Trams Making Way for Light Rail Transit
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Union Station Conceptual Engineering Study
Portland Union Station Multimodal Conceptual Engineering Study Submitted to Portland Bureau of Transportation by IBI Group with LTK Engineering June 2009 This study is partially funded by the US Department of Transportation, Federal Transit Administration. IBI GROUP PORtlAND UNION STATION MultIMODAL CONceptuAL ENGINeeRING StuDY IBI Group is a multi-disciplinary consulting organization offering services in four areas of practice: Urban Land, Facilities, Transportation and Systems. We provide services from offices located strategically across the United States, Canada, Europe, the Middle East and Asia. JUNE 2009 www.ibigroup.com ii Table of Contents Executive Summary .................................................................................... ES-1 Chapter 1: Introduction .....................................................................................1 Introduction 1 Study Purpose 2 Previous Planning Efforts 2 Study Participants 2 Study Methodology 4 Chapter 2: Existing Conditions .........................................................................6 History and Character 6 Uses and Layout 7 Physical Conditions 9 Neighborhood 10 Transportation Conditions 14 Street Classification 24 Chapter 3: Future Transportation Conditions .................................................25 Introduction 25 Intercity Rail Requirements 26 Freight Railroad Requirements 28 Future Track Utilization at Portland Union Station 29 Terminal Capacity Requirements 31 Penetration of Local Transit into Union Station 37 Transit on Union Station Tracks -
Bullets and Trains: Exporting Japan's Shinkansen to China and Taiwan
Volume 5 | Issue 3 | Article ID 2367 | Mar 01, 2007 The Asia-Pacific Journal | Japan Focus Bullets and Trains: Exporting Japan's Shinkansen to China and Taiwan Christopher P. Hood Bullets and Trains: ExportingJapan ’s Japan, like many other countries has a de facto Shinkansen to China and Taiwan two-China policy with formal recognition of the People’s Republic but extensive economic and By Christopher P. Hood other ties with the Republic. One example of this dual policy is the use of Haneda Airport by China Airlines (Taiwan), but the use of Narita It is over forty years since the Shinkansen Airport by airlines from China. (‘bullet train’) began operating between Tokyo and Osaka. Since then the network has The Shinkansen expanded, but other countries, most notably France and Germany, have been developing The Shinkansen is one ofJapan ’s iconic their own high speed railways, too. As other symbols. The image ofMount Fuji with a countries, mainly in Asia, look to develop high passing Shinkansen is one of the most speed railways, the battle over which country projected images of Japan. The history of the will win the lucrative contracts for them is on. Shinkansen dates back to the Pacific War. It is not only a matter of railway technology. Shima Yasujiro’s plan for thedangan ressha Political, economic & cultural influences are (‘bullet train’) then included the idea of a line also at stake. This paper will look at these linking Tokyo with Korea and China (1). various aspects in relation to the export of the Although that plan never materialised, the Shinkansen to China in light of previous Shinkansen idea was reborn nearly two Japanese attempts to export the Shinkansen decades later, as yume-no-chotokkyu (‘super and the situation in Taiwan. -
Transit Planning Practice in the Age of Transit-Oriented Development by Ian Robinson Carlton a Dissertation Submitted in Partial
