Bullets and Trains: Exporting Japan's Shinkansen to China and Taiwan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Company Information PDF(3.9MB)
:HDLPWREHDZDUPKHDUWHGFRPSDQ\ ZKLFKFRQWULEXWHFRQWLQXRXVO\ WRDFRPIRUWDEOHOLIHRIKXPDQEHLQJV DQGWKHVRFLHW\ &RPSDQ\3KLORVRSK\ :HGHYRWHRXUVHOIVROHO\WRRXUEHOLHI ³7RSURGXFHWKHVHDWVZKLFKFDQVDWLVI\FXVWRPHUV¶UHTXLUHPHQWV´ $VDVSHFLDOL]HGVHDWPDQXIDFWXUHULQWKHZRUOGZKRKDVRXURZQGHYHORSPHQW FDSDELOLWLHVDJDLQVWQRQPDVVSURGXFWLRQZHFRQWLQXHWRPDNHRXUXWPRVWHIIRUWV WRUDLVHWKHFXUUHQWYDOXHRIWKHFRPSDQ\DVZHOODVDKXPDQEHLQJ 0DQDJHPHQW3ROLF\ &RPSDQ\3URILOH 7UDGHQDPH 680,12(,1'8675,(6&2/7' (VWDEOLVKHG )HEUXDU\VW &DSLWDO PLOLLRQ\HQ 'LUHFWRUV 3UHVLGHQW 7681(+,.2.$1(.2 'LUHFWRU 6+,*(21$.$-,0$ 'LUHFWRU +,52720,212 $XGLWRU 6(,+$&+,<26+,=$., /RFDWLRQ +HDGTXDUWHUV 6+21$13ODQW ,NHQRKDWD2VXPLN\RXWDQDEHFLW\.\RWR-DSDQ 1DJDWRUR+LUDWVXNDFLW\.DQDJDZD-$3$1 ,Q9$17(&+LUDWVXNDGLVWULEXWLRQFHQWHU 3ODQWVFDOHV /DQGDUHDP %XLOGLQJDUHDP ,62 7RWDOIORRUP FHUWLILFDWLRQDFTXLUHGLQ'HF 4XDOLW\0DQDJHPHQW6\VWHP ,62 FHUWLILFDWLRQDFTXLUHGLQ'HF 4XDOLW\0DQDJHPHQW6\VWHPV .<86+83ODQW 1DJDVDNR$]D,QDGR2D]D<XNXKDVKL&LW\ ,,62 )XNXRND-$3$1 FHUWLILFDWLRQDFTXLUHGLQ-DQ (QYLURQPHQWDO0DQDJHPHQW6\VWHPV 5HODWHGFRPSDQ\ +,5$12)DFWRU\&R/WG FKRPH.DUXPRVW1DJDWDNX.REHFLW\ +\RJR-DSDQ The board Organization of directors President The board of corporate officers Design / Manufacture Salesand General Affairs Section Development / Purchasing Quality Section Section Head Sales Group of Accounting Quarters Research & Automobile Group Development Group SHONAN Plant Purchasing General Affairs Team of Group Design Automobile KYUSHU Group Plant Sales Group of Quality Railway / Ship Technical Control Manufacturing Group Group Purchasing -
Notice of Series N700 Shinkansen Train Bogie Frames Matter
Kawasaki Heavy Industries, Ltd. February 28, 2018 Notice of Series N700 Shinkansen Train Bogie Frames matter Kawasaki hereby reports on the above matter, as described in the attached documents. It is still not clear how far this matter will affect business performance; however, should matters requiring disclosure be identified, you will be notified promptly. February 28, 2018 Kawasaki Heavy Industries, Ltd. Series N700 Shinkansen Train Bogie Frames With reference to the crack (structural failure) of the bogie (or truck) frame (hereinafter referred to as the “Failed Bogie Frame”) of series N700 Shinkansen train owned by West Japan Railway Company (hereinafter referred as "JR West") occurred at Nagoya Station on 11 December 2017, we, as the manufacturer of the Failed Bogie Frame, hereby express our sincere apology for inconvenience and concern caused to passengers of Tokaido-Sanyo Shinkansen, JR West, Central Japan Railway Company (hereinafter referred to as “JR Central”) and any other related party. While the Japan Transport Safety Board (hereinafter referred to as “JTSB”) is currently conducting dedicated investigations into a root cause of the crack of the Failed Bogie Frame, we hereunder report what has been revealed in the investigation until now and our remedial actions to be taken. 1. Results of the investigation of the Failed Bogie Frame and defects during manufacturing process We manufactured the Failed Bogie Frame in February 2007 at Kawasaki’s Rolling Stock Company Hyogo Works, and the followings have been revealed in the investigation until now. (1) Although the bottom plate of the side frame of the bogie frame of series N700 Shinkansen train should be 8mm thick the design specifications (more than 7mm post-processing), it is 4.7mm at the thinnest location. -
The Tohoku Traveler Was Created As a Public Service for the Members of the Misawa Community
TOHOKUTOHOKU TRAVELERTRAVELER “.....each day is a journey, and the journey itself home” Basho 1997 TOHOKU TRAVELER STAFF It is important to first acknowledge the members of the Yokota Officers’ Spouses’ Club and anyone else associated with the publication of their original “Travelogue.” Considerable information in Misawa Air Base’s “Tohoku Traveler” is based on that publication. Some of these individuals are: P.W. Edwards Pat Nolan Teresa Negley V.L. Paulson-Cody Diana Hall Edie Leavengood D. Lyell Cheryl Raggia Leda Marshall Melody Hostetler Vicki Collins However, an even amount of credit must also be given to the many volunteers and Misawa Air Base Family Support