Oxygen Tension Modulates the Mitochondrial Genetic Bottleneck and Influences the Segregation of a Heteroplasmic Mtdna Variant in Vitro
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
M-AAA and I-AAA Complexes Coordinate to Regulate OMA1, The
© 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs213546. doi:10.1242/jcs.213546 SHORT REPORT m-AAA and i-AAA complexes coordinate to regulate OMA1, the stress-activated supervisor of mitochondrial dynamics Francesco Consolato1,*, Francesca Maltecca1,*, Susanna Tulli1, Irene Sambri2 and Giorgio Casari1,2,‡ ABSTRACT and fission (L and S forms, respectively) (Anand et al., 2014). The The proteolytic processing of dynamin-like GTPase OPA1, mediated balance between long and short OPA1 forms is finely regulated by two by the activity of both YME1L1 [intermembrane (i)-AAA protease mitochondrial inner membrane proteases, OMA1 (Ehses et al., 2009) complex] and OMA1, is a crucial step in the regulation of mitochondrial and YME1L1, which cleave OPA1 at different sites (Song et al., 2007). dynamics. OMA1 is a zinc metallopeptidase of the inner mitochondrial The intermembrane (i)-AAA protease YME1L1 exposes its membrane that undergoes pre-activating proteolytic and auto- catalytic domain to the intermembrane space (Leonhard et al., 1996) proteolytic cleavage after mitochondrial import. Here, we identify and is responsible for generation of the S2-OPA1 form by proteolytic AFG3L2 [matrix (m)-AAA complex] as the major protease mediating cleavage, whereas OMA1 gives rise to the S1 and S3 forms (Anand this event, which acts by maturing the 60 kDa pre-pro-OMA1 to the et al., 2014; MacVicar and Langer, 2016; Quirós et al., 2012). 40 kDa pro-OMA1 form by severing the N-terminal portion without OMA1 harbours an M48 metallopeptidase domain and is the major recognizing a specific consensus sequence. Therefore, m-AAA and player in OPA1 processing under conditions of stress (Quirós et al., Δϕ i-AAA complexes coordinately regulate OMA1 processing and 2012). -
Mitochondrial Protein Quality Control Mechanisms
G C A T T A C G G C A T genes Review Mitochondrial Protein Quality Control Mechanisms Pooja Jadiya * and Dhanendra Tomar * Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA * Correspondence: [email protected] (P.J.); [email protected] (D.T.); Tel.: +1-215-707-9144 (D.T.) Received: 29 April 2020; Accepted: 15 May 2020; Published: 18 May 2020 Abstract: Mitochondria serve as a hub for many cellular processes, including bioenergetics, metabolism, cellular signaling, redox balance, calcium homeostasis, and cell death. The mitochondrial proteome includes over a thousand proteins, encoded by both the mitochondrial and nuclear genomes. The majority (~99%) of proteins are nuclear encoded that are synthesized in the cytosol and subsequently imported into the mitochondria. Within the mitochondria, polypeptides fold and assemble into their native functional form. Mitochondria health and integrity depend on correct protein import, folding, and regulated turnover termed as mitochondrial protein quality control (MPQC). Failure to maintain these processes can cause mitochondrial dysfunction that leads to various pathophysiological outcomes and the commencement of diseases. Here, we summarize the current knowledge about the role of different MPQC regulatory systems such as mitochondrial chaperones, proteases, the ubiquitin-proteasome system, mitochondrial unfolded protein response, mitophagy, and mitochondria-derived vesicles in the maintenance of mitochondrial proteome and health. The proper understanding of mitochondrial protein quality control mechanisms will provide relevant insights to treat multiple human diseases. Keywords: mitochondria; proteome; ubiquitin; proteasome; chaperones; protease; mitophagy; mitochondrial protein quality control; mitochondria-associated degradation; mitochondrial unfolded protein response 1. Introduction Mitochondria are double membrane, dynamic, and semiautonomous organelles which have several critical cellular functions. -
Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement. -
Mice Lacking the Mitochondrial Exonuclease MGME1 Accumulate Mtdna Deletions Without Developing Progeria
ARTICLE DOI: 10.1038/s41467-018-03552-x OPEN Mice lacking the mitochondrial exonuclease MGME1 accumulate mtDNA deletions without developing progeria Stanka Matic1, Min Jiang1, Thomas J. Nicholls2, Jay P. Uhler2, Caren Dirksen-Schwanenland1, Paola Loguercio Polosa3, Marie-Lune Simard1, Xinping Li4, Ilian Atanassov 4, Oliver Rackham 5, Aleksandra Filipovska5, James B. Stewart 1, Maria Falkenberg2, Nils-Göran Larsson 1,6 & Dusanka Milenkovic 1 1234567890():,; Replication of mammalian mitochondrial DNA (mtDNA) is an essential process that requires high fidelity and control at multiple levels to ensure proper mitochondrial function. Mutations in the mitochondrial genome maintenance exonuclease 1 (MGME1) gene were recently reported in mitochondrial disease patients. Here, to study disease pathophysiology, we generated Mgme1 knockout mice and report that homozygous knockouts develop depletion and multiple deletions of mtDNA. The mtDNA replication stalling phenotypes vary drama- tically in different tissues of Mgme1 knockout mice. Mice with MGME1 deficiency accumulate a long linear subgenomic mtDNA species, similar to the one found in mtDNA mutator mice, but do not develop progeria. This finding resolves a long-standing debate by showing that point mutations of mtDNA are the main cause of progeria in mtDNA mutator mice. We also propose a role for MGME1 in the regulation of replication and transcription termination at the end of the control region of mtDNA. 1 Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany. 2 Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg 405 30, Sweden. 3 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari 70125, Italy. -
Loss-Of-Function Mutations in MGME1 Impair Mtdna Replication and Cause Multisystemic Mitochondrial Disease
LETTERS Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease Cornelia Kornblum1,13, Thomas J Nicholls2,13, Tobias B Haack3,13, Susanne Schöler4,5, Viktoriya Peeva4,5, Katharina Danhauser3, Kerstin Hallmann4,5, Gábor Zsurka4,5, Joanna Rorbach2, Arcangela Iuso3, Thomas Wieland3, Monica Sciacco6, Dario Ronchi7, Giacomo P Comi7, Maurizio Moggio6, Catarina M Quinzii8, Salvatore DiMauro8, Sarah E Calvo9–11, Vamsi K Mootha9–11, Thomas Klopstock12, Tim M Strom3, Thomas Meitinger3, Michal Minczuk2, Wolfram S Kunz4,5 & Holger Prokisch3 Known disease mechanisms in mitochondrial DNA (mtDNA) maintenance disorders. Their clinical manifestations range from maintenance disorders alter either the mitochondrial severe multiorgan involvement in early childhood to tissue- replication machinery (POLG, POLG2 and C10orf2)1–3 or specific manifestations, for example, myopathies, in late adulthood. the biosynthesis pathways of deoxyribonucleoside Progressive external ophthalmoplegia (PEO) is commonly associated 5′-triphosphates for mtDNA synthesis4–11. However, in many with these disorders, particularly the late-onset phenotypes. of these disorders, the underlying genetic defect has yet to We identified a Lebanese family (family I) with three chil- be discovered. Here, we identify homozygous nonsense and dren affected by a severe multisystemic mitochondrial disorder missense mutations in the orphan gene C20orf72 in three (Supplementary Fig. 1a). Initial symptoms included ptosis in child- families with a mitochondrial syndrome characterized by hood followed by mild PEO, diffuse skeletal muscle wasting and external ophthalmoplegia, emaciation and respiratory weakness, profound emaciation and respiratory distress. Skeletal failure. Muscle biopsies showed mtDNA depletion and muscle biopsies showed scattered cytochrome c oxidase (COX)- multiple mtDNA deletions. C20orf72, hereafter MGME1 negative fibers and ragged red fibers (RRFs) in all affected individu- (mitochondrial genome maintenance exonuclease 1), encodes als. -