Transit Planning Practice in the Age of Transit-Oriented Development By Ian Robinson Carlton A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in City & Regional Planning in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Daniel Chatman, Chair Professor Robert Cervero Professor Dwight Jaffee Fall 2013 © Copyright by Ian Robinson Carlton 2013 All Rights Reserved Abstract Transit Planning Practice in the Age of Transit-Oriented Development by Ian Robinson Carlton Doctor of Philosophy in City & Regional Planning University of California, Berkeley Professor Daniel Chatman, Chair Globally, urban development near transit stations has long been understood to be critical to transit’s success primarily because it can contribute to ridership and improve the efficiency of transit investments. In the United States in particular, fixed-guideway transit’s land use-shaping capability has been an important justification and goal for transit investment. In fact, today’s U.S. federal funding policies increasingly focus on achieving transit-oriented real estate development near new transit infrastructure. However, the widespread implementation of transit and land use coordination practices has been considered an uphill battle. The academic literature suggests the most effective practice may be for U.S. transit planners to locate transit stations where pre-existing conditions are advantageous for real estate development or transit investments can generate the political will to dramatically alter local conditions to make them amenable to real estate development. However, prior to this study, no research had investigated the influence of real estate development considerations on U.S. -
Interstate Commerce Commission in Re
INTERSTATE COMMERCE COMMISSION IN RE INVESTIGATION OF AM" ACCIDENT WHICH OCCURRED ON THE DENVER & INTERURBAN RAILROAD, NEAR GLOBEVILLE, COLO , ON SEPTEMBER 6, 1920 November 17, 1920 To the Commission On September G, 1920, there was a hoad-end collision between two passenger tiams on the Denvei & Intemiban Railioad neai Globe ville, Colo , which lesulted m the death of 11 passengeis and 2 em ployees, and the injury of 209 passengers and 5 employees This accident was investigated jointly with the Public Utilities Commis sion of Coloiado, and as a result of this investigation I lespectfully submit the following lepoit The Dem ei & Interurban Railioacl is a bianch of the Coloiado & Southern Railway, the rules of which govern Denver & Interurban trains Donvei & Intemiban tiains aie opeiated between Denvei and Bouldei, 31 miles noith of Denvei, over the Denvei Tiamway Co's tiacks between Denvei and Globeville and ovei Denvei & In temiban tiacks between Globeville and Denver & Inteiuiban Junc tion, at which point the line blanches, one line extending to Louis ville Junction and the othei to Webb Junction, and between these two junctions and Bouldei the trains of the Denvei & Inteiuiban j.»,ailroad opeiate over the tiacks of the Colorado & Southern Kail- way From Marshall, between Louisville Junction and Bouldei, a bianch line .extends to Eldorado Spimgs, this is also used jointly by the tiams of the two laihoads On this line Denvei & Intel urban employees aie ordinarily re lieved by Denver Tiamway employees at Globeville, the tiamway employees -
From the 1832 Horse Pulled Tramway to 21Th Century Light Rail Transit/Light Metro Rail - a Short History of the Evolution in Pictures
From the 1832 Horse pulled Tramway to 21th Century Light Rail Transit/Light Metro Rail - a short History of the Evolution in Pictures By Dr. F.A. Wingler, September 2019 Animation of Light Rail Transit/ Light Metro Rail INTRODUCTION: Light Rail Transit (LRT) or Light Metro Rail (LMR) Systems operates with Light Rail Vehicles (LRV). Those Light Rail Vehicles run in urban region on Streets on reserved or unreserved rail tracks as City Trams, elevated as Right-of-Way Trams or Underground as Metros, and they can run also suburban and interurban on dedicated or reserved rail tracks or on main railway lines as Commuter Rail. The invest costs for LRT/LMR are less than for Metro Rail, the diversity is higher and the adjustment to local conditions and environment is less complicated. Whereas Metro Rail serves only certain corridors, LRT/LRM can be installed with dense and branched networks to serve wider areas. 1 In India the new buzzword for LRT/LMR is “METROLIGHT” or “METROLITE”. The Indian Central Government proposes to run light urban metro rail ‘Metrolight’ or Metrolite” for smaller towns of various states. These transits will operate in places, where the density of people is not so high and a lower ridership is expected. The Light Rail Vehicles will have three coaches, and the speed will be not much more than 25 kmph. The Metrolight will run along the ground as well as above on elevated structures. Metrolight will also work as a metro feeder system. Its cost is less compared to the metro rail installations. -
