Technology Reference Guide for Radioactively Contaminated Media

Total Page:16

File Type:pdf, Size:1020Kb

Technology Reference Guide for Radioactively Contaminated Media United States Office of Radiation and Indoor Air EPA 402-R-07-004 Environmental Radiation Protection Program October 2007 Protection Agency (6608J) Technology Reference Guide for Radioactively Contaminated Media TECHNOLOGY REFERENCE GUIDE FOR RADIOACTIVELY CONTAMINATED MEDIA EPA - 402-R-07-004 U.S. Environmental Protection Agency Office of Air and Radiation Office of Radiation and Indoor Air Radiation Protection Division Center for Radiation Site Cleanup Prepared Under: Contract No. 4W-2323-YTSX DISCLAIMER This Technology Guide, developed by USEPA, is meant to be a summary of information available for technologies demonstrated to be effective for treatment of radioactively contaminated media. Inclusion of technologies in this Guide should not be viewed as an endorsement of either the technology or the vendor by USEPA. Similarly, exclusion of any technology should not be viewed as not being endorsed by USEPA; it merely means that the information related to that technology was not so readily available during the development of this Guide. Also, the technology-specific performance and cost data presented in this document are somewhat subjective as they are from a limited number of demonstration projects and based on professional judgment. In addition, all images used in this document are from public domain or have been used with permission. i ACKNOWEDGEMENTS This Guide was developed by the Radiation Protection Division (RPD) of EPA’s Office of Radiation and Indoor Air (ORIA). Mr. Edward Feltcorn of ORIA’s Center for Radiation Site Cleanup, served as the Work Assignment Manager. Several individuals provided valuable input regarding the content of this Guide throughout its development. EPA/ORIA wishes to thank the following individuals for their assistance and technical review comments on the drafts of this Guide: Schatzi Fitz-James Rodger Goodman Brian Littleton Special thanks goes to the following ORIA staff that were instrumental in the technical review and production of this 2007 updated Guide: Ronald Wilhelm Lindsey Bender This document was prepared by Terranear PMC, Inc., under contract number 4W-2323-YTSX. ii FORWARD The Technology Reference Guidance for Radioactively Contaminated Media (Guide) is intended to aid in the selection of treatment technologies for remediation of radioactively contaminated media. The Guide is designed to help site managers, Remedial Program Managers (RPM), On-Scene Coordinators (OSC), their contractors and others to identify and understand technologies that are potentially useful in the remediation of radioactively contaminated media. This Guide is designed to give easy access to critical information on applied technologies that address radioactive contamination in solid and liquid media. The solid media includes soils, sediments, sludge and solid waste, but does not include buildings and structures. The liquid media includes groundwater, surface water, leachate and waste water. The Guide is an update of the 1996 document “Technology Screening Guide for Radioactively Contaminated Site,” EPA-402-R-96-017. New technologies have been added. The Guide is primarily targeted at Superfund or Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) sites. It is hoped that it will be useful for other sites facing similar problems. The Guide is a snapshot in time and may be updated again in the future. If you have any comments on the document or suggestions for incorporation in future updates, please contact: U.S. Environmental Protection Agency Office of Radiation and Indoor Air Radiation Protection Division 1200 Pennsylvania Avenue, NW (MC 6608J) Washington, DC 20460-0001 U.S. Phone: (202) 343-9290 iii THIS PAGE INTENTIONALLY LEFT BLANK iv TABLE OF CONTENTS LIST OF EXHIBITS vii LIST OF APPENDICIES viii LIST OF ACRONYMS ix EXECUTIVE SUMMARY xi 1.0 INTRODUCTION 1 1.1 PURPOSE 1 1.2 BACKGROUND 2 1.3 GENERAL INFORMATION RELATED TO RADIOACTIVELY CONTAMINATED SITES 3 1.3.1 Types of Sites 3 1.3.2 Characteristics of Radioactively Contaminated NPL Sites 3 1.3.3 General Remedial Response Actions 5 1.4 TECHNICAL APPROACH USED 6 1.4.1 Technologies Presented 6 1.4.2 Technology Profile Organization 7 1.4.3 Summaries of Technologies 8 1.5 TECHNOLOGY INFORMATION RESOURCES ON THE WEB 18 1.6 ORGANIZATION AND USE OF THIS GUIDE 19 2.0 SOLID MEDIA TECHNOLOGY PROFILES 21 2.1 CONTAINMENT TECHNOLOGIES 21 2.1.1 