waste management aspects.

In this study, a method for optimizing the waste collection system based on GIS technology is developed. A model in ArcGIS Network Analyst was developed for improving the effectiveness of collection in the district Al Bousten namely the reallocation of the household collection bins and optimizing vehicle tour in terms of distance and time. A case study of application of the method of household collection in the district Al Bousten is also presented. The optimal solution is estimated by the routing optimization algorithm called Adapted Dijkstra's Algorithm and the optimized route was compared with the current route.

Key-Words: Household, Collection, GIS, Network Analyst, Route optimization, Al Bousten district.

www.crtean.org.tn 92 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 1. INTRODUCTION Collection is one of the main parts of the process of solid waste management, which consists of production, collection, transportation, treatment and final disposal (Modak et al 1996).The household waste (HW) is waste collected in the collection framework organized by municipalities, resulting from domestic activity .They correspond to what is deposited in the regular garbage.The household waste (HW) include part no part recylee and recylee.

The household collection process is very complex and too expensive. It is estimated to absorb about 70% of the total cost of waste management, it is reasonable to consider that even small improvements in this area can lead to significant financial savings household waste collection and transport are provided at the individual municipality level.

The waste collection vehicles are affected area has no serious analysis; Road construction is left to the driver. The fundamental problem in the residential waste collection is to collect the waste from house to house as each street must be crossed by the collection truck during collection so an arc routing problem.

The Geographic Information System (GIS) is a useful and ingenious tool offering processing, manipulation and visualization of spatial data.Review of literatures show the popularity of Geographical Information System (GIS) for the route optimization studies. GIS is suitable tool for these kinds of study as it is capable to store, retrieve and analyze a large amount of data as well as outputs visualization in resoanable duration.

Fundamentally, GIS provides ne-based spatial analysis and application of ArcGIS Network Analyst, make the user able to dynamically model realistic network condition ns, including turns and height restrictions, one-way streets, speed limits, and variable travel speeds based on the local traffic Based on the investigation of literature review, the GIS spatial technique is a good decision support tool to implement for locating new bins in one of the main urban area Al Bousten district, in commune of Sfax.

The main objective of the study is to optimize the household collection system and collection routes in using GIS. The sub-objectives are as listed below: § To study the current waste collection process; its shortcomings and propose improvement to the system. § To work out proper allocation or reallocation of bins in terms of proximity convenience of the users and ease of collection by the concerned authorities.

www.crtean.org.tn 93 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 2. MATÉRIEL ET MÉTHODES 2.1. Case study area The study focused on the district Al Bousten, one of the seven most important districts of the commune of Sfax, is located near the down town of Sfax. It has a permanent population of 15707 inhabitants according to the census 2004 and a total area of 325h. The district Al Bousten composing of seven sectors and nineteen areas, was selected for its collective housing buildings 8 type 4 + R / + R 5 and the importance of trade and service activities. It a strategic area of the location standpoint compared to the city of Sfax. Thus we chose this area as presentative sample of the networks of the town of Sfax.

Figure1. Location of district Al Bousten as study area 2.2 Existing household waste collection system in district Al Bousten The household generation in the district is about 7000tonnes year. Waste collection is carried out mechanically using compaction trucks with 10tonnes average capacity. The crew size is three, a driver and a two worker who move and align the bins with the hydraulic lifting mechanism of the truck. The collection of household in the district Al Bousten is mainly done by private company. www.crtean.org.tn 94 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC The collected household are taken directly to the transfer station located 10km north of the district Al Bousten on the road to Sidi Mansour. The district Al Bousten is empirically divided into three sectors (collection zones) for ease of operation, which collection and transportation takes place every day including Sundays.

The served equivalent population in Sector 1 is 8.841 people, divided in 50 parcels and producing a waste total of 10300tn/day, according to the weighing sheets of the collection vehicles in the 2012. In the current waste collection system 53 bins are located in Sector 1, as follows: 48 of 360l and 5 of 750l.

Figure 2. Waste collection zones in district Al Bousten Figure 3. Current household waste collection scheme The present system of waste collection in the district El Bousten follows an uncoordinatead routine and schedule. Due to the lack of segregation practices, all types of waste produced are mixed and disposed in single bins leading to the filling upprovided bins within a short period of time. The vehicle collect and unload the bin one by one and thereafter the vehicle moves to the next stoppage and finally to the landfill site for final disposal. No norm is followed while deciding the capacity and placing of community bins, due to which some bins/pits remain overflowing.

2.3. Methodology GIS is a powerful tool for collecting , storing, retrieving at will, transforming , analyzing, and displaying spatial data from the real world for a particular set of purposes. This technique is used to generate optimal route for collecting household waste. Method is implementing in three steps. www.crtean.org.tn 95 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Step 1 develops the spatial database of the study area. Step 2 is dedicated to the reallocation of household waste collection bins. Step 3, finally, performs the optimization of routing for distance, with the use of ArcGIS Network Analyst GIS software.

Figure 4. Summary diagram of the methodological approach

www.crtean.org.tn 96 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 2.4 Data collect In cooperation with the Municipality of Sfax and nomena fieldwork, the following Data of household collection has been collected: 1. Study Area boundary. 2. Name of the roads and their width. 4. Number of storage bins and location. 5. Capacity bins. 6. Time required for the collection of solid waste per tray 7. Vehicle type and capacity. 8. Existing collection system 9. Schedule for the collection process. 10. Vehicle speed and fuel consumption.

2.5 Development of the geospatial database To optimize the collection process Geobase a given space has been designed and implemented using a standard environment GIS (ESRI ArcGIS). Table.1 The spatial database data type and corresponding geometry

2.6 Reallocation of the household collection bins (Proposed Model for the optimal allocation of Collec1tion Bins) A total of 53 collection bins are located in sector 1 of the district El Bousten, with capacities of 360 and 750l. There is no scientific method followed to allocate the bin. In order to enhance the current household waste collection services in the ward, the present work investigated the inadequacy of existing collection containers and their service areas. Adding an additional tray is required for each tray overflowing. Thus, initially, the number of necessary ferry was calculated on the basis of the generation of household waste per capita and population. It is given in the following equation. www.crtean.org.tn 97 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC N= W/(D*S*F1*CF)-----1

Where N = number of collection bins W = the total amount of waste generated per day in kilograms D = waste density in kg / m3 S = Size of trays in m3 F1 = average occupancy rate of Ben. (Typically 80%) CF = Collection Frequency

The need 19 for bins to absorb the excess overflowing bins. The majority circuit containers have a volume of 0,36m3 while the mountain part is formed by containers of lesser volume 0,75m3 . A sufficient number was assumed location of containers in locations which might serve the entire population. Each container covers some areas with a radius of 100 to 150 meters, the number / volume containers drop depends on the amount of waste by the area and the presence of a space. To calculate the volume of waste produced it was considered a density of 0.4 t / m3 . The volume of containers available shows the location of the containers which is the center of the circle and the perimeter covered by them.

Figure 5. Location existing collection bins Figure 6. Reallocation of waste collection bins

www.crtean.org.tn 98 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 2.7 Optimal Routing by Using Network Analyst After all the data were given as input, the optimum route for the collection of solid waste is generated using Network Analyst, an extension of Arc View GIS 9. The Arc View Network Analyst is an extension product designed to use networks more efficiently. It can solve common network problems on any theme containing lines that connect. Network Analyst can, 1. Find efficient travel routes. 2. Determine which facility or vehicle is closest. 3. Generate travel directions. 4. Find a service area around a sit.

