MMP-25 Metalloprotease Regulates Innate Immune Response Through NF- Κb Signaling Clara Soria-Valles, Ana Gutiérrez-Fernández, Fernando G

Total Page:16

File Type:pdf, Size:1020Kb

MMP-25 Metalloprotease Regulates Innate Immune Response Through NF- Κb Signaling Clara Soria-Valles, Ana Gutiérrez-Fernández, Fernando G MMP-25 Metalloprotease Regulates Innate Immune Response through NF- κB Signaling Clara Soria-Valles, Ana Gutiérrez-Fernández, Fernando G. Osorio, Dido Carrero, Adolfo A. Ferrando, Enrique Colado, This information is current as M. Soledad Fernández-García, Elena Bonzon-Kulichenko, of October 5, 2021. Jesús Vázquez, Antonio Fueyo and Carlos López-Otín J Immunol published online 3 June 2016 http://www.jimmunol.org/content/early/2016/06/01/jimmun ol.1600094 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2016/06/01/jimmunol.160009 Material 4.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 5, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published June 3, 2016, doi:10.4049/jimmunol.1600094 The Journal of Immunology MMP-25 Metalloprotease Regulates Innate Immune Response through NF-kB Signaling Clara Soria-Valles,* Ana Gutie´rrez-Ferna´ndez,* Fernando G. Osorio,* Dido Carrero,* Adolfo A. Ferrando,† Enrique Colado,‡ M. Soledad Ferna´ndez-Garcı´a,x Elena Bonzon-Kulichenko,{ Jesu´sVa´zquez,{ Antonio Fueyo,‖ and Carlos Lo´pez-Otı´n* Matrix metalloproteases (MMPs) regulate innate immunity acting over proinflammatory cytokines, chemokines, and other immune- related proteins. MMP-25 (membrane-type 6-MMP) is a membrane-bound enzyme predominantly expressed in leukocytes whose bio- logical function has remained largely unknown. We have generated Mmp25-deficient mice to elucidate the in vivo function of this protease. These mutant mice are viable and fertile and do not show any spontaneous phenotype. However, Mmp25-null mice exhibit a defective innate immune response characterized by low sensitivity to bacterial LPS, hypergammaglobulinemia, and reduced secretion of proin- k flammatory molecules. Moreover, these immune defects can be tracked to a defective NF- B activation observed in Mmp25-deficient Downloaded from leukocytes. Globally, our findings provide new mechanistic insights into innate immunity through the activity of MMP-25, suggesting that this proteinase could be a potential therapeutic target for immune-related diseases. The Journal of Immunology, 2016, 197: 000–000. nflammation is part of the complex biological response of their structure in secreted and membrane-anchored proteases. Among innate immunity, which confers immediate defense against in- the membrane-type (MT)-MMPs, there are three different groups fection protecting multicellular organisms from pathogens (1). depending on the way these proteases interact with the membrane. I http://www.jimmunol.org/ Septic shock, induced by the LPS of Gram-negative bacteria, is a This interaction may be through a transmembrane domain, consequence of a disproportionate stimulation of host immune cells. through a GPI moiety, or through an N-terminal signal anchor (6). Leukocytes have a pivotal role on sensing the pathogens that invade The metalloprotease MT6-MMP or MMP-25 is anchored to the cell the organism and initiate the inflammatory response (1). However, membrane through a GPI moiety and is predominantly expressed in their activation must be precisely controlled to regulate the duration leukocytes, lung, and spleen (7, 8). Previous works have also shown and extension of the inflammation, and therefore protect the host that both classical and alternative activation of macrophages in- from tissue damage. crease MMP-25 steady-state mRNA levels (9). In vitro functional Matrix metalloproteinases (MMPs) are a family of zinc-dependent experiments have revealed that this metalloprotease is able to clear endopeptidases that cleave extracellular matrix components with wide components of the extracellular matrix such as type IV collagen, by guest on October 5, 2021 substrate specificity (2, 3) and are involved in multiple pathological fibronectin, fibrin, and gelatin, and its activity is tightly regulated by processes (4, 5). These enzymes have been classified according to tissue inhibitor of metalloproteinase-1 (10). MMP-25 has also been linked with some pathological processes such as multiple sclerosis or cancer, but its biological role has remained largely unknown (11, *Departamento de Bioquı´mica y Biologı´a Molecular, Facultad de Medicina, Instituto 12). In this work, and as part of our long-term studies aimed at Universitario de Oncologı´a, Universidad de Oviedo, 33006 Oviedo, Spain; †Institute for generating mouse models of protease deficiency (5, 13–16), we Cancer Genetics, Columbia University, New York, NY 10032; ‡Servivio de Hematologı´a, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; xServicio de Anatomı´a describe the generation of Mmp25-deficient mice and evaluate the Patolo´gica, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; {Laboratorio biological function of MT6-MMP in innate immunity. de Proteo´mica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain; and ‖A´ rea de Fisiologı´a, Departamento de Biologı´a Funcional, Facultad de Medicina, Instituto Universitario de Oncologı´a, Universidad de Oviedo, 33006 Oviedo, Materials and Methods Spain Generation of Mmp25 knockout mice ORCIDs: 0000-0001-7869-838X (D.C.); 0000-0001-8675-8207 (E.C.); 0000-0003- 0852-7520 (E.B.-K.); 0000-0003-1461-5092 (J.V.). Mmp25-targeted ESCs clones from Texas A&M Institute for Genomic Medicine were microinjected into C57BL/6 mouse blastocysts to produce Received for publication January 19, 2016. Accepted for publication May 2, 2016. chimeric mice that were then subsequently crossed with C57BL/6 mice to This work was supported by grants from Ministerio de Economı´a y Competitividad generate Mmp25-heterozygous mice. Mice genotyping was performed by (Spain) and Red Tema´tica de Investigacio´n Cooperativa de Centros de Cancer-Spain. PCR with the following oligonucleotides: 59- CCTGATCAAGTTCTTG- The Instituto Universitario de Oncologı´a is supported by Fundacio´n Cajastur-Asturias. CTTGC-39;59-ATGGCTCGGAGTCTTTAAAC-39; and 59-CCAATAA- This work was also supported through the generous support of J.I. Cabrera. C.L-O. is an investigator of the Botin Foundation supported by Banco Santander through its Santander ACCCTCTTGCAGTTGC-39. The PCR products consisted in fragments of Universities Global Division. E.B.-K. and J.V. are supported by La Red de Investigacio´n 309 bp (knockout-allele) and 531 bp (wild-type allele). Cardiovascular–Las Redes Tema´ticas de Investigacio´n Cooperativa en Salud, Fondo de Investigaciones Sanitarias, and Instituto de Salud Carlos III. Mice procedures Address correspondence and reprint requests to Dr. Carlos Lo´pez-Otı´n, Departamento Eight- to 10-wk-old male mice received an i.p. injection of LPS (20 mg/kg, de Bioquı´mica y Biologı´a Molecular, Facultad de Medicina, Universidad de Oviedo, serotype O55:B5; Sigma-Aldrich) dissolved in saline buffer, and survival 33006 Oviedo, Spain. E-mail address: [email protected]. was evaluated. Isolation of neutrophils from mouse bone marrow was The online version of this article contains supplemental material. performed as described previously (17). Briefly, after flushing bone marrow cells from mice tibias, they were layered on a Percoll gradient Abbreviations used in this article: HA, hemagglutinin; MMP, matrix metalloprotease; 3 MT, membrane-type; SLAM, signaling lymphocyte activation molecule; TRAF6, (80:65:50%), centrifuged for 30 min at 500 g, and recovered from the TNFR-associated factor 6; UEV1A, ubiquitin-conjugating enzyme E2 variant 1A. third layer of the gradient. For the isolation of peritoneal macrophages, mice were injected with 1 ml 10% Brewer thioglycollate medium as de- Copyright Ó 2016 by The American Association of Immunologists, Inc. 0022-1767/16/$30.00 scribed previously (18). Three days after injection, peritoneal macrophages www.jimmunol.org/cgi/doi/10.4049/jimmunol.1600094 2 MMP-25 REGULATES INNATE IMMUNITY Downloaded from FIGURE 1. Generation of Mmp25-deficient mice. (A) Schematic representation of Mmp25-targeted allele. Genotyping strategy is indicated as well as the position of the inserted cassette. (B) PCR