DNA Repair and Mutagenesis in Vertebrate Mitochondria: Evidence for the Asymmetric DNA Strand Inheritance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transcriptional Requirements of the Distal Heavy-Strand Promoter of Mtdna
Transcriptional requirements of the distal heavy-strand promoter of mtDNA Ornella Zolloa, Valeria Tirantib, and Neal Sondheimera,c,1 aDivision of Child Rehabilitation, The Children’s Hospital of Philadelphia and cDepartment of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104; and bDivision of Molecular Neurogenetics, Foundation Neurological Institute “C. Besta”, 20126 Milan, Italy Edited* by Douglas C. Wallace, Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, and approved March 6, 2012 (received for review November 12, 2011) The heavy strand of mtDNA contains two promoters with non- HSP2 in cells was precisely mapped to C646 using primer ex- overlapping functions. The role of the minor heavy-strand pro- tension and S1 digest of nascent transcripts from HeLa cells (7). moter (HSP2) is controversial, because the promoter has been However, recent studies that examined the minimal set of pro- difficult to activate in an in vitro system. We have isolated HSP2 by teins required for mitochondrial transcription in vitro were un- excluding its interaction with the more powerful HSP1 promoter, able to identify any transcription arising from HSP2 (8, 9). To and we find that it is transcribed efficiently by recombinant resolve this apparent conflict, we investigated transcription from mtRNA polymerase and mitochondrial transcription factor B2. The HSP2 in vitro using recombinant proteins and HeLa cell mito- mitochondrial transcription factor A is not required for initiation, chondrial extracts. We find that the promoter is active, responsive but it has the ability to alternatively activate and repress the HSP2 to mitochondrial transcription factor A (TFAM) dosage, and transcriptional unit depending on the ratio between mitochon- sensitive to mutations in upstream sequence. -
Association of Gene Ontology Categories with Decay Rate for Hepg2 Experiments These Tables Show Details for All Gene Ontology Categories
Supplementary Table 1: Association of Gene Ontology Categories with Decay Rate for HepG2 Experiments These tables show details for all Gene Ontology categories. Inferences for manual classification scheme shown at the bottom. Those categories used in Figure 1A are highlighted in bold. Standard Deviations are shown in parentheses. P-values less than 1E-20 are indicated with a "0". Rate r (hour^-1) Half-life < 2hr. Decay % GO Number Category Name Probe Sets Group Non-Group Distribution p-value In-Group Non-Group Representation p-value GO:0006350 transcription 1523 0.221 (0.009) 0.127 (0.002) FASTER 0 13.1 (0.4) 4.5 (0.1) OVER 0 GO:0006351 transcription, DNA-dependent 1498 0.220 (0.009) 0.127 (0.002) FASTER 0 13.0 (0.4) 4.5 (0.1) OVER 0 GO:0006355 regulation of transcription, DNA-dependent 1163 0.230 (0.011) 0.128 (0.002) FASTER 5.00E-21 14.2 (0.5) 4.6 (0.1) OVER 0 GO:0006366 transcription from Pol II promoter 845 0.225 (0.012) 0.130 (0.002) FASTER 1.88E-14 13.0 (0.5) 4.8 (0.1) OVER 0 GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism3004 0.173 (0.006) 0.127 (0.002) FASTER 1.28E-12 8.4 (0.2) 4.5 (0.1) OVER 0 GO:0006357 regulation of transcription from Pol II promoter 487 0.231 (0.016) 0.132 (0.002) FASTER 6.05E-10 13.5 (0.6) 4.9 (0.1) OVER 0 GO:0008283 cell proliferation 625 0.189 (0.014) 0.132 (0.002) FASTER 1.95E-05 10.1 (0.6) 5.0 (0.1) OVER 1.50E-20 GO:0006513 monoubiquitination 36 0.305 (0.049) 0.134 (0.002) FASTER 2.69E-04 25.4 (4.4) 5.1 (0.1) OVER 2.04E-06 GO:0007050 cell cycle arrest 57 0.311 (0.054) 0.133 (0.002) -
HSP90 Regulates DNA Repair Via the Interaction Between XRCC1 and DNA Polymerase &Beta