Veículos Leves Sobre Trilhos
Veículos Leves sobre Trilhos ®® AvenioEmpfohlen wird auf dem Titel der Einsatz eines vollflächigen SoluçãoHintergrundbildes de Mobilidade (Format: com25,4 x Eficiência 19,05 cm): Energética • Bild auf Master platzieren (JPG, RGB, 144dpi) • Bild in den Hintergrund legen Apresentação: Eng. Juarez Barcellos Filho © Siemens Ltda. 2010 Avenio ® - Siemens Mobility Introdução História Combino Classic Avenio Nossa Missão © Siemens Ltda. 2010 Pág. 2 Setembro / 2010 Mobility Division / Juarez Barcellos Portfólio de Produtos da Public Transit Velaro 350 Velocidade (km/h) Venturio 250 Viaggio 200 Desiro 160 Combino, Avenio, S70, SD 160, Metros 100 Distância média entre paradas (km) 1 10 30 50 Introdução História Combino Classic Avenio Nossa Missão © Siemens Ltda. 2010 Pág. 3 Setembro / 2010 Mobility Division / Juarez Barcellos O VLT da Siemens do Passado ao Presente Em 1881, Werner von Siemens, o fundador da Siemens, inventou o primeiro bonde elétrico do mundo, que viajava entre a região de Berlim e a escola de cadetes a uma velocidade de 30 km/h, transportando 20 passageiros. O transporte por bondes foi se estabilizando desde então e hoje é um meio convincente e moderno, e a Siemens continua a desenvolver tecnologias inovadoras com segurança, conforto e acessibilidade para estes veículos. Desde então, os bondes da Siemens operam ao redor do mundo em diversas cidades como Amsterdam, Hiroshima e Melbourne. Introdução História Combino Classic Avenio Nossa Missão © Siemens Ltda. 2010 Pág. 4 Setembro / 2010 Mobility Division / Juarez Barcellos -
MIT Kendall Square
Ridership and Service Statistics Thirteenth Edition 2010 Massachusetts Bay Transportation Authority MBTA Service and Infrastructure Profile July 2010 MBTA Service District Cities and Towns 175 Size in Square Miles 3,244 Population (2000 Census) 4,663,565 Typical Weekday Ridership (FY 2010) By Line Unlinked Red Line 241,603 Orange Line 184,961 Blue Line 57,273 Total Heavy Rail 483,837 Total Green Line (Light Rail & Trolley) 236,096 Bus (includes Silver Line) 361,676 Silver Line SL1 & SL2* 14,940 Silver Line SL4 & SL5** 15,086 Trackless Trolley 12,364 Total Bus and Trackless Trolley 374,040 TOTAL MBTA-Provided Urban Service 1,093,973 System Unlinked MBTA - Provided Urban Service 1,093,973 Commuter Rail Boardings (Inbound + Outbound) 132,720 Contracted Bus 2,603 Water Transportation 4,372 THE RIDE Paratransit Trips Delivered 6,773 TOTAL ALL MODES UNLINKED 1,240,441 Notes: Unlinked trips are the number of passengers who board public transportation vehicles. Passengers are counted each time they board vehicles no matter how many vehicles they use to travel from their origin to their destination. * Average weekday ridership taken from 2009 CTPS surveys for Silver Line SL1 & SL2. ** SL4 service began in October 2009. Ridership represents a partial year of operation. File: CH 01 p02-7 - MBTA Service and Infrastructure Profile Jul10 1 Annual Ridership (FY 2010) Unlinked Trips by Mode Heavy Rail - Red Line 74,445,042 Total Heavy Rail - Orange Line 54,596,634 Heavy Rail Heavy Rail - Blue Line 17,876,009 146,917,685 Light Rail (includes Mattapan-Ashmont Trolley) 75,916,005 Bus (includes Silver Line) 108,088,300 Total Rubber Tire Trackless Trolley 3,438,160 111,526,460 TOTAL Subway & Bus/Trackless Trolley 334,360,150 Commuter Rail 36,930,089 THE RIDE Paratransit 2,095,932 Ferry (ex. -
Factors to Consider in Designing a Joint Bus-Light Rail Transit Mall