The optimum route was generated based on two criteria (Lakshumi et al 2006). Distance criteria: The route is generated taking only into consideration the location of the refuse bins. The volume of traffic in the roads is not considered in this case.

Time criteria: The total travel time in each road segment should be considered as the: Total travel time in the route = runtime of the vehicle + solid waste collection time. The runtime of the vehicle is calculated by considering the length of the road and the speed of the vehicle in each road. Considering that this kind of garbage collection is always held during the night shift, the volume of traffic on roads is negligible, so that the results of Network Analyst were generated taking into account the distance criterion. ArcGIS Network Analyst extension allows us to find the shortest route through all containers for waste collection while simply showing their locations.

3. RESULTS AND DISCUSSIONS The optimum Route

Figure 7. Optimized circuit proposed by Network Analyst

www.crtean.org.tn 99 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

Figure 8. Road Analysis

Table 2. Comparison of the current route and the optimized route

Table shows the total distance traversed by a truck using the current route and the optimized route. The total distance of the current route is 34Km and the total distance of the optimized route is 28km. The study has been supplied a visual correction possibility on present collection route. This type of optimization trials helps to local waste managers by gaining fault correction skill.

www.crtean.org.tn 100 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 4. CONCLUSION This preliminary study made for a limited area to optimize Waste Collection in sector 1 Al Bousten the district of the town of Sfax. Using ArcGIS Network Analyst and Algorithm Dijkstra, the total distance was reduced from km per year. GIS-ArcView application for route optimization in Ipoh city has shown reasonable improvement in length of the routes and travel time minimization. Optimization conducted for shortest collection route provides 20% benefit from total distance. The consequences of reductions in travel time, total time and distance were cost savings related to fuel consumption, maintenance and labor.

These savings are strongly linked to fuel consumption. The results obtained from this pilot study are encouraging to expand the scope to cover entire city for optimization of the routes for solid waste collection. The proposed model also helps the municipal authorities in decision making process in the management of MSW. The study demonstrated the value of GIS technology as a waste collection optimisation tool, capable of guiding decision making.

Future work should focus sectorisation of wider waste collection areas, an important aspect of the collection procedure, based on spatial analysis rather than on empirical approaches, as well as adaptation of the collection system to the introduction of separate collection. The project was undertaken for improving the solid waste collection system in AL Bousten based on route optimization.

The result indicates that the application of GIS optimizes Solid Waste Management in terms of collection time reduction and distance travelled. These savings are highly related to fuel consumption. The study demonstrates the value of GIS technology as a waste collection optimization tool which provides an alternative method of minimizing operational costs of the collection vehicles.

Acknowledgments The authors would like to thank Mr Haj Taieb from the Municipality of Sfax for his valuable help in data collection phase of the stud

www.crtean.org.tn 101 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 5. REFERENCES Kedar Chimote, NCIPET-2012).Astashil Bhabhulkar Municipal Solid Waste (MSW) Collection by Geographical Information System (Gis) National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012).

F. Beijoco, V. Semião, Z. Zsigraiová Optimization of a municipal solid waste collection and transportation system

OGWUELEKA, T. 2009, june. Route optimization for solid waste collection: Onitsha (Nigeria) case study. J. Appl. Sci. Environ. Manage. Vol. 13(2), 37 - 40.

Dawa Zam, Sangay Jamtsho, Tshering Dema, And Jhulen Chettri optimization of solid waste collection and transportation route in phuentsholing city using GIS.

Nikolaos Kardimas 2007 “ Municipal solid collection of large items optimized with Arc GIS network analyst ”Proceedings 21st European Conference on Modelling and Simulation Ivan Zelinka, Zuzana Oplatková, Alessandra Orsoni,pp 1-6.

Chalkias, C., & Lasaridi, K. 2011, August 23. Benefits from GIS Based Modelling for

Solid Waste Management. (M. S. Kumar, Ed.) Integrated Waste Management, I, 417- 436.

O'Connor, D. L. (2013). Solid Waste Collection Vehicle Route Optimization for the City of Redlands, California (Master's thesis, University of Redlands). Retrieved from http://inspire.redlands.edu/gis_gradproj/201.

Karagiannidis A., Perkoulidis G., Erkut E., Tjandra S., 2006. « Optimization of urban solid waste collection through GIS use: A part implementation for the Municipalities of Panorama and Sikies”. 21st European Conference for ESRI Users.

Modak A., Everett, J.S., 1996. “Optimal regional scheduling of solid waste system. II: Model solution”, ASCE Journal of Environmental Engineering, 122 (9), 793-799 Musara Chipumuro Romeo Mawonike, and Tendai Makoni june2014.optimizing routing of residential solid waste collection: case study of chikova residential area in zimbabwe (. .

Christos chalkias, “Optimizing municipal solid waste collection using GIS”.

N.P. Thanh, 2009 “GIS application for estimating the current status and improvement on municipal solid waste collection and transport system: Case study at Can Tho city, Vietnam”, Asian Journal on Energy and Environment, pp 108-121.

www.crtean.org.tn 102 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC ETUDE COMPARATIVE DE DEUX MÉTHODES POUR LA MODÉLISATION DES RUISSELLEMENTS DES EAUX DE SURFACE : CAS DU BASSIN TRANSFRONTALIER TUNISO-ALGÉRIEN DE L'OUED SARRAT Amine Zaouech 1 ,Issam Nouiri 1 , Larbi Djabri 2 , Jamila Tarhouni 1 1 Université de Carthage, Institut National Agronomique de Tunisie, Tunisie, [email protected] ; [email protected] 2 Université Annaba, Algérie RÉSUMÉ Ce travail a porté sur la mise en application de la méthode de calcul des ruissellements des eaux de surface élaborée par le service de conservation des sols du ministère d'agriculture des Etats Unies, « The curve number method » appelée « SCS-CN » dans un contexte semi- aride Tuniso-Algérien (Bassin versant Serrat) et la comparaison de ses résultats avec la méthode du coefficient simplifié utilisé par le logiciel « Water Evaluation and Planning » (WEAP). Il est aussi visé par ce travail l'évaluation des performances des deux méthodes par rapport aux observations de terrain.

La méthode du SCS-CN consiste en la superposition des cartes d'occupation et le type de sol. La nouvelle couche obtenue par intersection est constituée de polygones représentant la variation spatiale du type de sol et de l'utilisation des terres. Les tables standards de la méthode permettent de déterminer le CN de chaque type d'intersection. On obtient ainsi la répartition spatiale du CN permettant de calculer le CN pondéré pour la zone d'étude, à la base du calcul du potentiel de rétention maximale (S) et l'abstraction initiale (Ia).

La zone d'étude est située au Centre-Ouest de la Tunisie (Gouvernorats du Kef et de Kasserine) dont une parie appartient au territoire Algérien (wilaya de Tbessa). Sa superficie est d'environ 2000 km² de relief peu accidenté et des pentes assez faibles. L'étage bioclimatique est le semi-aride avec des précipitations moyennes annuelles qui varient de 320 à 450 mm.

Les résultats des six (6) évènements pluviométriques étudiés ont montré que la méthode du SCS-CN peut donner des résultats plus précis que la méthode du coefficient simplifié qui dépend des conditions climatiques pour calculer les besoins des cultures.