Roles of the Mitochondrial Replisome in Mitochondrial DNA Deletion Formation
Genetics and Molecular Biology, 43, 1(suppl 1), e20190069 (2020) Copyright © 2020, Sociedade Brasileira de Genética. DOI: http://dx.doi.org/10.1590/1678-4685-GMB-2019-0069 Review Article Roles of the mitochondrial replisome in mitochondrial DNA deletion formation Marcos T. Oliveira1 , Carolina de Bovi Pontes2 and Grzegorz L. Ciesielski2 1Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Tecnologia, Jaboticabal, SP, Brazil. 2Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, U.S.A. Abstract Mitochondrial DNA (mtDNA) deletions are a common cause of human mitochondrial diseases. Mutations in the genes encoding components of the mitochondrial replisome, such as DNA polymerase gamma (Pol g) and the mtDNA helicase Twinkle, have been associated with the accumulation of such deletions and the development of pathological conditions in humans. Recently, we demonstrated that changes in the level of wild-type Twinkle pro- mote mtDNA deletions, which implies that not only mutations in, but also dysregulation of the stoichiometry between the replisome components is potentially pathogenic. The mechanism(s) by which alterations to the replisome func- tion generate mtDNA deletions is(are) currently under debate. It is commonly accepted that stalling of the replication fork at sites likely to form secondary structures precedes the deletion formation. The secondary structural elements can be bypassed by the replication-slippage mechanism. Otherwise, stalling of the replication fork can generate sin- gle- and double-strand breaks, which can be repaired through recombination leading to the elimination of segments between the recombination sites. Here, we discuss aberrances of the replisome in the context of the two debated outcomes, and suggest new mechanistic explanations based on replication restart and template switching that could account for all the deletion types reported for patients. -
Thrombocytopenia-Associated Mutations in Ser/Thr Kinase MASTL Deregulate Actin Cytoskeletal Dynamics in Platelets
Thrombocytopenia-associated mutations in Ser/Thr kinase MASTL deregulate actin cytoskeletal dynamics in platelets Begoña Hurtado, … , Pablo García de Frutos, Marcos Malumbres J Clin Invest. 2018;128(12):5351-5367. https://doi.org/10.1172/JCI121876. Research Article Cell biology Hematology Graphical abstract Find the latest version: https://jci.me/121876/pdf The Journal of Clinical Investigation RESEARCH ARTICLE Thrombocytopenia-associated mutations in Ser/Thr kinase MASTL deregulate actin cytoskeletal dynamics in platelets Begoña Hurtado,1,2 Marianna Trakala,1 Pilar Ximénez-Embún,3 Aicha El Bakkali,1 David Partida,1 Belén Sanz-Castillo,1 Mónica Álvarez-Fernández,1 María Maroto,1 Ruth Sánchez-Martínez,1 Lola Martínez4, Javier Muñoz,3 Pablo García de Frutos,2 and Marcos Malumbres1 1Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. 2Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas- Institut d’Investigacions Biomèdiques August Pi i Sunyer- (IIBB-CSIC-IDIBAPS), Barcelona, Spain. 3ProteoRed – Instituto de Salud Carlos III (ISCIII) and Proteomics Unit, CNIO, Madrid, Spain. 4Cytometry Unit, CNIO, Madrid, Spain. MASTL, a Ser/Thr kinase that inhibits PP2A-B55 complexes during mitosis, is mutated in autosomal dominant thrombocytopenia. However, the connections between the cell-cycle machinery and this human disease remain unexplored. We report here that, whereas Mastl ablation in megakaryocytes prevented proper maturation of these cells, mice carrying the thrombocytopenia-associated mutation developed thrombocytopenia as a consequence of aberrant activation and survival of platelets. Activation of mutant platelets was characterized by hyperstabilized pseudopods mimicking the effect of PP2A inhibition and actin polymerization defects. -