Capping 21 2.1.2 Land Encapsulation 27 2.1.3 Cryogenic Barriers 33 2.1.4 Vertical Barriers 39 2.2 SOLIDIFICATION/STABILIZATION 47 2.2.1 Cement Solidification/Stabilization 49 2.2.2 Chemical Solidification/Stabilization 57 2.3 CHEMICAL SEPARATION TECHNOLOGIES 65 2.3.1 Solvent/Chemical Extraction 65 2.4 PHYSICAL SEPARATION TECHNOLOGIES 73 2.4.1 Dry Soil Separation 73 2.4.2 Soil Washing 80 2.4.3 Flotation 88 2.5 VITRIFICATION 92 2.5.1 In-Situ Vitrification 92 v 2.5.2 Ex-Situ Vitrification 99 2.6 BIOLOGICAL TREATMENT 107 2.6.1 Phytoremediation 107 3.0 LIQUID MEDIA TECHNOLOGY PROFILES 115 3.1 CHEMICAL SEPARATION 115 3.1.1 Ion Exchange 115 3.1.2 Chemical Precipitation 123 3.1.3 Permeable Reactive Barriers 129 3.2 PHYSICAL SEPARATION 138 3.2.1 Membrane Filtration 138 3.2.2 Adsorption 145 3.2.3 Aeration 150 3.3 BIOLOGICAL TREATMENT 155 3.3.1 Phytoremediation 156 3.4 NATURAL ATTENUATION 162 3.4.1 Monitored Natural Attenuation 162 4.0 EMERGING TECHNOLOGIES 169 4.1 ELECTROKINETICS 169 4.2 SUPERCRITICAL FLUID EXTRACTION 170 4.3 MAGNETIC SEPARATION 171 4.4 BACTERIAL REDUCTION 173 4.5 IN-SITU GASEOUS REDUCTION 174 vi LIST OF EXHIBITS Exhibit 1-1: Isotope Distribution at Radioactively Contaminated NPL Sites...............................4 Exhibit 1-2: NPL Sites by Radionuclide and Media .......................................................................5 Exhibit 1-3: Summary of Solid and Liquid Media Technologies...................................................9 Exhibit 1-4: Technologies Sorted by Applicable Media...............................................................16 Exhibit 1-5: Technologies Sorted by Radionuclide Type............................................................17 Exhibit 1-6: Using the Technology Profiles..................................................................................20 Exhibit 2-1: Typical Cap for Radioactive Waste...........................................................................22 Exhibit 2-2: Operating Characteristics of Capping......................................................................23 Exhibit 2-3: Cap Construction Costs ............................................................................................25 Exhibit 2-4: Land Encapsulation ...................................................................................................28 Exhibit 2-5: Operating Characteristics of Land Encapsulation ..................................................29 Exhibit 2-6: Cryogenic Barrier .......................................................................................................33 Exhibit 2-7: Operating Characteristics of Cryogenic Barriers....................................................35 Exhibit 2-8: Vertical Barriers..........................................................................................................40 Exhibit 2-9: Operating Characteristics of Vertical Barriers ........................................................41 Exhibit 2-10: Vertical Barrier Construction Costs .......................................................................43 Exhibit 2-11: Ex-Situ Solidification/Stabilization .........................................................................48 Exhibit 2-12: In-Situ Solidification/Stabilization...........................................................................48 Exhibit 2-13: Operating Characteristics of Cement Solidification/Stabilization .......................51 Exhibit 2-14: Operating Characteristics of Chemical Solidification/Stabilization.....................59 Exhibit 2-15: Solvent Extraction ....................................................................................................66 Exhibit 2-16: Operating Characteristics of Solvent/Chemical Extraction..................................68 Exhibit 2-17: Dry Soil Separation ..................................................................................................74 Exhibit 2-18: Operating Characteristics of Dry Soil Separation .................................................75 Exhibit 2-19: Performance of Segmented Gate System ..............................................................77 Exhibit 2-20: Soil Washing .............................................................................................................81 Exhibit 2-21: Operating Characteristics of Soil Washing............................................................83 Exhibit 2-22: Performance of Soil Washing..................................................................................84 Exhibit 2-23: Flotation ....................................................................................................................88 Exhibit 2-24: Operating Characteristics of Flotation ...................................................................89 Exhibit 2-25: In-situ Vitrification ....................................................................................................93 Exhibit 2-26: Operating Characteristics of In-situ Vitrification...................................................95 Exhibit 2-27: Ex-situ Vitrification.................................................................................................101