La programmation de la méthode dans l'environnement de calcul WEAP peut constituer une perspective de développement enrichissante pour les hydrologues et les gestionnaires des ressources en eau. Ceci demandera de nouvelles fonctionnalités de WEAP orientées vers les systèmes d'information géographique (SIG).

Mots clés : Ruissellement des eaux de surface, modélisation, SCS-CN, coefficient simplifié, WEAP, comparaison. www.crtean.org.tn 103 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC ABSTRACT This work has focused on the implementation of the method for calculating surface runoff developed by the Soil Conservation Service of the Agriculture Ministry of the United States, "The curve number method" called "SCS-CN" in a semiarid Tunisian-Algerian context (watershed Serrat) and comparing its results with the method of the simplified cofficient used by the software "Water Evaluation and Planning" (WEAP). It is also covered by this work evaluating the performance of the two methods compared with field observations.

The SCS-CN method involves the superposition of the land use and soil type maps. The new layer obtained by intersection consists of polygons representing the spatial variation of soil type and land use. Standard tables of the method used to determine the CN of each type of intersection. This gives CN spatial distribution for calculating the weighted CN for the study area, the basis for calculating the potential maximum retention (S) and the initial abstraction (Ia).

The study area is located in west-central Tunisia (Governorates of Kef and Kasserine), a bet up to the Algerian territory (wilaya Tbessa). Its area is about 2000 km² of flat terrain and relatively gentle slopes. The bioclimatic is semi-arid with annual rainfall ranging from 320 to 450 mm.

The results of six (6) studied rainfall events have shown that the SCS-CN method can give more accurate results than the simplified coefficient method which only depends on climatic conditions to calculate the crop needs.

The programming method in the computing environment WEAP can be a rewarding prospect of development for hydrologists and water resource managers. This will require new features of WEAP oriented geographic information systems (GIS).

Keywords: runoff of surface waters, modeling, SCS-CN, simplified coefficient, WEAP comparison.

www.crtean.org.tn 104 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 1. INTRODUCTION La comparaison entre deux méthodes de calcul pluie-débit par rapport aux valeurs de jaugeage mesurées sur le cours d'eau principal (Sarrat) a pour objectif l'évaluation des performances de chaque méthode. La méthode du coefficient simplifié utilisé par le logiciel WEAP tient compte uniquement des facteurs climatiques pour calculer l'ETP comme fraction non ruisselée.

La méthode SCS-CN est l'une des méthodes les plus connues pour le calcul des ruissellements pour un évènement pluviométrique donné. Cette approche nécessite l'utilisation d'une simple formule empirique et la consultation des tables et des courbes standards. Une valeur importante d'un « Curve Number » (CN) correspond à un fort ruissellement et une faible infiltration (zones urbaines), par contre une faible valeur de CN correspond à un faible ruissellement et une forte infiltration (sols secs). Le CN est un nombre qui dépend de l'occupation de sol et de la classe hydrologique de sol (HSG). La méthode SCS-CN offre une façon rapide pour l'estimation du changement de ruissellement résultant d'un changement de l'occupation de sol. (Shrestha 2003 ; Zhan and Huang, 2004).

La méthode traditionnelle de calcul du CN composé à partir des tables et courbes standards est fastidieuse et lente. Pour dépasser cette difficulté, le système d'information géographique et la méthode SCS-CN sont combinés pour faciliter le calcul du « Curve Number » composé. (Zhang et Huang, 2004 ; Xu, 2006).

Cette dernière a été le sujet de plusieurs travaux de recherche afin d'évaluer sa performance vu la simplicité de son application. La méthodologie a été incluse dans plusieurs modèles hydrologiques, tels que : HEC- 1 et HEC- HMS, WMS, SWAT (Arnold et al. 1996) ,EPIC (Williams 1995) ; AGNPS (Young et al., 1989 ) ; GLEAMS (Leonard et al., 1987 ).

Dans cette étude, l'utilité des systèmes d'information géographique (SIG) se résume à la caractérisation physique du bassin versant (délimitation automatique, réseau hydrographique, pentes, caractéristiques morphologiques…) ainsi au calcul des CN composés qui sont la moyenne pondérée (en fonction de la superficie) des CN pour chaque sous bassin versant.

L'affectation automatique des valeurs CN pour chaque combinaison type de sol et occupation de sol est beaucoup plus facile en utilisant les SIG qui permettent ensuite de corriger ces paramètres en fonction d'autres (états d'humidité de sol, pente…).

Afin d'évaluer la performance des deux méthodes en question, on a considéré six évènements pluviométriques distincts et on a comparé les résultats simulés par les deux méthodes de calcul avec les valeurs mesurées par la station de jaugeage puis on a calculé l'erreur (déviation en %).

www.crtean.org.tn 105 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 2. CAS D'ÉTUDE Le Bassin Versant de l'Oued Sarrat comme présenté par la figure 1, est localisé au centre- ouest de Tunisie. Il s'agit d'un bassin versant transfrontalier appartenant partiellement aux gouvernorats du Kef et de Kasserine (Tunisie) et à la Wilaya de Tebessa (Algérie). Il est situé entre les latitudes 35°30' et 36° Nord et les longitudes 8°15 et 9° Est. La zone d'étude est composé d'une partie amont drainée par l'oued Haidra et ses affluents et d'une partie aval drainée par l'oued Sarrat et ses affluents. L'oued Sarrat déverse dans l'oued Mellegue qui est le principal affluent de l'oued Medjerda qui tous prennent leurs sources en Algérie. Sur le plan de découpage administratif, huit délégations couvrent dans leur totalité ou partiellement la zone. Il s'agit de Haidra,Djedliane, une grande partie de la délégation de Thala et pour le gouvernorat de Kasserine au sud de la zone d'étude et les délégations de Djerisa, Kalaa Khasba , Kalaat Senane et (en partie) pour le gouvernorat du kef qui se situe au nord.

Figure1 : Localisation Géographique de la zone d'étude

Le bassin versant de l'oued Sarrat appartient à l'étage semi-aride avec une dominance du semi-aride inférieur à hivers frais. Le réseau hydrographique du bassin versant est dense mais temporaire à l'exception des deux cours d'eau « Haidra » à l'amont où les précipitations sont de l'ordre de 450mm et « Sarrat » (59 km de longueur) à l'aval où les précipitations moyennes annuelles varient de 320mm à 380mm.

La zone qui s'étend de Djerissa et Tejerouine jusqu'à Kalaa el Khasba et Kalaat Snane et qui constitue le bassin versant Médian d'oued Serrat, se caractérise globalement par un relief peu accidenté et à pente assez faible. Elle comprend une partie à relief accidenté située à l'Est de Kalaat Snane. Cette partie est formée par la table de Jugurtha d'altitude 1271 m qui est entourée par jebel Bou Jefna (1050 m) et jebel Mzila (1047 m). www.crtean.org.tn 106 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Vu l'importance des apports d'eau de surface, un barrage sur l'oued Sarrat de capacité 21 million de mètres cubes est en cours de construction.

La figure 2 prouve que zone d'étude est de vocation du fait qu'une grande partie de sa superficie présente des terres cultivées (couleur marron) et des parcours(en jaune). Les forêts occupent les zones montagneuses à la périphérie du bassin versant et l'arboriculture (essentiellement des oliviers) est dispersée et de faibles superficies.

