An 201610 Pl16 01
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Op Amp Stability and Input Capacitance
Amplifiers: Op Amps Texas Instruments Incorporated Op amp stability and input capacitance By Ron Mancini (Email: [email protected]) Staff Scientist, Advanced Analog Products Introduction Figure 1. Equation 1 can be written from the op Op amp instability is compensated out with the addition of amp schematic by opening the feedback loop an external RC network to the circuit. There are thousands and calculating gain of different op amps, but all of them fall into two categories: uncompensated and internally compensated. Uncompen- sated op amps always require external compensation ZG ZF components to achieve stability; while internally compen- VIN1 sated op amps are stable, under limited conditions, with no additional external components. – ZG VOUT Internally compensated op amps can be made unstable VIN2 + in several ways: by driving capacitive loads, by adding capacitance to the inverting input lead, and by adding in ZF phase feedback with external components. Adding in phase feedback is a popular method of making an oscillator that is beyond the scope of this article. Input capacitance is hard to avoid because the op amp leads have stray capaci- tance and the printed circuit board contributes some stray Figure 2. Open-loop-gain/phase curves are capacitance, so many internally compensated op amp critical stability-analysis tools circuits require external compensation to restore stability. Output capacitance comes in the form of some kind of load—a cable, converter-input capacitance, or filter 80 240 VDD = 1.8 V & 2.7 V (dB) 70 210 capacitance—and reduces stability in buffer configurations. RL= 2 kΩ VD 60 180 CL = 10 pF 150 Stability theory review 50 TA = 25˚C 40 120 Phase The theory for the op amp circuit shown in Figure 1 is 90 β 30 taken from Reference 1, Chapter 6. -
EE C128 Chapter 10
Lecture abstract EE C128 / ME C134 – Feedback Control Systems Topics covered in this presentation Lecture – Chapter 10 – Frequency Response Techniques I Advantages of FR techniques over RL I Define FR Alexandre Bayen I Define Bode & Nyquist plots I Relation between poles & zeros to Bode plots (slope, etc.) Department of Electrical Engineering & Computer Science st nd University of California Berkeley I Features of 1 -&2 -order system Bode plots I Define Nyquist criterion I Method of dealing with OL poles & zeros on imaginary axis I Simple method of dealing with OL stable & unstable systems I Determining gain & phase margins from Bode & Nyquist plots I Define static error constants September 10, 2013 I Determining static error constants from Bode & Nyquist plots I Determining TF from experimental FR data Bayen (EECS, UCB) Feedback Control Systems September 10, 2013 1 / 64 Bayen (EECS, UCB) Feedback Control Systems September 10, 2013 2 / 64 10 FR techniques 10.1 Intro Chapter outline 1 10 Frequency response techniques 1 10 Frequency response techniques 10.1 Introduction 10.1 Introduction 10.2 Asymptotic approximations: Bode plots 10.2 Asymptotic approximations: Bode plots 10.3 Introduction to Nyquist criterion 10.3 Introduction to Nyquist criterion 10.4 Sketching the Nyquist diagram 10.4 Sketching the Nyquist diagram 10.5 Stability via the Nyquist diagram 10.5 Stability via the Nyquist diagram 10.6 Gain margin and phase margin via the Nyquist diagram 10.6 Gain margin and phase margin via the Nyquist diagram 10.7 Stability, gain margin, and -
OA-25 Stability Analysis of Current Feedback Amplifiers
OBSOLETE Application Report SNOA371C–May 1995–Revised April 2013 OA-25 Stability Analysis of Current Feedback Amplifiers ..................................................................................................................................................... ABSTRACT High frequency current-feedback amplifiers (CFA) are finding a wide acceptance in more complicated applications from dc to high bandwidths. Often the applications involve amplifying signals in simple resistive networks for which the device-specific data sheets provide adequate information to complete the task. Too often the CFA application involves amplifying signals that have a complex load or parasitic components at the external nodes that creates stability problems. Contents 1 Introduction .................................................................................................................. 2 2 Stability Review ............................................................................................................. 2 3 Review of Bode Analysis ................................................................................................... 2 4 A Better Model .............................................................................................................. 3 5 Mathematical Justification .................................................................................................. 3 6 Open Loop Transimpedance Plot ......................................................................................... 4 7 Including Z(s) ............................................................................................................... -