Recommended publications
  • Chapter 11: Metal Casting Processes and Equipment
    Manufacturing Engineering Technology in SI Units, 6th Edition Chapter 11: Metal Casting Processes and Equipment Copyright © 2010 Pearson Education South Asia Pte Ltd Chapter Outline ¨ Introduction ¨ Expendable-mold, Permanent-pattern Casting Processes ¨ Expendable-mold, Expendable-pattern Casting Processes ¨ Permanent-mold Casting Processes ¨ Casting Techniques for Single-crystal Components ¨ Rapid Solidification ¨ Inspection of Castings ¨ Melting Practice and Furnaces ¨ Foundries and Foundry Automation Copyright © 2010 Pearson Education South Asia Pte Ltd Introduction ¨ Various casting processes developed over time to meet specific design requirements Copyright © 2010 Pearson Education South Asia Pte Ltd Introduction ¨ Molding categories: 1. Expendable molds 2. Permanent molds 3. Composite molds Copyright © 2010 Pearson Education South Asia Pte Ltd Introduction ¨ General characteristics of sand casting and casting processes are summarized Copyright © 2010 Pearson Education South Asia Pte Ltd Expendable-mold, Permanent-pattern Casting Processes: Sand Casting ¨ Most prevalent form of casting ¨ Application for machine bases, large turbine impellers, propellers, plumbing fixtures Copyright © 2010 Pearson Education South Asia Pte Ltd Expendable-mold, Permanent-pattern Casting Processes: Sand Casting Sand ¨ Sand-casting operations use silica sand as the mold material ¨ Sand is inexpensive and suitable high melting point process ¨ 2 types of sand: naturally bonded (bank sand) and synthetic (lake sand) ¨ Fine grained sand enhances mold strength and lower mold permeability Copyright © 2010 Pearson Education South Asia Pte Ltd Expendable-mold, Permanent-pattern Casting Processes: Sand Casting Types of Sand Molds 3 basic types: 1. Green-sand mold Sand in the mold is moist or damp while the metal is being poured into it 2. Cold-box mold Organic and inorganic binders are blended into the sand to bond the grains chemically 3.
    [Show full text]
  • Foundry Industry SOQ
    STATEMENT OF QUALIFICATIONS Foundry Industry SOQ TRCcompanies.com Foundry Industry SOQ About TRC The world is advancing. We’re advancing how it gets planned and engineered. TRC is a global consulting firm providing environmentally advanced and technology‐powered solutions for industry and government. From solid waste, pipelines to power plants, roadways to reservoirs, schoolyards to security solutions, clients look to TRC for breakthrough thinking backed by the innovative follow‐ through of a 50‐year industry leader. The demands and challenges in industry and government are growing every day. TRC is your partner in providing breakthrough solutions that navigate the evolving market and regulatory environment, while providing dependable, safe service to our customers. We provide end‐to‐end solutions for environmental management. Throughout the decades, the company has been a leader in setting industry standards and establishing innovative program models. TRC was the first company to conduct a major indoor air study related to outdoor air quality standards. We also developed innovative measurements standards for fugitive emissions and ventilation standards for schools and hospitals in the 1960s; managed the monitoring program and sampled for pollutants at EPA’s Love Canal Project in the 1970s; developed the basis for many EPA air and hazardous waste regulations in the 1980s; pioneered guaranteed fixed‐price remediation in the 1990s; and earned an ENERGY STAR Partner of the Year Award for outstanding energy efficiency program services provided to the New York State Energy Research and Development Authority in the 2000s. We are proud to have developed scientific and engineering methodologies that are used in the environmental business today—helping to balance environmental challenges with economic growth.