analysis using Mmp25-specific oligonucleotides, genomic DNA from Mmp25+/+, Mmp25+/2 and Mmp252/2 mice were used as template. (C) Representative picture of 6-mo-old wild-type and Mmp25-deficient mice. Original magnification 30.3. (D) Longevity analysis of wild-type and Mmp25-deficient mice. Kaplan–Meier survival plot of Mmp25+/+ (n = 10) and Mmp252/2 (n = 10) mice. (E) Quantitative RT-PCR of Mmp25 in bone marrow, lung, and spleen from wild-type (n = 4) and Mmp25-deficient (n = 4) mice. Mean relative mRNA levels are shown. *p , 0.05, **p , 0.01, http://www.jimmunol.org/ two-tailed Student t test. were obtained by washing of the peritoneal cavity with RPMI 1640 medium from Addgene. HEK-293T cell line was purchased from the American
Recommended publications
  • Propranolol-Mediated Attenuation of MMP-9 Excretion in Infants with Hemangiomas
    Supplementary Online Content Thaivalappil S, Bauman N, Saieg A, Movius E, Brown KJ, Preciado D. Propranolol-mediated attenuation of MMP-9 excretion in infants with hemangiomas. JAMA Otolaryngol Head Neck Surg. doi:10.1001/jamaoto.2013.4773 eTable. List of All of the Proteins Identified by Proteomics This supplementary material has been provided by the authors to give readers additional information about their work. © 2013 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 eTable. List of All of the Proteins Identified by Proteomics Protein Name Prop 12 mo/4 Pred 12 mo/4 Δ Prop to Pred mo mo Myeloperoxidase OS=Homo sapiens GN=MPO 26.00 143.00 ‐117.00 Lactotransferrin OS=Homo sapiens GN=LTF 114.00 205.50 ‐91.50 Matrix metalloproteinase‐9 OS=Homo sapiens GN=MMP9 5.00 36.00 ‐31.00 Neutrophil elastase OS=Homo sapiens GN=ELANE 24.00 48.00 ‐24.00 Bleomycin hydrolase OS=Homo sapiens GN=BLMH 3.00 25.00 ‐22.00 CAP7_HUMAN Azurocidin OS=Homo sapiens GN=AZU1 PE=1 SV=3 4.00 26.00 ‐22.00 S10A8_HUMAN Protein S100‐A8 OS=Homo sapiens GN=S100A8 PE=1 14.67 30.50 ‐15.83 SV=1 IL1F9_HUMAN Interleukin‐1 family member 9 OS=Homo sapiens 1.00 15.00 ‐14.00 GN=IL1F9 PE=1 SV=1 MUC5B_HUMAN Mucin‐5B OS=Homo sapiens GN=MUC5B PE=1 SV=3 2.00 14.00 ‐12.00 MUC4_HUMAN Mucin‐4 OS=Homo sapiens GN=MUC4 PE=1 SV=3 1.00 12.00 ‐11.00 HRG_HUMAN Histidine‐rich glycoprotein OS=Homo sapiens GN=HRG 1.00 12.00 ‐11.00 PE=1 SV=1 TKT_HUMAN Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 17.00 28.00 ‐11.00 CATG_HUMAN Cathepsin G OS=Homo
    [Show full text]
  • Pseudouridine Synthase 1: a Site-Specific Synthase Without Strict Sequence Recognition Requirements Bryan S
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Published online 18 November 2011 Nucleic Acids Research, 2012, Vol. 40, No. 5 2107–2118 doi:10.1093/nar/gkr1017 Pseudouridine synthase 1: a site-specific synthase without strict sequence recognition requirements Bryan S. Sibert and Jeffrey R. Patton* Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC 29208 USA Received May 20, 2011; Revised October 19, 2011; Accepted October 22, 2011 ABSTRACT rRNA and snRNA and requires Dyskerin or its homologs Pseudouridine synthase 1 (Pus1p) is an unusual (Cbf5p in yeast for example) and RNP cofactors [most site-specific modification enzyme in that it can often H/ACA small nucleolar ribonucleoprotein particles modify a number of positions in tRNAs and can rec- (snoRNPs)] that enable one enzyme to recognize many ognize several other types of RNA. No consensus different sites for modification on different substrates recognition sequence or structure has been identi- (17–25). The other pathway for É formation employs fied for Pus1p. Human Pus1p was used to determine site-specific É synthases that require no cofactors to rec- which structural or sequence elements of human ognize and modify the RNA substrate. A number of en- tRNASer are necessary for pseudouridine ()) forma- zymes have been identified in this pathway and are grouped in six families that all share a common basic tion at position 28 in the anticodon stem-loop (ASL). Ser structure (4). It is safe to say the cofactor ‘guided’ pathway Some point mutations in the ASL stem of tRNA has received a great deal of attention because of its simi- had significant effects on the levels of modification larity to aspects of RNA editing, but the site-specific and compensatory mutation, to reform the base pseudouridine synthases accomplish the same task, on pair, restored a wild-type level of ) formation.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • M-AAA and I-AAA Complexes Coordinate to Regulate OMA1, The