Duodenal Mucosal Mitochondrial Gene Expression Is Associated with Delayed Gastric Emptying in Diabetic Gastroenteropathy
Duodenal mucosal mitochondrial gene expression is associated with delayed gastric emptying in diabetic gastroenteropathy Susrutha Puthanmadhom Narayanan, … , Tamas Ordog, Adil E. Bharucha JCI Insight. 2021;6(2):e143596. https://doi.org/10.1172/jci.insight.143596. Research Article Endocrinology Gastroenterology Graphical abstract Find the latest version: https://jci.me/143596/pdf RESEARCH ARTICLE Duodenal mucosal mitochondrial gene expression is associated with delayed gastric emptying in diabetic gastroenteropathy Susrutha Puthanmadhom Narayanan,1 Daniel O’Brien,2 Mayank Sharma,1 Karl Miller,3 Peter Adams,3 João F. Passos,4 Alfonso Eirin,5 Tamas Ordog,4 and Adil E. Bharucha1 1Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA. 2Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA. 3Sanford Burnham Prebys Medical Discovery Institute, San Diego, California, USA. 4Department of Physiology and Biomedical Engineering and 5Division of Nephrology & Hypertension Research, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA. Hindered by a limited understanding of the mechanisms responsible for diabetic gastroenteropathy (DGE), management is symptomatic. We investigated the duodenal mucosal expression of protein- coding genes and microRNAs (miRNA) in DGE and related them to clinical features. The diabetic phenotype, gastric emptying, mRNA, and miRNA expression and ultrastructure of duodenal mucosal biopsies were compared in 39 DGE patients and 21 controls. Among 3175 differentially expressed genes (FDR < 0.05), several mitochondrial DNA–encoded (mtDNA-encoded) genes (12 of 13 protein coding genes involved in oxidative phosphorylation [OXPHOS], both rRNAs and 9 of 22 transfer RNAs) were downregulated; conversely, nuclear DNA–encoded (nDNA-encoded) mitochondrial genes (OXPHOS) were upregulated in DGE. -
LONP1 Is Required for Maturation of a Subset of Mitochondrial Proteins and Its Loss Elicits
bioRxiv preprint doi: https://doi.org/10.1101/306316; this version posted April 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. LONP1 is required for maturation of a subset of mitochondrial proteins and its loss elicits an integrated stress response Olga Zurita Rendón and Eric A. Shoubridge. Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, QC, Canada. Eric A. Shoubridge, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec, Canada H3A 2B4 Email: [email protected] Tel: 514-398-1997 FAX: 514-398-1509 bioRxiv preprint doi: https://doi.org/10.1101/306316; this version posted April 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract LONP1, a AAA+ mitochondrial protease, is implicated in protein quality control, but its substrates and precise role in this process remain poorly understood. Here we have investigated the role of human LONP1 in mitochondrial gene expression and proteostasis. Depletion of LONP1 resulted in partial loss of mtDNA, complete suppression of mitochondrial translation, a marked increase in the levels of a distinct subset of mitochondrial matrix proteins (SSBP1, MTERFD3, FASTKD2 and CLPX), and the accumulation of their unprocessed forms, with intact mitochondrial targeting sequences, in an insoluble protein fraction. -
DNA Repair and Mutagenesis in Vertebrate Mitochondria: Evidence for the Asymmetric DNA Strand Inheritance