    [Show full text]
  • MSL Engineering Limited Platinum Blue House 1St Floor, 18 the Avenue Egham, Surrey, TW20 9AB
    SMR Final Report 121404 Purpose of Issue Rev Date of Issue Author Agreed Approved Issued for information 0 Aug 2004 SM Issued for internal comment 1 November 2004 AFD DJM JB Issued as Final Report 2 December 2004 AFD DJM JB This Final report has been reviewed and approved by the Mineral Management Service. Approval does not signify that the contents necessarily reflect the views and policies of the Service, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. This study was funded by the Mineral Management Service, U.S. Department of the Interior, Washington, D.C., under Contract Number 1435-01-04-CT-35320 ASSESSMENT OF REPAIR TECHNIQUES FOR AGEING OR DAMAGED STRUCTURES Project #502 DOC REF C357R001 Rev 1 NOV 2004 MSL Engineering Limited Platinum Blue House 1st Floor, 18 The Avenue Egham, Surrey, TW20 9AB Tel: +44 (0)1784 439194 Fax: +44 (0)1784 439198 E-mail: [email protected] C357R001Rev 2, December 2004 MMS Project #502 NUMBER DETAILS OF REVISION 0 Issued for information, August 2004 1 Issued for comment, November 2004. Extensive revisions throughout, including restructuring of report. 2 Issued as Final Report, December 2004. Conversion table added, Figure showing clamp details to avoid added, and general editorial revisions. C357R001Rev 2, December 2004 MMS Project #502 Assessment of Repair Techniques for Ageing or Damaged Structures By Dr. Adrian F Dier MSL Services Corporation Final Project Report: ASSESSMENT OF REPAIR TECHNIQUES FOR AGEING OR DAMAGED STRUCTURES MMS Project Number 502 November 2004 C357R001Rev 2, December 2004 i This Final report has been reviewed a nd approved by the Mineral Management Service.
    [Show full text]
  • A New Ceramic Casting Mold Made by Gel Casting Using Silica Sol As a Binder
    BFSZU Zawrah et al. Vol.38-Dec.2016 A NEW CERAMIC CASTING MOLD MADE BY GEL CASTING USING SILICA SOL AS A BINDER Mahmoud F. Zawrah (1), Sayed A. Abdullah (2), Reham M. Khattab (1), Ibrahim M. Ibrahim (2), Waleed F. Youssef (3) (1) National Research Center, Department of Ceramics. (2) Shoubra Faculty of Engineering, Benha University, Department of Mechanical Engineering. (3) Faculty of Engineering, Sinai University, Department of Mechanical Engineering. ABSTRACT This Paper presents a new ceramic casting mold made by gel casting using silica sol as a binder. The new ceramic mold is consisted of an alumina- mullite-zirconia matrix with the ratios of 38.332 wt. % alumina, 34.378 wt. % mullite, and 27.294 wt. % zirconia respectively, the slurry is mixed then the gelling agent is added and poured into the pattern. After gelation the mold is extracted and left to dry, then sintered. There are three main defects appear in the mold fabrication process. The 1st defect is the mold cracking, as a result of forced shrinkage of mold into pattern. The 2nd defect is the bad gelation behavior of mold, as a result of non equal gelling time. The last defect is mold surface cracks, due to increased silica ratio added to the mixture. As zirconia increased the bulk density and apparent porosity is increased, leading to higher mold permeability which is important to eliminate trapping of residual gases. The increased zirconia content decreases the micro hardness and the cold crushing strength, but increases the thermal shock resistance due to phase transformation during sintering. The ceramic mold is applicable for nodular cast iron so that the mold is hard enough to withstand the forces of spheroidal graphite formation when nodular cast iron is poured into the ceramic mold.