156 TRB Special Report 195 Factors to Consider in Designing a Joint Bus-Light Rail Transit Mall R. DAVID MINISTER and DAVID J. CLARKE, Santa Clara County Transportation Agency Cities are turning more and more to bus and LRT transit planning, design, or construction of such a facility are mall solutions primarily because the costs of building a listed in Table 1. transit mall for servicing downtown areas are between $15 At about the same time that North American transit and $30 million per mile (1981 doilars) whereas building a experts were rediscovering the streetcar by visiting subway would cost between $60 and $120 million per mile modern light rail installations in Europe, an interest in bus in a CBD environment. Ongoing energy, maintenance, and transit malls began to spring up. First tested on Nicollet security costs are also much less with a transit mall than Avenue in Minneapolis in 1967, the basic idea of a transit with a subway station alternative, and pedestrian access is mall is to combine a pedestrian mall with an exclusive much quicker and easier, particularly for elderly and roadway for transit vehicles. In 1976, Portland, Oregon, handicapped persons. This paper identifies and describes received approval to construct a bus transit mall on 2 one- key design factors considered in the development of a joint way downtown streets. In the same year Chestnut Street bus-light rail transit mall for the downtown area in San in Philadelphia was converted into a bus transit mall in Jose, California. Other light rail mall designs researched time for celebrating the nations bicentennial. -
Transit-Oriented Development and Joint Development in the United States: a Literature Review
Transit Cooperative Research Program Sponsored by the Federal Transit Administration RESEARCH RESULTS DIGEST October 2002—Number 52 Subject Area: VI Public Transit Responsible Senior Program Officer: Gwen Chisholm Transit-Oriented Development and Joint Development in the United States: A Literature Review This digest summarizes the literature review of TCRP Project H-27, “Transit-Oriented Development: State of the Practice and Future Benefits.” This digest provides definitions of transit-oriented development (TOD) and transit joint development (TJD), describes the institutional issues related to TOD and TJD, and provides examples of the impacts and benefits of TOD and TJD. References and an annotated bibliography are included. This digest was written by Robert Cervero, Christopher Ferrell, and Steven Murphy, from the Institute of Urban and Regional Development, University of California, Berkeley. CONTENTS IV.2 Supportive Public Policies: Finance and Tax Policies, 46 I INTRODUCTION, 2 IV.3 Supportive Public Policies: Land-Based I.1 Defining Transit-Oriented Development, 5 Initiatives, 54 I.2 Defining Transit Joint Development, 7 IV.4 Supportive Public Policies: Zoning and I.3 Literature Review, 9 Regulations, 57 IV.5 Supportive Public Policies: Complementary II INSTITUTIONAL ISSUES, 10 Infrastructure, 61 II.1 The Need for Collaboration, 10 IV.6 Supportive Public Policies: Procedural and II.2 Collaboration and Partnerships, 12 Programmatic Approaches, 61 II.3 Community Outreach, 12 IV.7 Use of Value Capture, 66 II.4 Government Roles, 14 -
Company Information PDF(3.9MB)
:HDLPWREHDZDUPKHDUWHGFRPSDQ\ ZKLFKFRQWULEXWHFRQWLQXRXVO\ WRDFRPIRUWDEOHOLIHRIKXPDQEHLQJV DQGWKHVRFLHW\ &RPSDQ\3KLORVRSK\ :HGHYRWHRXUVHOIVROHO\WRRXUEHOLHI ³7RSURGXFHWKHVHDWVZKLFKFDQVDWLVI\FXVWRPHUV¶UHTXLUHPHQWV´ $VDVSHFLDOL]HGVHDWPDQXIDFWXUHULQWKHZRUOGZKRKDVRXURZQGHYHORSPHQW FDSDELOLWLHVDJDLQVWQRQPDVVSURGXFWLRQZHFRQWLQXHWRPDNHRXUXWPRVWHIIRUWV WRUDLVHWKHFXUUHQWYDOXHRIWKHFRPSDQ\DVZHOODVDKXPDQEHLQJ 0DQDJHPHQW3ROLF\ &RPSDQ\3URILOH 7UDGHQDPH 680,12(,1'8675,(6&2/7' (VWDEOLVKHG )HEUXDU\VW &DSLWDO PLOLLRQ\HQ 'LUHFWRUV 3UHVLGHQW 7681(+,.2.$1(.2 'LUHFWRU 6+,*(21$.$-,0$ 'LUHFWRU +,52720,212 $XGLWRU 6(,+$&+,<26+,=$., /RFDWLRQ +HDGTXDUWHUV 6+21$13ODQW ,NHQRKDWD2VXPLN\RXWDQDEHFLW\.\RWR-DSDQ 1DJDWRUR+LUDWVXNDFLW\.DQDJDZD-$3$1 ,Q9$17(&+LUDWVXNDGLVWULEXWLRQFHQWHU 3ODQWVFDOHV /DQGDUHDP %XLOGLQJDUHDP ,62 7RWDOIORRUP FHUWLILFDWLRQDFTXLUHGLQ'HF 4XDOLW\0DQDJHPHQW6\VWHP ,62 FHUWLILFDWLRQDFTXLUHGLQ'HF 4XDOLW\0DQDJHPHQW6\VWHPV .