La figure 3 représente les classes de sol digitalisée à partir de la base de donnée « Harmonised World Soil Database » on remarque que les sols dominants sont des Cambiosols caractérisés par une texture moyenne et que les Fluviosols occupent la zone traversée par l'oued Sarrat. On note aussi la présence de Vertisols caractérisés par une texture fine et de faible perméabilité.

Figure2 : Carte d'occupation de sol Figure3 : Carte des types de sol

3. MATÉRIELS ET MÉTHODES La méthode du coefficient simplifiée consiste à retrancher la fraction perdue sous forme d'évapotranspiration de la précipitation et simuler le reste comme ruissellement. Pour ce fait l'évapotranspiration est calculée à l'aide du logiciel CROPWAT en tenant compte des conditions climatiques et des coefficients culturaux selon les pourcentages des cultures de la zone d'étude pour chaque sous bassin versant puis calculer la pluie effective et déterminer la lame ruisselée qui est la partie non utilisée par la végétation. En revanche, la méthode du SCS-CN nécessite plus de paramètres relatifs au bassin versant comme les classes hydrologiques des sols et la couverture végétale ainsi que les pentes moyennes. Les étapes de calcul de la méthode SCS-CN sont : P Définir et cartographier les limites du bassin versant pour lesquels le CN sera calculé puis déterminer sa superficie. P Construire des cartes thématiques d'occupation de sol et type de sol correspondants au bassin versant étudié. P Convertir les types de sols à des groupes hydrologiques de sols (A, B, C ou D). P Superposer la carte d'utilisation des terres et la carte des groupes hydrologique de sols.

www.crtean.org.tn 107 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC P Identifier chaque groupe polygone unique de l'utilisation des terres- type sol, et de déterminer la superficie de chaque polygone. P Attribuez un numéro de courbe pour chaque polygone unique, basé sur des tables de nombres de courbe standards SCS. P Superposer la carte du bassin versant sur les polygones obtenus. P Calculer CN pour tout le bassin versant pondérant les polygones utilisation des terres – groupe de sol dans les limites du bassin versant. P Calculer les lames ruisselées pour des évènements pluviométriques par la formule (1) puis calculer les débits ruisselés.

Equation (1)

— Q : lame ruisselée en (mm) — P : pluviométrie en (mm) — S : potentiel maximum de rétention après le déclenchement du ruissellement en (mm) — Ia : abstraction initiale ou la partie infiltrée ou interceptée par la végétation avant le ruissellement en (mm). Ia a été considérée égale à 0.2*S. * Le paramètre S : potentiel de rétention maximal est calculé par l'équation (2) :

Equation (2) * Les équations (3) et (4) servent à corriger la valeur de CN selon la condition d'humidité de sol :

Equation (3)

Equation (4)

— Conditions AMC I : représentent un sol sec, avec des précipitations de la saison de dormance (5 jours) de moins de 12.7mm et en saison de croissance de moins de 35.56mm. — Conditions AMC II : représentent des conditions d'humidité du sol moyenne avec des précipitations moyenne à la saison de dormance de 12.7mm à 27.94mm et à la saison de croissance des précipitations de 35.5 à 53.34mm. — Conditions AMC III : représentent sol saturé avec des pluies à la saison de dormance de plus de 27.94mm et la saison de croissance des précipitations supérieures à 53.34mm.

www.crtean.org.tn 108 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

Equation (5) Le CN calculé et corrigé (selon la condition d'humidité antécédente) est ensuite intégré dans l'expression du paramètre S qui va déterminer le paramètre Ia puis caluler la lame ruisselée Q (mm) selon l'équation (1).

4. RÉSULTATS ET DISCUSSIONS 4.1. Distribution spatiale de CN,S et Ia Pour utiliser cette méthode de calcul de ruissellement, les cartes d'occupation de sol et de type de sol ont été élaborées par des outils et technique SIG. L'intersection entre les cartes élaborées va nous donner des combinaisons occupation-type de sol ou unités de réponses hydrologiques identiques. Une jointure dans la table attributaire de la carte obtenue avec les valeurs de CN de chaque combinaison va nous donner la répartition spatiale de CNi. La moyenne pondérée des CNi va nous donner une valeur de CN composé pour chaque sous bassin versant.

Figure4 : Répartition spatiale des CNi

Les zones ayants un CN important (colorées en vert) correspondent à des zones de fort ruissellement. Ce sont en fait des zones imperméables (argileuses) ou les plans d'eau.

En revanche, les zones de faible CN (colorées en rouge) correspondent à des zones caractérisées par une forte infiltration et donc un faible potentiel de ruissellement.

La figure5 représente la distribution spatiale du potentiel maximum de rétention après le déclenchement de ruissellement. Ce paramètre S est faible dans les zones imperméables (de fort ruissellement) et important dans les zones caractérisées par une forte infiltration.

www.crtean.org.tn 109 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Lorsque le paramètre S augmente, le CN diminue et vice –versa. Les zones colorées en bleu sont caractérisées par un faible ruissellement et une infiltration importante. Les zones en vert présentent le cas contraire puisque ces zones sont argileuses donc de faible potentiel d'infiltration.

Figure 5 : Distribution spatiale du paramètre S(mm)

Cette répartition spatiale de S nous donne une idée claire sur les zone ayants un fort potentiel de ruissellement et comprendre ses causes puis déterminer les zones d'interventions. La périphérie du bassin est caractérisée par un faible ruissellement puisqu'il s'agit de zones à dominance forestière qui jouent un rôle primordial à l'interception des ruissellements et qui peut être une solution efficace pour lutter contre l'érosion hydrique.

L'abstraction initiale (Ia) dépend de S et présente la même distribution spatiale. Ce paramètre englobe toutes les pertes (rétention d'eau dans les dépressions, interception par la végétation, évaporation et infiltration).

Le calcul des différents paramètres est résumé au tableau1.

www.crtean.org.tn 110 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

Tableau1 : Calcul des paramètres CN composés, S et Ia selon les conditions d'humidité antécédente

4.2. Performance de la méthode SCS-CN Le tableau 2 présente la comparaison entre les débits calculés par la méthode SCS-CN et les débits observés pour six évènements pluviométriques séparés. La déviation entre les débits calculés et observés varie de 5% pour l'évènement N°2 jusqu'à 30% pour les évènements N°1, 3 et 6. L'estimation des débits par la méthode SCS- CN donne en général des résultats satisfaisants avec une performance supérieure à 80% pour certains évènements pluviométriques.

Tableau2 : débits calculés par la méthode SCS-CN et observés sur terrain

Les déviations au niveau des résultats peuvent être dues à des incertitudes au niveau des enregistrements des pluviométries et des débits dans la station de jaugeage ou bien à cause des effets de l'abstraction initiale qui peut changer d'un évènement à l'autre suite au changement de la condition d'humidité antécédente.

www.crtean.org.tn 111 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC

Figure 2 : Comparaison des débits calculés et observés pour les 6 évènements On remarque d'après la figure 2 que les débits calculés par la méthode SCN-CN (en bleu) sont beaucoup plus proches des débits observés (en vert) puisque cette méthode prend en considération les caractéristiques physiques du bassin versant et surtout les caractéristiques hydrologiques des sols ainsi que l'état d'humidité de sol.