    © 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs213546. doi:10.1242/jcs.213546 SHORT REPORT m-AAA and i-AAA complexes coordinate to regulate OMA1, the stress-activated supervisor of mitochondrial dynamics Francesco Consolato1,*, Francesca Maltecca1,*, Susanna Tulli1, Irene Sambri2 and Giorgio Casari1,2,‡ ABSTRACT and fission (L and S forms, respectively) (Anand et al., 2014). The The proteolytic processing of dynamin-like GTPase OPA1, mediated balance between long and short OPA1 forms is finely regulated by two by the activity of both YME1L1 [intermembrane (i)-AAA protease mitochondrial inner membrane proteases, OMA1 (Ehses et al., 2009) complex] and OMA1, is a crucial step in the regulation of mitochondrial and YME1L1, which cleave OPA1 at different sites (Song et al., 2007). dynamics. OMA1 is a zinc metallopeptidase of the inner mitochondrial The intermembrane (i)-AAA protease YME1L1 exposes its membrane that undergoes pre-activating proteolytic and auto- catalytic domain to the intermembrane space (Leonhard et al., 1996) proteolytic cleavage after mitochondrial import. Here, we identify and is responsible for generation of the S2-OPA1 form by proteolytic AFG3L2 [matrix (m)-AAA complex] as the major protease mediating cleavage, whereas OMA1 gives rise to the S1 and S3 forms (Anand this event, which acts by maturing the 60 kDa pre-pro-OMA1 to the et al., 2014; MacVicar and Langer, 2016; Quirós et al., 2012). 40 kDa pro-OMA1 form by severing the N-terminal portion without OMA1 harbours an M48 metallopeptidase domain and is the major recognizing a specific consensus sequence. Therefore, m-AAA and player in OPA1 processing under conditions of stress (Quirós et al., Δϕ i-AAA complexes coordinately regulate OMA1 processing and 2012).
    [Show full text]
  • Mitochondrial Protein Quality Control Mechanisms
    G C A T T A C G G C A T genes Review Mitochondrial Protein Quality Control Mechanisms Pooja Jadiya * and Dhanendra Tomar * Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA * Correspondence: [email protected] (P.J.); [email protected] (D.T.); Tel.: +1-215-707-9144 (D.T.) Received: 29 April 2020; Accepted: 15 May 2020; Published: 18 May 2020 Abstract: Mitochondria serve as a hub for many cellular processes, including bioenergetics, metabolism, cellular signaling, redox balance, calcium homeostasis, and cell death. The mitochondrial proteome includes over a thousand proteins, encoded by both the mitochondrial and nuclear genomes. The majority (~99%) of proteins are nuclear encoded that are synthesized in the cytosol and subsequently imported into the mitochondria. Within the mitochondria, polypeptides fold and assemble into their native functional form. Mitochondria health and integrity depend on correct protein import, folding, and regulated turnover termed as mitochondrial protein quality control (MPQC). Failure to maintain these processes can cause mitochondrial dysfunction that leads to various pathophysiological outcomes and the commencement of diseases. Here, we summarize the current knowledge about the role of different MPQC regulatory systems such as mitochondrial chaperones, proteases, the ubiquitin-proteasome system, mitochondrial unfolded protein response, mitophagy, and mitochondria-derived vesicles in the maintenance of mitochondrial proteome and health. The proper understanding of mitochondrial protein quality control mechanisms will provide relevant insights to treat multiple human diseases. Keywords: mitochondria; proteome; ubiquitin; proteasome; chaperones; protease; mitophagy; mitochondrial protein quality control; mitochondria-associated degradation; mitochondrial unfolded protein response 1. Introduction Mitochondria are double membrane, dynamic, and semiautonomous organelles which have several critical cellular functions.