<86+83ODQW 1DJDVDNR$]D,QDGR2D]D<XNXKDVKL&LW\ ,,62 )XNXRND-$3$1 FHUWLILFDWLRQDFTXLUHGLQ-DQ (QYLURQPHQWDO0DQDJHPHQW6\VWHPV 5HODWHGFRPSDQ\ +,5$12)DFWRU\&R/WG FKRPH.DUXPRVW1DJDWDNX.REHFLW\ +\RJR-DSDQ The board Organization of directors President The board of corporate officers Design / Manufacture Salesand General Affairs Section Development / Purchasing Quality Section Section Head Sales Group of Accounting Quarters Research & Automobile Group Development Group SHONAN Plant Purchasing General Affairs Team of Group Design Automobile KYUSHU Group Plant Sales Group of Quality Railway / Ship Technical Control Manufacturing Group Group Purchasing -
Trolleybuses: Applicability of UN Regulation No
Submitted by the expert from OICA Informal document GRSG-110-08-Rev.1 (110th GRSG, 26-29 April 2016, agenda item 2(a)) Trolleybuses: Applicability of UN Regulation No. 100 (Electric Power Train Vehicle) vs. UN Regulation No. 107 Annex 12 (Construction of M2/M3 Vehicles) for Electrical Safety 1. At 110th session of GRSG Belgium proposes to amend UN R107 annex 12 by deleting the requirements for trolleybuses (see GRSG/2016/05) and transfer the requirements into UN R100 (see GRSP/2016/07), which will be on the agenda of upcoming GRSP session in May 2016. 2. Due to the design of a trolleybus and stated in UN Regulation No. 107, trolleybuses are dual- mode vehicles. They can operate either: (a) in trolley mode, when connected to the overhead contact line (OCL), or (b) in bus mode when not connected to the OCL. When not connected to the OCL, they can also be (c) in charging mode, where they are stationary and plugged into the power grid for battery charging. 3. The basic principles of the design of the electric powertrain of the trolleybus and the connection to the OCL is based on international standards developed for trams and trains and is implemented and well accepted in the market worldwide. 4. Due to the fact that the trolleybus is used on public roads the trolleybus has to fulfil the regulations under the umbrella of the UNECE regulatory framework due to the existing national regulations (e.g. European frame work directive). 5. Therefore the annex 12 in UN R107 was amended to align the additional safety prescriptions for trolleybuses with the corresponding electrical standards. -
Tramway Renaissance
THE INTERNATIONAL LIGHT RAIL MAGAZINE www.lrta.org www.tautonline.com OCTOBER 2018 NO. 970 FLORENCE CONTINUES ITS TRAMWAY RENAISSANCE InnoTrans 2018: Looking into light rail’s future Brussels, Suzhou and Aarhus openings Gmunden line linked to Traunseebahn Funding agreed for Vancouver projects LRT automation Bydgoszcz 10> £4.60 How much can and Growth in Poland’s should we aim for? tram-building capital 9 771460 832067 London, 3 October 2018 Join the world’s light and urban rail sectors in recognising excellence and innovation BOOK YOUR PLACE TODAY! HEADLINE SUPPORTER ColTram www.lightrailawards.com CONTENTS 364 The official journal of the Light Rail Transit Association OCTOBER 2018 Vol. 81 No. 970 www.tautonline.com EDITORIAL EDITOR – Simon Johnston [email protected] ASSOCIATE EDITOr – Tony Streeter [email protected] WORLDWIDE EDITOR – Michael Taplin 374 [email protected] NewS EDITOr – John Symons [email protected] SenIOR CONTRIBUTOR – Neil Pulling WORLDWIDE CONTRIBUTORS Tony Bailey, Richard Felski, Ed Havens, Andrew Moglestue, Paul Nicholson, Herbert Pence, Mike Russell, Nikolai Semyonov, Alain Senut, Vic Simons, Witold Urbanowicz, Bill Vigrass, Francis Wagner, Thomas Wagner, 379 Philip Webb, Rick Wilson PRODUCTION – Lanna Blyth NEWS 364 SYSTEMS FACTFILE: bydgosZCZ 384 Tel: +44 (0)1733 367604 [email protected] New tramlines in Brussels and Suzhou; Neil Pulling explores the recent expansion Gmunden joins the StadtRegioTram; Portland in what is now Poland’s main rolling stock DESIGN – Debbie Nolan and Washington prepare new rolling stock manufacturing centre. ADVertiSING plans; Federal and provincial funding COMMERCIAL ManageR – Geoff Butler Tel: +44 (0)1733 367610 agreed for two new Vancouver LRT projects.