5. CONCLUSION La méthodologie proposée, basée sur les outils SIG, a permis de faciliter l'application la méthode SCS-CN. Les résultats trouvés pour les six évènements pluviométriques étudiés ont montré que la méthode du SCS-CN peut donner des résultats plus précis que la méthode du coefficient simplifié. Elle implique dans les calculs la nature du sol, le couvert végétal et l'état hydrique du sol avant l'évènement pluviométrique. Elle peut donner des résultats pour des bassins non jaugées et comparer les résultats avec d'autres bassins ayants des caractéristiques similaires.

Il est aussi très important de rappeler que la méthode SCS-CN a été développée dans des régions de climat humide dont les caractéristiques peuvent être différentes de celles de la région semi-aride de notre cas d'étude. Pour dépasser ce problème, il est plus convenable de vérifier l'expression de l'abstraction initiale (Ia) et ses conditions d'application pour des zones semi-arides.

La programmation de la méthode dans l'environnement de calcul WEAP peut constituer une perspective de développement enrichissante pour les hydrologues et les gestionnaires des ressources en eau. Ceci demandera de nouvelles fonctionnalités de WEAP orientées vers les systèmes d'information géographique (SIG).

www.crtean.org.tn 112 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC 6. RÉFÉRENCES BIBLIOGRAPHIQUES

Al-Ansari, N.A., Zakaria, S., Mustafa, Y.T., Ahmad, P., Gha- four, B. and Knutsson, S. (2013) Development of water resources in Koya City, Iraq. 1st International Symposium on Urban Development of Koya, 16-17 December 2013, Koya University

Chow VenTe, Maidment, David, R., Mays and Larry, W. (1988) Applied Hydrology. McGraw Hill, 277. doi:10.1080/01431160701264292. Hong, Y. and Adler, R.F., 2008. Estimation of global SCS curve numbers using satellite remote sensing and geospatial data. International Journal of Remote Sensing, 29 (2), 471–477. Jain, M.K., et al., 2006b. On the Ia-S relation of the SCS-CN method. Nordic Hydrology, 37 (3), 261–275. doi:10.2166/nh.2006.011

Mary C. Halley P.E. , Suzanne O. White, and Edwin W. Watkins P.E., ArcView GIS Extension for Estimating Curve Numbers.

McCuen, Richard H., A Guide to Hydrologic Analysis Using SCS Methods Prentice Hall, Inc. Englewood Cliffs, New Jersey, 1982.

Mishra, S.K. and Singh, V.P., 2006. A relook at NEH-4 curve number data and antecedent moisture condition criteria. Hydrological Processes, 20 (13), 2755–2768. doi:10.1002/ hyp.6066.

Ponce, V.M. and Hawkins, R.H., 1996. Runoff curve number: has it reached maturity? Journal of Hydrologic Engineering, 1 (1), 11–19. doi:10.1061/(ASCE)1084- 0699(1996)1:1(11).

Reitz, P.D., 1999. Effects of land use on runoff curve numbers.Thesis (Masters). University of Arizona. USA.

Sahu, R.H., Mishra, S.K., and Eldho, T.I., 2010. An improved AMCcoupled runoff curve number model. Hydrological Processes, 24 (20), 2834–2839. doi:10.1002/hyp.7695.

Sahu, R.K., et al., 2007. An advanced soil moisture accounting procedure for SCS curve number method. Hydrological Processes, 21, 2872–2881. doi:10.1002/hyp.6503.

Saleh Zakaria, Yaseen T. Mustafa, Diary A. Mohammed, Salahalddin Saeed Ali, Nadhir Al- Ansari, Sven Knutsson , Estimation of annual harvested runoff at Sulaymaniyah Governorate, Kurdistan region of Iraq, Vol.5, No.12, 1272-1283 ,(2013).

www.crtean.org.tn 113 4 September 2018 Journal of Science and space Technologies A court Specialized regional scientific journal issued by CRTEAN in collaboration with the FASRC Sameer SHADEED, Mohammad ALMASRI, Application of GIS-based SCS-CN method in West Bank catchments, Palestine, Department of Civil Engineering, College of Engineering, An-Najah National University, P. O. Box 7,Nablus, Palestine Water Science and Engineering, 2010.

Schneider, L.E. and McCuen, R.H., 2005. Statistical guidelines for curve number generation. Journal of Irrigation and Drainage Engineering, 131 (3), 282–290.

Smith, R.E., 1997. Discussion of “Runoff curve number: has it reached maturity?” Journal of Hydrologic Engineering, 2 (3), 145–147. doi:10.1061/(ASCE)1084- 0699(1997)2:3(145.2).

Soil Conservation Service (SCS). 1985. Hydrology, National Engineering Handbook. Washington, D. C: Soil Conservation Service, USDA. Soil Conservation Service, Urban Hydrology for Small Watersheds, Technical Release 55 (TR-55), 1986.

USDA Natural Resources Conservation Service (USDA NRSC), Conservation Engineering Division, 1986. Urban hydrology for small watersheds, technical release 55 (TR-55) [online]. USDA-Soil Conservation Service (USDA SCS). 1985. National engineering handbook, section 4, hydrology. Washington, DC: USDA-SCS.Washington, DC: USDA-NRCS. Available from:. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044171. pdf [Accessed 10 June 2010].

Williams, J.R. (1995) The EPIC model, Chapter 25. In Singh, V.P., Ed., Computer Models of Watershed Hydrology, Water Resources Publications, Highlands Ranch, CO.

www.crtean.org.tn 114 ‡ÇFƒ¡Ê¯dG Šƒfƒ²ˆdG h ½Ä¸©dG ‡¸Ý 2018 黈„¡S 4 ‡ÇH™©dG È»¸©dG Œ‘„dG ¢dƒÝ OƒÐEG ªe Àhƒ©ˆdƒH ƒÇ²j™aEG ºƒ»¡T ºh~d ~©H ¿Y Qƒ©¡žˆ¡Sîd ÉÄÁÖG ›c™ÙG ¿Y Q~¡ŸJ ‡Ç»Ç¸bEG ‡Ç»¸Y ‡¸Ý O~`````©dG ‡``»¸c ȈdG Š GOÄÁŽ ÙG ª e ™ aƒ¡ÊˆdƒH ª e ƒÇ²j™ aG ºƒ»¡T ºh~d ~© H ¿Y Qƒ© ¡ž ˆ¡Sîd Qƒ© ¡ž ˆ¡Sîd ÉÄÁÖG › c™ ÙG OÄÁL Ȳˆ¸J I™ NGR Ègh ‡ ÇFƒ¡Ê¯dG Š ƒfƒ²ˆdGh ½Ä¸© dG ‡ ¸Ý ¿e ª HG™ dG O~© dG QG~¡UÕ ‡ ÇH™ © dG È»¸© dG Œ ‘ „dG ¢  dƒÝ OƒÐG ƒÁd˜ „j ½Ä¸© H ò‹Mƒ„dGh ò»ˆÁÙG Š ƒ„¸£ ˆe È„¸J ȈdGh ‡ ÇLÄdľµˆdGh ‡ DzDŽ£ ˆdG ‡ Ç»¸© dG Š ƒ¡SGQ~dGh  Ä‘ „dG ¿e ~j~© dƒH ÈH™ © dG ƒ¾¾WÄH ‡ ¡Ÿ ˆ” ÙG ‡ Ǿ¯dG ¹cƒÇÁdGh ‡ ÇçOƒc CÕGh ‡ Ç‹‘ „dG Š ƒ¡ ¡SDÄÙƒH ƒÁd I~aG™ dG ‡ »¦ fÕGh ƒÁJƒ²Ç„£ Jh Aƒ¡Ê¯dG Aƒ¾Hh ‡ ¸eƒ¡T ‡ Ç»bQ ‡ ÇYƒ»ˆLGh ‡ jOƒ¡Ÿ ˆbG ‡ Ç»¾J Aƒ¡SQG Ô ‡ cQƒ¡ž »¸d ‡ ÇdÄ»¡Th ‡ bO ¿e ÂǸY Äg ƒÌ ¼Ád ƒÁç~²Jh ,,,ñ„µdG . Š ƒeĸ© ÙGh ‡ a™ © ÙG ª »ˆÝ