Flight staff members. Their numerous articles and assistance were instrumental in creating Misawa Air Base’s regionally unique “Tohoku Traveler.” They are: EDITING/COORDINATING STAFF Tohoku Traveler Coordinator Mark Johnson Editors Debra Haas, Dottie Trevelyan, Julie Johnson Layout Staff Laurel Vincent, Sandi Snyder, Mark Johnson Photo Manager/Support Mark Johnson, Cherie Thurlby, Keith Dodson, Amber Jordon Technical Support Brian Orban, Donna Sellers Cover Art Wendy White Computer Specialist Laurel Vincent, Kristen Howell Publisher Family Support Flight, Misawa Air Base, APO AP 96319 Printer U.S. Army Printing and Publication Center, Korea WRITERS Becky Stamper Helen Sudbecks Laurel Vincent Marion Speranzo Debra Haas Lisa Anderson Jennifer Boritski Dottie Trevelyan Corren Van Dyke Julie Johnson Sandra Snyder Mark Johnson Anne Bowers Deborah Wajdowicz Karen Boerman Satoko Duncan James Gibbons Jody Rhone Stacy Hillsgrove Yuriko Thiem Wanda Giles Tom Zabel Hiraku Maita Larry Fuller Joe Johnson Special Note: The Misawa Family Support Flight would like to thank the 35 th Services Squadron’s Travel Time office for allowing the use of material in its “Tohoku Guide” while creating this publication. -
The Body Inclining System of the Series N700 Shinkansen
The Japan Society of Mechanical Engineers International Symposium on Speed-up, Safety and Service Technology for Railway and Maglev Systems 2009 (STECH’09) 2009.6.16-19 Niigata JAPAN THE BODY INCLINING SYSTEM OF THE SERIES N700 SHINKANSEN Yasuki Nakakura *1 and Kosuke Hayakawa *2 *1 Shinkansen Operations Division, Central Japan Railway Company, [email protected] *2 Shinkansen Operations Division, Central Japan Railway Company, [email protected] ABSTRACT 2. OVERVIEW OF THE BODY INCLINING The Series N700 is the first Shinkansen rolling stock to SYSTEM employ a body inclining system, which allows speed increases on curves while maintaining riding comfort. 2.1 Requirements of the body inclining system for a For use in the Tokaido Shinkansen, such a system needs Tokaido Shinkansen train-set to be light-weight and possess a reliable means to provide Over the years, body inclining system has been used with high precision position data. Reliability is a crucial factor conventional trains, but no such system has been when considering that the Tokaido Shinkansen operates a employed in Shinkansens excluding cases of test use. maximum of 13 train-sets per hour. In order to meet these Looking at high-speed trains in Europe, there exist cases requirements, the Series N700 adopts a simple and light where body-inclining mechanisms have been adopted weight air-spring based body inclining mechanism, such as the Italian ETR450 and the Swedish X2000. which combines the new automatic train control (ATC) However, their mechanisms are complex and heavy, technology capable of providing reliable high-precision making them unsuitable for use in the Tokaido position data, and control transmission technology that Shinkansen, where axle load restriction is strict. -
He Superconducting Maglev Train & Impacts of New Transportation
COVER STORY • “Amazing Tokyo” — Beyond 2020 • 7 he Superconducting Maglev Train & Impacts of New Transportation Infrastructure TBy Shigeru Morichi Author Shigeru Morichi Transportation Technology regions. Many countries have since achieved high economic growth, & Economic Development but with widening income gaps between regions. In this respect, Japan achieved a different outcome. Japan’s achievement in reaching high economic growth in just What impact, then, will the current development of new under 20 years after the end of World War II was once called a transportation infrastructure have on Japan? “miracle”. Twenty years further on, following the oil shock, there was talk of “Japan as Number One” when the rest of the world was Superconducting Magnetic Levitation Railway suffering from recession. Behind these two phenomena were not just the quality and manufacturing costs of Japan’s industrial products, Process of development but also technological innovation in its transportation system. Construction for the superconducting magnetic levitation railway, During the high economic growth period, achievements were the Chuo Shinkansen, began in December 2014, and by 2027 it will made in marine transport via containerization, and also through only take 40 minutes to travel the 286 kilometers between mass reduction in transportation costs with the introduction of Shinagawa Station in Tokyo and Nagoya Station. The current Tokaido specialized vessels for transporting motor vehicles and crude oil, as Shinkansen runs on a different route, and it currently takes 90 well as large vessels. Without these developments, industrial minutes to travel the 335 km between Shinagawa and Nagoya. The products from distant Japan could not have proved competitive in new Chuo Shinkansen will only take 67 minutes to travel the 438 km Europe or the United States. -