Chapter 6 Amplifiers with Feedback
ELECTRONICS-1. ZOLTAI CHAPTER 6 AMPLIFIERS WITH FEEDBACK Purpose of feedback: changing the parameters of the amplifier according to needs. Principle of feedback: (S is the symbol for Signal: in the reality either voltage or current.) So = AS1 S1 = Si - Sf = Si - ßSo Si S1 So = A(Si - S ) So ß o + A from where: - Sf=ßSo * So A A ß A = Si 1 A 1 H where: H = Aß Denominations: loop-gain H = Aß open-loop gain A = So/S1 * closed-loop gain A = So/Si Qualitatively different cases of feedback: oscillation with const. amplitude oscillation with narrower growing amplitude pos. f.b. H -1 0 positive feedback negative feedback Why do we use almost always negative feedback? * The total change of the A as a function of A and ß: 1(1 A) A A 2 A* = A (1 A) 2 (1 A) 2 Introducing the relative errors: A * 1 A A A * 1 A A 1 A According to this, the relative error of the open loop gain will be decreased by (1+Aß), and the error of the feedback circuit goes 1:1 into the relative error of the closed loop gain. This is the Elec1-fb.doc 52 ELECTRONICS-1. ZOLTAI reason for using almost always the negative feedback. (We can not take advantage of the negative sign, because the sign of the relative errors is random.) Speaking of negative or positive feedback is only justified if A and ß are real quantities. Generally they are complex quantities, and the type of the feedback is a function of the frequency: E.g. -
MT-033: Voltage Feedback Op Amp Gain and Bandwidth
MT-033 TUTORIAL Voltage Feedback Op Amp Gain and Bandwidth INTRODUCTION This tutorial examines the common ways to specify op amp gain and bandwidth. It should be noted that this discussion applies to voltage feedback (VFB) op amps—current feedback (CFB) op amps are discussed in a later tutorial (MT-034). OPEN-LOOP GAIN Unlike the ideal op amp, a practical op amp has a finite gain. The open-loop dc gain (usually referred to as AVOL) is the gain of the amplifier without the feedback loop being closed, hence the name “open-loop.” For a precision op amp this gain can be vary high, on the order of 160 dB (100 million) or more. This gain is flat from dc to what is referred to as the dominant pole corner frequency. From there the gain falls off at 6 dB/octave (20 dB/decade). An octave is a doubling in frequency and a decade is ×10 in frequency). If the op amp has a single pole, the open-loop gain will continue to fall at this rate as shown in Figure 1A. A practical op amp will have more than one pole as shown in Figure 1B. The second pole will double the rate at which the open- loop gain falls to 12 dB/octave (40 dB/decade). If the open-loop gain has dropped below 0 dB (unity gain) before it reaches the frequency of the second pole, the op amp will be unconditionally stable at any gain. This will be typically referred to as unity gain stable on the data sheet. -
TL431-Q1 / TL432-Q1 Adjustable Precision Shunt Regulator Datasheet
Product Order Technical Tools & Support & Folder Now Documents Software Community TL431-Q1, TL432-Q1 SGLS302G –MARCH 2005–REVISED MAY 2020 TL431-Q1 / TL432-Q1 Adjustable Precision Shunt Regulator 1 Features 3 Description The TL431LI-Q1 / TL432LI-Q1 are pin-to-pin 1• Qualified for automotive applications alternatives to TL431-Q1 / TL432-Q1. TL43xLI-Q1 • AEC-Q100 test guidance with the following: offers better stability, lower temperature drift – Device temperature grade 1: –40°C to 125°C (VI(dev)), and lower reference current (Iref) for ambient operating temperature range improved system accuracy. • Reference voltage tolerance at 25°C: The TL431-Q1 is a three-pin adjustable shunt – 1% (A Grade) regulator with specified thermal stability over – 0.5% (B Grade) applicable automotive temperature ranges. The output voltage can be set to any value from VREF • Typical temperature drift: (approximately 2.5 V) to 36 V, with two external – 14 mV (Q Temp) resistors (see Figure 28). This device has a typical • Low output noise output impedance of 0.2 Ω. Active output circuitry provides a sharp turnon characteristic, making this • 0.2-Ω Typical output impedance device an excellent replacement for Zener diodes in • Sink-current capability: 1 mA to 100 mA many applications, such as onboard regulation, • Adjustable output voltage: VREF to 36 V adjustable power supplies, and switching power supplies. 2 Applications The TL432-Q1 has exactly the same functionality and • Adjustable voltage and current referencing electrical specifications as the TL431-Q1 device, but has a different pinout for the DBZ package. • Secondary side regulation in flyback SMPSs • Zener replacement Device Information(1) • Voltage monitoring PART NUMBER PACKAGE BODY SIZE (NOM) • Comparator with integrated reference TL431A-Q1 SOT-23 (5) 2.90 mm × 1.60 mm TL43x-Q1 SOT-23 (3) 2.92 mm × 1.30 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. -