ƒÙh ½Ä¸© dG Ø ÁH I ~j~L ¿e ±™ © ˆd O~© dG G˜ g 惯Jh ¢ UîNG ¹µHh ¼µj~jG òH ª ¡ÊJ PG ‡ ¸Ž »¸d ‡ Ç»¸© dG ‡ €Çg ÀEG QG~¡UG ±G~gCG ³Ç²Ð ¹¯µj ƒÌ ª ¡VGĈÙG ~ÁÖG G˜ g ¼µd ÄˆJh ºƒŽ ÙG G˜ g Ô ƒ¾ÇY~„eh ƒ¾Ç‹MƒHh ƒ¾Ç¡Ÿ ˆß ÂÇdG Gĸ¡UÄJ ÀGh ƒ¾»Ç¸bG ºh~H È»¸© dG Œ ‘ „dG ‡ ¸Ž Y ª ÇŽ ¡ž Jh ª aO Ô ¤ Ç¡ „dG ¹»© dG G˜ g ¼Á¡ j ÀG ž»ˆJh ,¡Ÿ ¡Ÿ ” ˆÙG ‡ ¸Ž ÙG Ø g AjQƒ²¸d ‡ eĸ© ÙG Aƒ¾ˆbG ¹Á¡ j ƒÌh ‡ ¸Ž ÙG Ø g Ô ™ ¡ž ¾¸d I ˜ ” ˆÙG ‡ Ç»¸© dG ‡ ÇŽ Á¾ÙG ³ah ‡ »Ç¸¡S ‡ Ç¡ aƒ¾J ‡ Ç‹‘ H ‡ Ç¡VQG ³¸” j Ô Q˜ © dG ¢ Sƒ»ˆdG ‡ €ÇÁdG OÄJ ƒ»c .( ‡ Ç¡ f™ ¯dGh ‡ j› ǸâÕGh ‡ ÇH™ © dG ) ‡ Kî‹dG Š ƒ¬¸dƒH ™ ¡ž ¾¸d ¤ jGÄ¡Vh ~YGÄb ¿e › ÇLCG ƒeh . ¼µJƒjƒZ ¿e ‡ jƒZ Ädh ¼µd ³²‘ jh ¼cƒ¡VQ ~ÁÖG ºƒ¾j ÀG ž»ˆJh ƒÁJOGQG ¿Y ‡ LQƒN Aƒ£ NCG ‡ jBG

Ø ÁH ª a~dGh ™ ¡ž ¾¸d ‡ ׃¡Ÿ dG ‡ Ç»¸© dG I OƒÙGh Oƒ¡TQÕGh ’ ¡Ÿ ¾dG è~²ˆH ƒ¾Ç¸Y Gĸ” „J Õ ¢  eƒØG O~© dG Ô È²ˆ¸f ňMh .È»¸bÕGh ȾWÄdG iĈ¡ ÙG ŸY I ~j™ ¯dG ‡ ¸Ž ÙG .Aƒ`````````````````Y~dG ª Ç»¡S ÂfG ºƒ»YÕGh ºGÄbÕG ¢ Ÿ dƒØ ƒ¾²aÄj ÀCG ¹Lh › Y ÛÄÙG GÄY~f

¥ Ä¡žb ~»ÞG ÉOƒÁdG QĈc~dG ÉÄ`ÁÖG ›``c™ÙG ½ƒ`Y ™j~e ‡¸óG ™j™Ð ¢ÇFQh

www.crtean.org.tn 115 ‡ÇFƒ¡Ê¯dG Šƒfƒ²ˆdG h ½Ä¸©dG ‡¸Ý 2018 黈„¡S 4 ‡ÇH™©dG È»¸©dG Œ‘„dG ¢dƒÝ OƒÐEG ªe Àhƒ©ˆdƒH ƒÇ²j™aEG ºƒ»¡T ºh~d ~©H ¿Y Qƒ©¡žˆ¡Sîd ÉÄÁÖG ›c™ÙG ¿Y Q~¡ŸJ ‡Ç»Ç¸bEG ‡Ç»¸Y ‡¸Ý ‡ ``¬¸dƒH ‡ ¡UîNh - (ª ``LG™ ÙG) QOƒ¡Ÿ ÙG - ~Lh ÀG Œ ‘ „dG RƒâG Ô ~Yƒ¡S ¿e OÄÁŽ H ±GëYÕG - ƒˆ¾ˆ¡SÕG - ‡ ¡ž bƒ¾ÙG ]300[ Oh~M Ô ‡ ÇH™ © dG ‡ ¬¸dƒH ‡ ¡UîNh ‡ ÇH™ © dG ‡ ¬¸dƒH Œ ‘ „dG Àƒc GPEG ‡ »¸c ]200[ Oh~M Ô ‡ Ç¡ f™ ¯dG hG ‡ j› ǸµfEÕG . ‡ j› ǸµfEÕG ‡ ¬¸dƒH † Ĉµe Œ ‘ „dG Àƒc GPEG ‡ »¸c .Š ƒMî£ ¡UÕGh Š GQƒ¡Ÿ ˆNÕG ºƒÝ Ô , kƒÇÙƒY ƒÁǸY ³¯ˆÙG ~YGIJdG « ƒ„JCG Œ Mƒ„dG ŸY Ÿ ‡ `‘ ¡VGh ÀĵJ Œ Ç‘ H ¼¡S™ dG Š GhOCG ½G~” ˆ¡SƒH hCG ƒÁ¸Kƒç ƒe hCG Q› ǸdG ‡ © HƒW ‡ £ ¡SGÄH ‡ ÇfƒÇ„dG ¥ Ä£ ØGh ºƒµ¡TÕG ¼¡S™ J Ÿ . ƒÁǸY ~ÇdƒH ‡ HƒˆµdG ½~Y § ‘ ¸jh ¼¡S 18 x 12 ƒgOƒ© HCG RhƒŽ ˆJ Õh Ô ƒÌ ƒÇ¸¡ ¸¡ J Š ƒ``‘ ¯¡Ÿ dG ª Ç»L ¼Çb™ Jh ƒ``Á¾cƒeCG ÛEG I Qƒ¡TEÕG ª e Š ƒ‘ ¸£ ¡Ÿ ÙG ’ ÇJƒ¯e ‡ Hƒˆch ºƒµ¡TCÕG ¼Çb™ J … Ž j Ÿ .Œ ‘ „dƒH ³‘ ¸J ȈdG ºƒµ¡TCÕGh ºhG~ÖG ¶dP Aƒ``»¡SCÕ ‡ „¡ ¾dƒH ‡ ÇFƒŽ ÁdG ±h™ ‘ ¸d kƒ²ah ‡ »Fƒ²dG Ô … ˆµJ ÀCG ŸY ,Œ ‘ „dG ìe Ô Š OQh ȈdG ª LG™ ÙG ª Ç»L ™ c˜ J Ÿ -:ȸj ƒ»c ª L™ e ¹c … J™ jh °dDÄ»¸d ‡ ǾµdG ¼¡SG … ¡ Mh ò¯dDÄÙG Š ƒ‘ ¯¡Ÿ dG - Û Çe™ J - ™ ¡ž ¾dG QGO - °dDÄÙG ÀGľY - ™ ¡ž ¾dG ‡ ¾¡S - °dDÄÙG ¼¡SG .‡ ÇH™ © dG ‡ ¬¸dƒH ‡ e~²ÙG  ƒ‘ H Cîd ‡ jÄdh CÕG Å£ © J Ÿ .¹Hƒ²»„a ‡ Çaƒ¡VEG • ¡ f Œ Mƒ„dG … ¸W ºƒM Ôh / ‡ j~Ác ¹Hƒ²e Àh~H ‡ ¸Ž ÙG ¿e • ¡ f ]2[ (ÀÄ‹Mƒ„dG) Œ Mƒ„¸d ¹¡S™ j Ÿ .™ ¡ž ¾dG ò× › c™ ÙG ¿e ~»ˆ© e ™ ¡ž ¾¸d ºÄ„²e ‹‘ H ÀCƒH IOƒaEG Œ Mƒ„dG ¼Ç¸¡ J ¿µçh