How the Punctuality of the Shinkansen Has Been Achieved
Computers in Railways XII 111 How the punctuality of the Shinkansen has been achieved N. Tomii Chiba Institute of Technology, Japan Abstract The high speed railway line in Japan began operation in 1964. The high speed railway is called the Shinkansen and is known for its safety and reliability. In addition, the Shinkansen is well known for punctuality. As a matter of fact, the average delay of trains is less than one minutes every year. The Shinkansen runs along dedicated lines, which seem to be advantageous in keeping punctuality. However, there are lots of disadvantages as well. For example, although traffic is very dense, resources are not abundant. In some Shinkansen lines, trains go directly through conventional railway lines and the Shinkansen is easily influenced by the disruption of those lines. Punctuality of the Shinkansen is supported by hardware, software and humanware. In this paper, we first introduce a brief history of the Shinkansen and then focus on humanware, which makes the punctuality possible. Keywords: high speed trains, punctuality, rescheduling, Shinkansen. 1 Introduction In 1964, a high speed railway line opened in Japan. The new line connects Tokyo, the capitol, and Osaka, the second largest city located 600 km away. The maximum speed of trains was 210km/h, which was almost twice that of other trains in those days and the travelling time between these two cities was halved to only three hours and ten minutes. The new high-speed line was called the Shinkansen and it had a great impact not only on railways in Japan, but also on railways worldwide. -
Superconducting Maglev(Scmaglev)
THE REVIEW SUPERCONDUCTING MAGLEV (SCMAGLEV) , http: // jr-central.co.jp/ 17.05 SUPERCONDUCTING MAGLEV (SCMAGLEV) e Superconducting Maglev -Next Generation Transportation System e Superconducting Maglev (SCMAGLEV) is an internationally acclaimed, cutting-edge technology unique to Japan. Unlike conventional railway systems that rely on adhesion between wheel and rail for movement, the Superconducting Maglev is a contactless transportation system that accelerates and decelerates by the magnetic force generated between the onboard superconducting magnets and ground coils, which enables a stable ultra-high speed operation at the speed of 311mph. Research of a totally new levitated transportation system commenced in 1962, and running tests on the Yamanashi Maglev Line began in 1997. Since then, a wide range of tests were conducted and cleared. With these test results, the Maglev Technological Practicality Evaluation Committee (MTPEC) under the Japanese Ministry of Land, Infrastructure, Transport and Tourism (MLIT) has evaluated Superconducting Maglev technology at each stage. In July 2009, MTPEC acknowledged that the technology has been established comprehensively and systematically, which makes it possible to draw up detailed specications and technological standards for revenue service. In December 2011, the technical standards of the Superconducting Maglev were enacted by the Japanese Minister of Land, Infrastructure, Transport and Tourism. In August 2013, the Yamanashi Maglev Line was fully renewed and extended to 42.8km (26.6miles), and is currently operating using Series L0 (L Zero). is leading edge Japanese technology is the next generation of super fast train travel. e Principles of the Superconducting Maglev System How the Superconducting Maglev runs at ultra high-speed? In order to operate at ultra high-speed, the Superconducting Maglev levitates 10cm (about 3.9in) above ground by the magnetic force Electric resistance generated between the onboard Superconducting Magnets and ground coils. -