    [Show full text]
  • Manufacturing Technology I Unit I Metal Casting
    MANUFACTURING TECHNOLOGY I UNIT I METAL CASTING PROCESSES Sand casting – Sand moulds - Type of patterns – Pattern materials – Pattern allowances – Types of Moulding sand – Properties – Core making – Methods of Sand testing – Moulding machines – Types of moulding machines - Melting furnaces – Working principle of Special casting processes – Shell – investment casting – Ceramic mould – Lost Wax process – Pressure die casting – Centrifugal casting – CO2 process – Sand Casting defects. UNIT II JOINING PROCESSES Fusion welding processes – Types of Gas welding – Equipments used – Flame characteristics – Filler and Flux materials - Arc welding equipments - Electrodes – Coating and specifications – Principles of Resistance welding – Spot/butt – Seam – Projection welding – Percusion welding – GS metal arc welding – Flux cored – Submerged arc welding – Electro slag welding – TIG welding – Principle and application of special welding processes – Plasma arc welding – Thermit welding – Electron beam welding – Friction welding – Diffusion welding – Weld defects – Brazing – Soldering process – Methods and process capabilities – Filler materials and fluxes – Types of Adhesive bonding. UNIT III BULK DEFORMATION PROCESSES Hot working and cold working of metals – Forging processes – Open impression and closed die forging – Characteristics of the process – Types of Forging Machines – Typical forging operations – Rolling of metals – Types of Rolling mills – Flat strip rolling – Shape rolling operations – Defects in rolled parts – Principle of rod and wire drawing – Tube drawing – Principles of Extrusion – Types of Extrusion – Hot and Cold extrusion – Equipments used. UNIT IV SHEET METAL PROCESSES Sheet metal characteristics – Typical shearing operations – Bending – Drawing operations – Stretch forming operations –– Formability of sheet metal – Test methods – Working principle and application of special forming processes – Hydro forming – Rubber pad forming – Metal spinning – Introduction to Explosive forming – Magnetic pulse forming – Peen forming – Super plastic forming.
    [Show full text]
  • Study of the Industrial Precision Manufacturing and Metallic Alloys with Respect to Economic Considerations
    MPRA Munich Personal RePEc Archive Study of the Industrial Precision Manufacturing and Metallic Alloys with Respect to Economic Considerations Saha Choudhuri and Jian Shi Bangladesh University of Engineering and Technology 5 January 2017 Online at https://mpra.ub.uni-muenchen.de/77481/ MPRA Paper No. 77481, posted 13 March 2017 14:26 UTC Study of the Industrial Precision Manufacturing and Metallic Alloys with Respect to Economic Considerations Saha Choudhuri, Jian Shi Bangladesh University of Engineering and Technology 1 Abstract In this report according to the research results and approaches that used, it is utilized and illustrated why these papers are suitable for this research. The best position for explaining topic is here, because for understanding better the concept and the area of research, it is necessary to write briefly at the beginning of the article about topic. It is attempted to design new piston (porous piston) not only to have a good resistance in mechanical properties but also provide lower weight comparing to the previous ones. The most important thing in this work is to be aware of the effect of vibration, vacuum and over pressure during investment casting which by this way we can produce porous structure. By using the existing results of several papers, we will attempt to cast porous piston and optimize it to have the best mechanical properties. As we know engine pistons are one of the most complex components among all automotive or other industry field components. The engine can be called the heart of the car and piston maybe considered the most important part of an engine.
    [Show full text]
  • Computers in Foundries
    Computers in Foundries Dr Thoguluva Raghavan Vijayaram* and Dr Paolo Piccardo** * Principal Lecturer, Faculty of Engineering and Technology, FET MMU, Multimedia University, Melaka Campus Melaka, Malaysia ** Professor, Dipartimento di Chimicae Chimica Industriale, DCCI, Sezione di Chimica Inorganicae Metallurgia, Genoa University, Genoa, Italy ABSTRACT RIASSUNTO Computers have now entered into the foundry I computer sono entrati prepotentemente nella fonderia, engineering. Foundry mechanization and modernization un’arte antica che si è evoluta in una scienza moderna. La are of considerable importance today when the foundry fonderia è oggi completamente monitorata e controllata has evolved from an ancient art into a modern science dal computer, che assume un’importanza primaria per and it is fully controlled and monitored by computers. migliorare la qualità dei getti e la produttività. Dal punto Modernization is the only key to improve casting quality di vista industriale, i PC sono da tempo utilizzati nelle and productivity. From industrial point of view, they aree amministrative della finanza, contabilità, gestione have been in use in the administrative areas of finance, del personale, salari, stipendi, gestione del magazzino. accounting, personnel records, wage, salaries, and Attualmente molti sistemi di macchine per fonderia sono inventory control for a long period. Many foundry machine computerizzati. Grazie al computer la fatica e lo stress systems are computerized. Due to the entry of computers per i lavoratori e lo staff si sono ridotti notevolmente. La in foundries, fatigue and strain on the workers and staffs cultura del lavoro è notevolmente migliorata, e con essa si have been considerably reduced during working and sono sviluppati il coinvolgimento, la creatività e il senso di work culture has improved tremendously.