: ‡¸ŽÙG ÛEG Ä‘„dG ºƒ¡SQEG :܃ˆdG ÀGľ© dG ŸY (‡ ¸Ý) ™ j™ Ð ‡ €Çg ¢  ÇFQ ÛEG ƒj~j™ H I™ ¡Tƒ„e  Ä‘ „dG ¹¡S™ J ‡ Ç¡ fĈdG ‡ jQÄÁ»ÖG ¢  fÄJ 1004 ¢  eƒØG I › ¾ÙG ñ¡Ÿ f ¿HG Å¡SÄe « Qƒ¡T ,18 hCG :æhëµdEÕG ~jédG ŸY kƒÇfhëµdEG OQhh °¸e ŸY  Ä‘ „dG Š GOÄ¡ e ºƒ¡SQEƒH Å¡UÄojh ¹n¡Ên¯oj [email protected]

:‡¸ŽÙƒH Éľ¡dG ·Gë¡TÕG :› c™ ÙƒH Aƒ¡ÊYÕG ºh~dG ¹NGO .~jédG QÄLCG ¶dP Ô ƒÌ ȵj™ eG QÕhO 20 : OG™ a CÕG Ÿ .~jédG QÄLCG ¶dP Ô ƒÌ ȵj™ eG QÕhO 40 : Š ƒ¡ ¡SDÄÙG Ÿ :› c™ ÙƒH Aƒ¡ÊYCÕG ºh~dG QƒN . ~jédG QÄLCG ¶dP Ô ƒÌ kƒÇµj™ eCG kGQÕhO 25 : OG™ a CÕG Ÿ .~jédG QÄLCG ¶dP Ô ƒÌ kƒÇµj™ eCG kGQÕhO 50 :Š ƒ¡ ¡SDÄÙG Ÿ

www.crtean.org.tn 116 ‡ÇFƒ¡Ê¯dG Šƒfƒ²ˆdG h ½Ä¸©dG ‡¸Ý 2018 黈„¡S 4 ‡ÇH™©dG È»¸©dG Œ‘„dG ¢dƒÝ OƒÐEG ªe Àhƒ©ˆdƒH ƒÇ²j™aEG ºƒ»¡T ºh~d ~©H ¿Y Qƒ©¡žˆ¡Sîd ÉÄÁÖG ›c™ÙG ¿Y Q~¡ŸJ ‡Ç»Ç¸bEG ‡Ç»¸Y ‡¸Ý : ‡¸ŽÙƒH ™¡ž¾dG ¥h™¡T .™ NBG Àƒµe Ô ™ ¡ž ¾¸d ¹„b hCG ™ ¡ž f ~b ™ ¡ž ¾¸d ½~²ÙG Œ ‘ „dG Àĵj Õ ÀCG .1 .‡ Ç¡ f™ ¯dG hG ‡ j› ǸâÕG Š ƒ¬¸dƒHh ‡ ÇH™ © dƒH  Ä‘ „dG ¹„²J .2 .‡ ¸Ž ÙG Ô Ã™ ¡ž f † ĸ£ ÙG Œ ‘ „¸d ‡ ÇH™ © dG ¢ Ÿ ” ¸e è~²J .3 .™ ¡ž ¾dG ¥ h™ ¡ž d ¹eƒµˆe ñ¬dG Œ ‘ „dG ™ ¡ž ¾j Õh È»¸© dG èIJˆ¸d  Ä‘ „dG ª ¡Ê” J .4 .‡ ‘ ¯¡Ÿ dG ™ cP ª e ½ƒbQCƒH Œ ‘ „dG ìe Ô ƒÁÇdEG Qƒ¡ž jh ‡ ¸¡ ¸¡ ˆe ƒeƒbQCG ˜ N CƒJh ‡ ¸eƒc Œ ‘ „dG ‡ jƒÁf Ô QOƒ¡Ÿ ÙG ª ¡VÄJ .5 .ÃGQĈc~dGh ñˆ¡ LƒÙG ȈLQ~d ò¸Ž ¡ ÙG † î£ ¸d ‡ Ç‹‘ „dG ´GQhCÕG ‡ ¸Ž ÙG ™ ¡ž ¾J .6 ƒÁd ‡ bîYÕ ‡ Ǿa Š GQƒ„ˆYÕ kƒ²ah ‡ ¸Ž ÙƒH ƒÁ„ÇJ™ J ÈJ Cƒjh ƒÁǯdDÄe iCGQ ¿Y Š Õƒ²ÙGh  Ä‘ „dGh Š ƒ¡SGQ~dG ‡ aƒc é© J .7 .ƒÁ¾e ÉÕ ‡ Ç»¸© dG ‡ »Ç²dƒH ºƒÝ Ô ‡ ÇçOƒcCÕG Š ƒWƒ¡ž ¾dGh ‡ Ç»¸Y Š ƒj~ˆ¾eh Š G™ ÒDÄe Ô Ãƒ²¸ÙG Š ƒ¡SGQ~dGh  Ä‘ „dGh ™ jQƒ²ˆdG ‡ ¸Ž ÙG ™ ¡ž ¾J .8 .‡ ¸Ž ÙG ¿e ‡ ¡UƒN OG~YCG Ô ¼ÇµÐ ƒähO ƒÁ¡Ÿ ¡Ÿ ” J .‡ ¸Ž ÙG Ô ‡ ¡UƒN ‡ jhGR Åa (¹»© dG ´GQhCG) ‡ »µ‘ ÙG ñZ Š Õƒ²ÙG ™ ¡ž ¾J .9