    [Show full text]
  • TITLE PAGE Oxidative Stress and Response to Thymidylate Synthase
    Downloaded from molpharm.aspetjournals.org at ASPET Journals on October 2, 2021 -Targeted -Targeted 1 , University of of , University SC K.W.B., South Columbia, (U.O., Carolina, This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Appendix 3 and 4
    Appendix 3 : Conserved proteins present in L. interrogans serovar Canicola L. interrogans serovar Canicola Accession Number Protein identification Protein Length (Amino Acids) Mean No. of peptides Mean % Coverage 5,10 methylene tetrahydrofolate 45655587 310 7.67 11.33 reductase 45655588 274 hypothetical protein LIC20005 4.33 20.00 45655592 547 porphobilinogen deaminase 4.33 7.67 delta-aminolevulinic acid 45655593 317 15.00 20.33 dehydratase glutamate-1-semialdehyde 45655594 443 24.00 24.33 aminotransferase 45655597 340 uroporphyrinogen decarboxylase 2.67 5.67 45655598 443 coproporphyrinogen III oxidase 5.00 12.33 45655605 200 azoreductase 5.33 18.00 45655609 251 short-chain dehydrogenase 2.33 14.33 45655611 422 NADH dehydrogenase 3.67 11.00 45655613 202 hypothetical protein LIC20030 2.33 15.67 45655615 140 hypothetical protein LIC20032 4.33 15.67 45655617 356 hypothetical protein LIC20034 2.33 8.33 45655618 440 hypothetical protein LIC20035 8.17 14.67 methanol dehydrogenase 45655620 357 7.83 19.17 regulator 45655627 607 heat shock protein 90 9.33 14.83 45655628 189 hypothetical protein LIC20045 2.33 8.33 45655641 670 methylmalonyl-CoA mutase 14.33 14.33 phosphoribosyl-ATP 45655645 92 10.67 13.00 pyrophosphatase 3-oxoacyl-(acyl-carrier protein) 45655647 254 4.00 17.00 reductase 45655648 77 acyl carrier protein 3.67 9.00 45655661 171 hypothetical protein LIC20078 5.00 26.00 4-hydroxybenzoyl-CoA 45655663 142 3.33 11.67 thioesterase S-adenosyl-L-homocysteine 45655666 436 13.00 19.67 hydrolase B12-dependent methionine 45655668 1247 42.67 21.67
    [Show full text]
  • Figure S1. HAEC ROS Production and ML090 NOX5-Inhibition
    Figure S1. HAEC ROS production and ML090 NOX5-inhibition. (a) Extracellular H2O2 production in HAEC treated with ML090 at different concentrations and 24 h after being infected with GFP and NOX5-β adenoviruses (MOI 100). **p< 0.01, and ****p< 0.0001 vs control NOX5-β-infected cells (ML090, 0 nM). Results expressed as mean ± SEM. Fold increase vs GFP-infected cells with 0 nM of ML090. n= 6. (b) NOX5-β overexpression and DHE oxidation in HAEC. Representative images from three experiments are shown. Intracellular superoxide anion production of HAEC 24 h after infection with GFP and NOX5-β adenoviruses at different MOIs treated or not with ML090 (10 nM). MOI: Multiplicity of infection. Figure S2. Ontology analysis of HAEC infected with NOX5-β. Ontology analysis shows that the response to unfolded protein is the most relevant. Figure S3. UPR mRNA expression in heart of infarcted transgenic mice. n= 12-13. Results expressed as mean ± SEM. Table S1: Altered gene expression due to NOX5-β expression at 12 h (bold, highlighted in yellow). N12hvsG12h N18hvsG18h N24hvsG24h GeneName GeneDescription TranscriptID logFC p-value logFC p-value logFC p-value family with sequence similarity NM_052966 1.45 1.20E-17 2.44 3.27E-19 2.96 6.24E-21 FAM129A 129. member A DnaJ (Hsp40) homolog. NM_001130182 2.19 9.83E-20 2.94 2.90E-19 3.01 1.68E-19 DNAJA4 subfamily A. member 4 phorbol-12-myristate-13-acetate- NM_021127 0.93 1.84E-12 2.41 1.32E-17 2.69 1.43E-18 PMAIP1 induced protein 1 E2F7 E2F transcription factor 7 NM_203394 0.71 8.35E-11 2.20 2.21E-17 2.48 1.84E-18 DnaJ (Hsp40) homolog.