    [Show full text]
  • Shell Mold Casting
    Shell Mold Casting Shell mold casting or shell molding is a metal casting process in manufacturing industry in which the mold is a thin hardened shell of sand and thermosetting resin binder backed up by some other material. Shell mold casting is particularly suitable for steel castings under 10 kg; however almost any metal that can be cast in sand can be cast with shell molding process. Also much larger parts have been manufactured with shell molding. Typical parts manufactured in industry using the shell mold casting process include cylinder heads, gears, bushings, connecting rods, camshafts and valve bodies. The Process The first step in the shell mold casting process is to manufacture the shell mold. The sand we use for the shell molding process is of a much smaller grain size than the typical greensand mold. This fine grained sand is mixed with a thermosetting resin binder. A special metal pattern is coated with a parting agent; (typically silicone), which will latter facilitate in the removal of the shell. The metal pattern is then heated to a temperature of (175 °C-370 °C) . The sand mixture is then poured or blown over the hot casting pattern. Due to the reaction of the thermosetting resin with the hot metal pattern a thin shell forms on the surface of the pattern. The desired thickness of the shell is dependent upon the strength requirements of the mold for the particular metal casting application. A typical industrial manufacturing mold for a shell molding casting process could be 7.5mm thick. The thickness of the mold can be controlled by the length of time the sand mixture is in contact with the metal casting pattern.
    [Show full text]
  • Chapter 11 METAL CASTING PROCESSES
    YPALACI GIM2042 Manufacturing Processes, Gr. 2, T.301 Lecturer; Assoc. Prof.Dr.Yüksel PALACI Office ; T403 E-mail ; [email protected] • Book; John Wiley & Sons, Inc. M. P. Groover, “Fundamentals of Modern Manufacturing” • Chapters:1,10,11,16,18-22,24,30-34 • http://www.bologna.yildiz.edu.tr/index.php?r=course/v iew&id=1171&aid=35 Dept. of Naval Architecture and Marine Engineering YPALACI Chapter 11 METAL CASTING PROCESSES • Sand Casting • Other Expendable Mold Casting Processes • Permanent Mold Casting Processes • Foundry Practice • Casting Quality • Metals for Casting • Product Design Considerations Dept. of Naval Architecture and Marine Engineering 1 YPALACI Two Categories of Metal Casting Processes 1. Expendable mold processes - mold is sacrificed to remove part Advantage: more complex shapes possible Disadvantage: production rates often limited by time to make mold rather than casting itself 2. Permanent mold processes - mold is made of metal and can be used to make many castings Advantage: higher production rates Disadvantage: geometries limited by need to open mold Dept. of Naval Architecture and Marine Engineering YPALACI Overview of Sand Casting • Most widely used casting process, accounting for a significant majority of total tonnage cast • Nearly all alloys can be sand casted, including metals with high melting temperatures, such as steel, nickel, and titanium • Parts ranging in size from small to very large • Production quantities from one to millions Dept. of Naval Architecture and Marine Engineering 2 Figure 11.1 - A large sand casting weighing over 680 kg (1500 lb) \ for an air compressor frame (courtesy Elkhart Foundry, photo by Paragon Inc , Elkhart, Indiana) YPALACI Steps in Sand Casting 1.