:‡¸ŽÙG Åa Ä‘„dG ™¡žf ~YGÄb . ‡ ÇFƒ¡Ê¯dGh ‡ ÇMƒ¡ ÙG ½Ä¸© dG ºƒÝ Ô ‡ ÇçOƒcCÕGh ‡ DzDŽ£ ˆdG Š ƒ¡SGQ~dGh  Ä‘ „dG ‡ aƒc ‡ ¸Ž ÙG ¹„²J (1 .‡ ¸Ž ÙG OQ ÂÇJ Cƒj ňM i™ NCG ‡ ÁL ÛEG ‹‘ H ºƒ¡SQEG ½~© H Œ Mƒ„dG ½› ˆ¸j ÀCG … Ž j (2 .‹‘ H Ô ‡ »Ç¸¡ dG ‡ Ç»¸© dG ¢  ¡SCÕG « ƒ„JEƒH Œ Mƒ„dG ½› ˆ¸j ÀCG … Ž j (3 Oh~M Åa ‡ Ç¡ f™ ¯dG hCG ‡ ÇH™ © dG hCG ‡ j› ǸâEÕG ‡ ¬¸dƒH ¢ Ÿ ” ¸e ,‡ YÄ„£ e òˆ” ¡ f ¿e ‡ ¸Ž ÙG ÛEG ‹‘ H ¹¡S™ j ÀCG … Ž j (4 ,Soft Copy ‡ ” ¡ f ÛEG ‡ aƒ¡VEÕƒH ,‡ ‘ ¡VGhh ‡ YÄ„£ e ‡ ÇMƒ¡ÊjEÕGh ‡ ÇfƒÇ„dG ½Ä¡S™ dG ÀĵJ ÀCG … Ž jh ,™ £ ¡S 12-8 . ‡ Ç¡ f™ ¯dGh É› Ǹâîd 12h ,ÅH™ © ¸d Times New Romanes 14 ¤ ØG « Äfh ‡ j› ǸµfEÕG ‡ ¬¸dƒH ½~²ÙG Œ ‘ „¸d ÈH™ © dG ¢ Ÿ ” ¸ÙG Ô ‡ ¸eƒc ¼Á¾jhƒ¾Yh òcQƒ¡ž ÙG Aƒ»¡SCGh Œ ‘ „dG ÀGľY ‡ Hƒˆc … Ž j (5 .‡ Ç¡ f™ ¯dG hG .‡ eƒJ ‡ j™ ¡ H ¼µÐh ò¡Ÿ ¡Ÿ ” ˆe ò»µÞ ÛEG  Ä‘ „dG ¹¡S™ J (6 .‡ ¸Ž ÙƒH ™ ¡ž ¾dG † ĸ¡SCGh ,ò»µ‘ ÙG Š ƒMë²e ª e … ¡Sƒ¾ˆÇd ¸j~© ˆH Œ Mƒ„dG ½› ˆ¸j ,™ ¡ž ¾¸d Œ ‘ „dG ºÄ„b ‡ dƒM Ô (7 .„¸£ ¸d QÕhO 50 ‡ »Çbh ȵj™ eG QÕhO 100 ºOƒ© J ȈdGh Œ ‘ „dG ™ ¡ž f ‡ ¯¸c ƒÁ© „ˆj ȈdG ‡ ¡ ¡SDÄÙG hG Œ Mƒ„dG ¹»‘ ˆj (8 :ÈJBÕƒc Œ ‘ „dG ¼¦ ¾j (9 -  Fƒˆ¾dG - ´™ £ dGh OGÄÙG - ‡ e~²e - ‡ ¡UîN - (¼Á¾jhƒ¾Y) ÂfGľY - (ò‹Mƒ„dG) Œ Mƒ„dG ¼¡SG - Œ ‘ „dG ÀGľY Ÿ

www.crtean.org.tn 117

‡ÇFƒ¡Ê¯dG Šƒfƒ²ˆdG h ½Ä¸©dG ‡¸Ý 2018 黈„¡S 4 ‡ÇH™©dG È»¸©dG Œ‘„dG ¢dƒÝ OƒÐEG ªe Àhƒ©ˆdƒH ƒÇ²j™aEG ºƒ»¡T ºh~d ~©H ¿Y Qƒ©¡žˆ¡Sîd ÉÄÁÖG ›c™ÙG ¿Y Q~¡ŸJ ‡Ç»Ç¸bEG ‡Ç»¸Y ‡¸Ý

‡ÇFƒ¡Ê¯dG ‡fƒ²ˆdGh ½Ä¸©dG ‡¸Ý

‡ÇFƒ¡Ê¯dG ‡fƒ²ˆdGh ½Ä¸©dG ‡¸Ý ™j™Ð ¢ÇFQ ƒÇ²j™ aG ºƒ»¡T ºh~d ~© H ¿Y Qƒ© ¡ž ˆ¡Sîd ÉÄÁÖG › c™ ÙG ½ƒY ™ j~e - ¥ Ä¡žb ~»ÞEG ÉOƒÁdG .O

‡ÇFƒ¡Ê¯dG Šƒfƒ²ˆdGh ½Ä¸©dG ‡¸ó ‡»µôG ‡Ç»¸©dG ‡€ÇÁdG ƒ¡ ÇFQ ¢  ¸óG ‡ ÇH™ © dG È»¸© dG Œ ‘ „dG ¢  dƒÝ OƒÐEG ƒ×G ~»Þ ů£¡Ÿe.O. CG -1 GÄ¡ÊY ¢  fÄJ Qƒ¾ÙG ‡ © eƒŽ H ƒÇ¸© dG ò¡S~¾ÁÙG ‡ ¡SQ~e ‡»¡SÄH Oƒ¡TQ ~»Þ .O. CG -2 GÄ¡ÊY ƒÇ„Çd ¢  ¸HG™ W ‡ © eƒL ÈHIJ©ÇdG ŸY ºÄ¸ÁH .O . CG -3 GÄ¡ÊY ™ ¡Ÿ e Aƒ¡Ê¯dG ½Ä¸Yh ~© H ¿Y Qƒ© ¡ž ˆ¡Sîd ‡ ÇeIJdG ‡ €ÇÁdG ¸dG ~„Y OƒL ¸dG ~„Y .O . CG -4 GÄ¡ÊY ÀGOÄ¡ dG ºRÕ› dG ½Ä¸Yh ~© H ¿Y Qƒ© ¡ž ˆ¡SÕG ‡ €Çg ~eƒM ~»MCG ‡¾eBG .O. CG -5 GÄ¡ÊY † ™ ¬ÙG ¢  eƒØG ~»Þ ‡ © eƒL È»¸© dG ~Á© ÙG ÀG™»Y ¿H ¢fCG .O . CG -6 GÄ¡ÊY ƒÇfƒˆjQÄe … £ dGh ƒÇLÄdľµˆdGh ½Ä¸© dG ‡ © eƒL ’„dG ~dh Ⱦe .O . CG -7 GÄ¡ÊY ÉÄÁÖG › c™ ÙG ÈFƒ¡Ê¯dGh ÉÄÖG ÀÄfƒ²dG Pƒˆ¡SCG “~b Àƒ¡ÊeQ ~»Þ . CG -8 GÄ¡ÊY ‡ £ HG™ dG ÈH™ © dG ¿WÄdG Ô ~© H ¿Y Qƒ© ¡ž ˆ¡SEÕG › cG™ e ‡ £ HGQ ’¡SƒµdG ½™cCG .O -9

www.crtean.org.tn 118