    [Show full text]
  • Taqman Probes ARF 5' Primer P16ink4a 5' Primer Exon 1/2
    a b Exon 1β 1α 23 ARF p16INK4a MDM2 Cyclin D CDK4/6 p53 pRB TaqMan Probes ARF 5’ Primer p16INK4a 5’ Primer Exon 1/2 Common Primer Exon 2/3 Common Primers Defective p53 Intact p53 A. Melanoma cell lines clustered by expression of p53 targets and INK4a/ARF expression. The p53 response to ionizing radiation is indicated. Top cluster: Cells with intact p53 response show increased expression of the eight indicated p53 targets, and decreased expression of ARF. Bottom cluster: TaqMan and microarray results for the p16INK4- and ARF- specific transcripts. Cell lines that demonstrated increased p16INK4a expression either harbored RB deletion, p16INK4a point 2 mutation or CDK4 point mutation (Supp Table 1). Pair-wise variances (r ) for the log2 transformed CDKN2a microarray 2 2 2 results versus the log10 transformed TaqMan results are: vs. Exon 2/3 r =0.78; vs. Exon1α/2 r =0.32; vs. Exon 1β/2 r =0.38. Note all four WT lines (PMWK, Mel505, SKMEL187 and RPMI8322) lack evidence of p53 function by all assays. B. The INK4a/ARF locus and with TaqMan strategies. The ARF transcript originates from exon 1β while the p16INK4a transcript originates from exon 1α. Both transcripts splice to exon 2 but in alternate reading frames. ARF stabilizes p53 by inhibiting MDM2, while p16INK4a activates RB by inhibiting CDK4. Primers and TaqMan probes are shown for the real-time RT-PCR strategy. Shields et al., Supp Figure 1 SKMEL 28 U01 24h SKMEL WM2664 U01 48h WM2664 U01 24h 24 U01 48h SKMEL 24 U01 24h SKMEL 24 Untreated SKMEL 24 DMSO 48h SKMEL 24 DMSO 24h SKMEL WM2664 DMSO 24h WM2664 DMSO 48h WM2644 Untreated 28 Untreated SKMEL 28 DMSO 48h SKMEL 28 DMSO 24h SKMEL -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 relative to median expression Genes decreased by UO1 (863) HIF1A Hypoxia-inducible factor 1, alpha subunit NM_001530 RBBP8 Retinoblastoma binding protein 8 NM_002894 Homo sapiens, clone IMAGE:4337652, mRNA BC018676 EIF4EBP1 Eukaryotic translation initiation factor 4E binding protein EXOSC8 Exosome component 8 NM_181503 ENST00000321524 MCM7 MCM7 minichromosome maintenance deficient 7 (S.
    [Show full text]
  • Thrombocytopenia-Associated Mutations in Ser/Thr Kinase MASTL Deregulate Actin Cytoskeletal Dynamics in Platelets
    Thrombocytopenia-associated mutations in Ser/Thr kinase MASTL deregulate actin cytoskeletal dynamics in platelets Begoña Hurtado, … , Pablo García de Frutos, Marcos Malumbres J Clin Invest. 2018;128(12):5351-5367. https://doi.org/10.1172/JCI121876. Research Article Cell biology Hematology Graphical abstract Find the latest version: https://jci.me/121876/pdf The Journal of Clinical Investigation RESEARCH ARTICLE Thrombocytopenia-associated mutations in Ser/Thr kinase MASTL deregulate actin cytoskeletal dynamics in platelets Begoña Hurtado,1,2 Marianna Trakala,1 Pilar Ximénez-Embún,3 Aicha El Bakkali,1 David Partida,1 Belén Sanz-Castillo,1 Mónica Álvarez-Fernández,1 María Maroto,1 Ruth Sánchez-Martínez,1 Lola Martínez4, Javier Muñoz,3 Pablo García de Frutos,2 and Marcos Malumbres1 1Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. 2Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas- Institut d’Investigacions Biomèdiques August Pi i Sunyer- (IIBB-CSIC-IDIBAPS), Barcelona, Spain. 3ProteoRed – Instituto de Salud Carlos III (ISCIII) and Proteomics Unit, CNIO, Madrid, Spain. 4Cytometry Unit, CNIO, Madrid, Spain. MASTL, a Ser/Thr kinase that inhibits PP2A-B55 complexes during mitosis, is mutated in autosomal dominant thrombocytopenia. However, the connections between the cell-cycle machinery and this human disease remain unexplored. We report here that, whereas Mastl ablation in megakaryocytes prevented proper maturation of these cells, mice carrying the thrombocytopenia-associated mutation developed thrombocytopenia as a consequence of aberrant activation and survival of platelets. Activation of mutant platelets was characterized by hyperstabilized pseudopods mimicking the effect of PP2A inhibition and actin polymerization defects.
    [Show full text]