bioRxiv preprint doi: https://doi.org/10.1101/842617; this version posted November 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. - 1 - DNA repair and mutagenesis in vertebrate mitochondria: evidence for the asymmetric DNA strand inheritance Bakhyt MATKARIMOV1 and Murat K. SAPARBAEV2,* 1 National laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan. 2 Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France. *Corresponding author. M.K.S.: phone: +33 1 42115404; Email: [email protected] A variety of endogenous and exogenous factors induce chemical and structural alterations to cellular DNA, as well as errors occurring throughout DNA synthesis. These DNA damages are cytotoxic, miscoding, or both, and are believed to be at the origin of cancer and other age related diseases. A human cell, in addition to nuclear DNA, contains thousands copies of mitochondrial DNA (mtDNA), a double-stranded, circular molecule of 16,569 bp. It was proposed that mtDNA is a critical target for reactive oxygen species (ROS), by-products of the oxidative phosphorylation (OXPHOS), generated in the organelle during aerobic respiration. Indeed, oxidative damage to mtDNA are more extensive and persistent as compared to that of nuclear DNA. Although, transversions are the hallmarks of mutations induced by ROS, paradoxically, the majority of mtDNA mutations that occurred during ageing and cancer are transitions. -
2014-Platform-Abstracts.Pdf
American Society of Human Genetics 64th Annual Meeting October 18–22, 2014 San Diego, CA PLATFORM ABSTRACTS Abstract Abstract Numbers Numbers Saturday 41 Statistical Methods for Population 5:30pm–6:50pm: Session 2: Plenary Abstracts Based Studies Room 20A #198–#205 Featured Presentation I (4 abstracts) Hall B1 #1–#4 42 Genome Variation and its Impact on Autism and Brain Development Room 20BC #206–#213 Sunday 43 ELSI Issues in Genetics Room 20D #214–#221 1:30pm–3:30pm: Concurrent Platform Session A (12–21): 44 Prenatal, Perinatal, and Reproductive 12 Patterns and Determinants of Genetic Genetics Room 28 #222–#229 Variation: Recombination, Mutation, 45 Advances in Defining the Molecular and Selection Hall B1 Mechanisms of Mendelian Disorders Room 29 #230–#237 #5-#12 13 Genomic Studies of Autism Room 6AB #13–#20 46 Epigenomics of Normal Populations 14 Statistical Methods for Pedigree- and Disease States Room 30 #238–#245 Based Studies Room 6CF #21–#28 15 Prostate Cancer: Expression Tuesday Informing Risk Room 6DE #29–#36 8:00pm–8:25am: 16 Variant Calling: What Makes the 47 Plenary Abstracts Featured Difference? Room 20A #37–#44 Presentation III Hall BI #246 17 New Genes, Incidental Findings and 10:30am–12:30pm:Concurrent Platform Session D (49 – 58): Unexpected Observations Revealed 49 Detailing the Parts List Using by Exome Sequencing Room 20BC #45–#52 Genomic Studies Hall B1 #247–#254 18 Type 2 Diabetes Genetics Room 20D #53–#60 50 Statistical Methods for Multigene, 19 Genomic Methods in Clinical Practice Room 28 #61–#68 Gene Interaction -
MMP-25 Metalloprotease Regulates Innate Immune Response Through NF- Κb Signaling Clara Soria-Valles, Ana Gutiérrez-Fernández, Fernando G
MMP-25 Metalloprotease Regulates Innate Immune Response through NF- κB Signaling Clara Soria-Valles, Ana Gutiérrez-Fernández, Fernando G. Osorio, Dido Carrero, Adolfo A. Ferrando, Enrique Colado, This information is current as M. Soledad Fernández-García, Elena Bonzon-Kulichenko, of October 5, 2021. Jesús Vázquez, Antonio Fueyo and Carlos López-Otín J Immunol published online 3 June 2016 http://www.jimmunol.org/content/early/2016/06/01/jimmun ol.1600094 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2016/06/01/jimmunol.160009 Material 4.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 5, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published June 3, 2016, doi:10.4049/jimmunol.1600094 The Journal of Immunology MMP-25 Metalloprotease Regulates Innate Immune Response through NF-kB Signaling Clara Soria-Valles,* Ana Gutie´rrez-Ferna´ndez,* Fernando G. Osorio,* Dido Carrero,* Adolfo A.