Operational Amplifiers: Part 3 Non-Ideal Behavior of Feedback
Operational Amplifiers: Part 3 Non-ideal Behavior of Feedback Amplifiers AC Errors and Stability by Tim J. Sobering Analog Design Engineer & Op Amp Addict Copyright 2014 Tim J. Sobering Finite Open-Loop Gain and Small-signal analysis Define VA as the voltage between the Op Amp input terminals Use KCL 0 V_OUT = Av x Va + + Va OUT V_OUT - Note the - Av “Loop Gain” – Avβ β V_IN Rg Rf Copyright 2014 Tim J. Sobering Liberally apply algebra… 0 0 1 1 1 1 1 1 1 1 Copyright 2014 Tim J. Sobering Get lost in the algebra… 1 1 1 1 1 1 1 Copyright 2014 Tim J. Sobering More algebra… Recall β is the Feedback Factor and define α 1 1 1 1 1 Copyright 2014 Tim J. Sobering You can apply the exact same analysis to the Non-inverting amplifier Lots of steps and algebra and hand waving yields… 1 This is very similar to the Inverting amplifier configuration 1 Note that if Av → ∞, converges to 1/β and –α /β –Rf /Rg If we can apply a little more algebra we can make this converge on a single, more informative, solution Copyright 2014 Tim J. Sobering You can apply the exact same analysis to the Non-inverting amplifier Non-inverting configuration Inverting Configuration 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Copyright 2014 Tim J. Sobering Inverting and Non-Inverting Amplifiers “seem” to act the same way Magically, we again obtain the ideal gain times an error term If Av → ∞ we obtain the ideal gain 1 1 1 Avβ is called the Loop Gain and determines stability If Avβ –1 1180° the error term goes to infinity and you have an oscillator – this is the “Nyquist Criterion” for oscillation Gain error is obtained from the loop gain 1 For < 1% gain error, 40 dB 1 (2 decades in bandwidth!) 1 Copyright 2014 Tim J. -
High-Voltage Integrated Linear Regulator with Current Sinking Capabilities for Portable Ultrasound Scanners
Downloaded from orbit.dtu.dk on: Oct 01, 2021 High-voltage integrated linear regulator with current sinking capabilities for portable ultrasound scanners Pausas, Guifre Vendrell; Llimos Muntal, Pere; Jørgensen, Ivan Harald Holger Published in: Proceedings of Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC), 2017 IEEE Link to article, DOI: 10.1109/NORCHIP.2017.8124942 Publication date: 2017 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Pausas, G. V., Llimos Muntal, P., & Jørgensen, I. H. H. (2017). High-voltage integrated linear regulator with current sinking capabilities for portable ultrasound scanners. In Proceedings of Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC), 2017 IEEE (pp. 1- 5). IEEE. https://doi.org/10.1109/NORCHIP.2017.8124942 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. High-Voltage Integrated Linear Regulator with Current Sinking Capabilities for Portable Ultrasound Scanners Guifre´ Vendrell Pausas, Pere Llimos´ Muntal, Ivan H. -
How to Measure the Loop Transfer Function of Power Supplies (Rev. A)
Application Report SNVA364A–October 2008–Revised April 2013 AN-1889 How to Measure the Loop Transfer Function of Power Supplies ..................................................................................................................................................... ABSTRACT This application report shows how to measure the critical points of a bode plot with only an audio generator (or simple signal generator) and an oscilloscope. The method is explained in an easy to follow step-by-step manner so that a power supply designer can start performing these measurements in a short amount of time. Contents 1 Introduction .................................................................................................................. 2 2 Step 1: Setting up the Circuit .............................................................................................. 2 3 Step 2: The Injection Transformer ........................................................................................ 4 4 Step 3: Preparing the Signal Generator .................................................................................. 4 5 Step 4: Hooking up the Oscilloscope ..................................................................................... 4 6 Step 5: Preparing the Power Supply ..................................................................................... 4 7 Step 6: Taking the Measurement ......................................................................................... 5 8 Step 7: Analyzing a Bode Plot ........................................................................................... -
Low-Voltage Cutoff Circuits