    [Show full text]
  • ME477: Manufacturing Processes Introduction Manufacturing
    Concept Introduction Design • Manufacturing? Organization Make or Buy – Making goods and articles ME477: – Shaping and treating Materials Virtual Product to perform desirable functions Organization • Manufacturing Processes Manufacturing Processes – Casting – Powder Processing (Shape, Raw Materials Material, – Forming Tolerance Patrick Kwon – Machining & Cost) Manufacturing – Surface processing Process Department of Mechanical Engineering – Joining Michigan State University • To make good and articles - A Manufacturing sequence of processes must be Process East Lansing, Michigan chosen, based on shape, material, tolerance and cost Manufacturing • Before MFG, a Make or Buy Process decision – Process Design 1 – Production Systems Part 2 Manufacturing as a set of Manufacturing processes • Manufacturing: 20% of U.S. GNP Power Management • Service sector: 70% of U.S. GNP (retail, transportation, banking, education, Labor Facility Machine communication, insurance and government). • Agriculture, Construction etc.: 10% of U.S. GNP • Manufacture comes from the Latin words manus A set Raw Materials Part (hand) and factus (make). of Processes • Definition: the application of physical and Concurrent or chemical processes to alter the geometries, Simultaneous Waste properties and appearance of a starting material Engineering in order to make and assemble it into a product. 3 4 Manufacturing Processes More Manufacturing Processes Deformation Processing Machining Polymer Processing Composite Processing Microelectronic Processing Casting Process Open
    [Show full text]
  • A Study of Metal Founding and Its Practices and Applications for Information Purposes in Industrial Arts Education
    Eastern Illinois University The Keep Plan B Papers Student Theses & Publications 1-1-1965 A Study of Metal Founding and its Practices and Applications for Information Purposes in Industrial Arts Education Jack Fuelle Follow this and additional works at: https://thekeep.eiu.edu/plan_b Recommended Citation Fuelle, Jack, "A Study of Metal Founding and its Practices and Applications for Information Purposes in Industrial Arts Education" (1965). Plan B Papers. 418. https://thekeep.eiu.edu/plan_b/418 This Dissertation/Thesis is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Plan B Papers by an authorized administrator of The Keep. For more information, please contact [email protected]. A S'11UDY O:J:t"' NLE'rAL :B'OUNDING AND I'l1 S PRAC'rICES AND APPLICATIONS FOR INFOHMA'EION PURPOSES IN IlIDUSTHIAL At{rS ELJUUATION (TITLE) BY JacK .1melle PLAN B PAPER SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE MASTER OF SCIENCE IN EDUCATION AND PREPARED IN COURSE industrial Arts J75 IN THE GRADUATE SCHOOL, EASTERN ILLINOIS UNIVERSITY, CHARLESTON, ILLINOIS YEAR I HEREBY RECOMMEND THIS PLAN B PAPER BE ACCEPTED AS FULFILLING THIS PART OF THE DEGREE, M.S. IN ED. ----~'7fa6,ls ---~--~---- -~-~~- DATE ADVISER TABLE OF CONTENTS Chaplier Page I INTRODUCTION ••••••••••••••••••••••••••••••••• 1 Purpose Signiricance or tne Stua.y 'I'er.m.1no.logy II BRIEF HISTORY OF THE FOUNDHY ••••••••••••••••• b Ear.Lies1i Beginnings 5000 B. C• .lbOO B. C. Weapons in Ea:c.Ly Found.1.·y Work Guns.miths in Early Foundry Work Current Developments in Founding III FOUNDRY EQ,U.1Pl~'l'.
    [Show full text]
  • Navigating Contractual Nonperformance Guide to U.S
    Navigating contractual nonperformance Guide to U.S. force majeure September 2020 Navigating contractual nonperformance Guide to U.S. force majeure The information in this guide is accurate as of August 2020. Navigating contractual nonperformance Guide to U.S. force majeure Examining the law Disputes regarding whether a party’s contractual obligations are effectively excused are inevitable given the COVID-19 pandemic’s ongoing disruptions to commerce. When is contractual performance excused? We have attempted to review all U.S. cases involving force majeure disputes and similar common law defenses to nonperformance. This guide cites to more than 1,000 decisions and aggregates the governing caselaw within each U.S. state, the District of Columbia, and Puerto Rico. We focus on cases involving: the enforceability of contractual force majeure provisions including a focus on causation, 1. mitigation, and foreseeability requirements; common law concepts such as impossibility where no contractual force majeure provisions 2. exist; and application to the sale of goods context, including demands for adequate assurances, 3. commercial impracticability, and substitute performance. Should you need to discuss any issue in more detail please feel free to contact us. Matt Gatewood Meghana Shah Partner Partner Principal Author and Editor T: +1 202 383 0122 T: +1 202 389 5077 mattgatewood meghanashah @eversheds-sutherland.com @eversheds-sutherland.com 3 Navigating contractual nonperformance Guide to U.S. force majeure Contents Alabama .........................................................
    [Show full text]