jfsimon – June 2018 Low-voltage cutoff circuits Using a TL431 or similar: Battery Guardian (Silicon Chip, 2002) http://www.qsl.net/9w2lw/guardian.htm LM336, comparator, N-channel MOSFET on high side driven by isolated SMPS Forum post, LV alarm, MikeML (15 March 2010) https://www.electro-tech-online.com/threads/12v-battery-low-voltage-monitor.104886/#post-856427 TL431, LED driven by NPN BJT Forum post, LV disconnect 1, MikeML (4 February 2011) https://www.electro-tech-online.com/threads/12v-battery-low-voltage-monitor.104886/page-2#post-950306 TL431, P-channel MOSFET, hysteresis resistor Same circuit from RONV (13 February 2016) https://forum.allaboutcircuits.com/threads/voltage-cut-off-tl431.120827/#post-965055 Same circuit from Hero999 (20 February 2017) https://www.eevblog.com/forum/projects/power-the-load-only-when-car-supply-voltage-is-above-14- volts/msg1140485/#msg1140485 Variant of the same circuit with ATL431 (20 February 2017) https://www.eevblog.com/forum/projects/power-the-load-only-when-car-supply-voltage-is-above-14- volts/msg1140526/#msg1140526 Forum post, LV disconnect 2, MikeML (11 February 2014) https://forum.allaboutcircuits.com/threads/tl431-battery-cut-off.94148/#post-696553 TL431, P-channel MOSFET, push-button, battery voltage is measured at MOSFET drain Forum post, Ian.M (9 August 2016) https://www.eevblog.com/forum/renewable-energy/efficient-way-to-disconnect-battery-when-voltage- drops/msg1000473/#msg1000473 TL431, NPN emitter follower, Schottky diode, P-channel MOSFET jfsimon – June 2018 Driving a relay directly with a TL431, push button to start Note: I tested this one but I haven’t been able to get reliable triggering of the relay. -
The TL431 in the Control of Switching Power Supplies Agenda
The TL431 in the Control of Switching Power Supplies Agenda Feedback generalities The TL431 in a compensator Small-signal analysis of the return chain A type 1 implementation with the TL431 A type 2 implementation with the TL431 A type 3 implementation with the TL431 Design examples Conclusion Agenda Feedback generalities The TL431 in a compensator Small-signal analysis of the return chain A type 1 implementation with the TL431 A type 2 implementation with the TL431 A type 3 implementation with the TL431 Design examples Conclusion What is a Regulated Power Supply? Vout is permanently compared to a reference voltage Vref. The reference voltage Vref is precise and stable over temperature. The error,ε =−VVrefα out, is amplified and sent to the control input. The power stage reacts to reduce ε as much as it can. Power stage - H Vout Control d variable Error amplifier - G Rupper + - Vin - - α + + Vp Modulator - G V PWM ref Rlower How is Regulation Performed? Text books only describe op amps in compensators… Vout Verr The market reality is different: the TL431 rules! V I’m the out law! Verr TL431 optocoupler How do we Stabilize a Converter? We need a high gain at dc for a low static error We want a sufficiently high crossover frequency for response speed ¾ Shape the compensator G(s) to build phase and gain margins! Ts( ) fc = 6.5 kHz 0° -0 dB ∠Ts( ) -88° GM = 67 dB ϕm = 92° -180° Ts( ) =−67 dB 10 100 1k 10k 100k 1Meg How Much Phase Margin to Chose? a Q factor of 0.5 (critical response) implies a ϕm of 76° a 45° ϕm corresponds -
Design of a TL431-Based Controller for a Flyback Converter
Design of a TL431-Based Controller for a Flyback Converter Dr. John Schönberger Plexim GmbH Technoparkstrasse 1 8005 Zürich 1 Introduction The TL431 is a reference voltage source that is commonly used in the control circuit of isolated power supplies. Typically used to provide a precision reference voltage, the TL431 can also be configured as an analog controller by exploiting its on-board error amplifier. In this report, the design of a TL431-based voltage controller for a flyback converter is presented. The example circuit is shown in Fig. 1. 0 ) ( %& -./ ' *+, !""# $#"" Fig. 1: Schematic of current-controlled flyback converter with a TL431 configured as a type 2 voltage controller. The flyback converter comprises two control loops. The inner current control loop, based on peak current mode control, is realized using a UCC38C4x current-controlled PWM modulator. The outer voltage control loop is a type 2 controller, which is commonly used in power supply voltage control loops. The voltage control circuit regulates the output voltage of the 5 V winding and includes an optocoupler to maintain isolation between the input and output stages. The voltage controller must regulate the measured 5 V output voltage over a range of loading conditions on the 12 V windings, which induce voltage deviations on the 5 V winding. The load resistances on the ± 12 V windings vary between 15 and 7.5 Ω. The starting point for the voltage controller design is the ± calculation of the converter’s open-loop transfer function, Vo(s) , which is depicted as a Bode plot. The type Vc(s) 2 controller is then designed in the frequency domain to ensure that it provides a sufficiently fast and stable closed-loop transient response.