ARTICLE Received 30 Oct 2013 | Accepted 7 Oct 2014 | Published 26 Nov 2014 DOI: 10.1038/ncomms6513 HSP90 regulates DNA repair via the interaction between XRCC1 and DNA polymerase b Qingming Fang1,2,w, Burcu Inanc3, Sandy Schamus2, Xiao-hong Wang2, Leizhen Wei2,4, Ashley R. Brown2, David Svilar1,2, Kelsey F. Sugrue2,w, Eva M. Goellner1,2,w, Xuemei Zeng5, Nathan A. Yates2,5,6, Li Lan2,4, Conchita Vens3,7 & Robert W. Sobol1,2,8,w Cellular DNA repair processes are crucial to maintain genome stability and integrity. In DNA base excision repair, a tight heterodimer complex formed by DNA polymerase b (Polb) and XRCC1 is thought to facilitate repair by recruiting Polb to DNA damage sites. Here we show that disruption of the complex does not impact DNA damage response or DNA repair. Instead, the heterodimer formation is required to prevent ubiquitylation and degradation of Polb. In contrast, the stability of the XRCC1 monomer is protected from CHIP-mediated ubiquitylation by interaction with the binding partner HSP90. In response to cellular pro- liferation and DNA damage, proteasome and HSP90-mediated regulation of Polb and XRCC1 alters the DNA repair complex architecture. We propose that protein stability, mediated by DNA repair protein complex formation, functions as a regulatory mechanism for DNA repair pathway choice in the context of cell cycle progression and genome surveillance. 1 Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA. 2 Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213, USA. 3 The Netherlands Cancer Institute, Division of Biological Stress Response, Amsterdam 1006BE, The Netherlands. -
DNA Related Enzymes As Molecular Targets for Antiviral and Antitumor- Al Chemotherapy
Send Orders for Reprints to [email protected] Current Drug Targets, 2018, 19, 000-000 1 REVIEW ARTICLE DNA Related Enzymes as Molecular Targets for Antiviral and Antitumor- al Chemotherapy. A Natural Overview of the Current Perspectives Hugo A. Garro* and Carlos R. Pungitore INTEQUI-CONICET, Fac. Qca., Bioqca. y Fcia., Univ. Nac. de San Luis (U.N.S.L), Chacabuco y Pedernera, 5700 San Luis, Argentina Abstract: Background: The discovery of new chemotherapeutic agents still remains a continuous goal to achieve. DNA polymerases and topoisomerases act in nucleic acids metabolism modulating different processes like replication, mitosis, damage repair, DNA topology and transcription. It has been widely documented that Polymerases serve as molecular targets for antiviral and antitumoral chemotherapy. Furthermore, telomerase is a ribonucleoprotein with exacerbated activity in most of the tumor cell lines, becoming as an emergent target in Cancer treatment. A R T I C L E H I S T O R Y Methods: We undertook an exhaustive search of bibliographic databases for peer-reviewed research literature related to the last decade. The characteristics of screened bibliography describe structure ac- Received: February 05, 2018 Revised: April 17, 2018 tivity relationships and show the principal moieties involved. This work tries to summarize the inves- Accepted: April 19, 2018 tigation about natural and semi-synthetic products with natural origin with the faculty to inhibit key DOI: enzymes that play a crucial role in DNA metabolism. 10.2174/1389450119666180426103558 Results: Eighty-five data references were included in this review, showing natural products widely distributed throughout the plant kingdom and their bioactive properties such as tumor growing inhibi- tory effects, and anti-AIDS activity. -
DNA Polymerase Beta Overexpression Correlates with Poor Prognosis in Esophageal Cancer Patients
Article Preclinical Medicine September 2013 Vol.58 No.26: 32743279 doi: 10.1007/s11434-013-5956-2 DNA polymerase beta overexpression correlates with poor prognosis in esophageal cancer patients ZHENG Hong1†, XUE Peng1†, LI Min2, ZHAO JiMin2, DONG ZiMing2* & ZHAO GuoQiang2* 1 Department of Pathophysiology, Medical College of Henan University, Kaifeng 475004, China; 2 School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China Received March 26, 2013; accepted May 17, 2013; published online July 17, 2013 Gene of DNA polymerase beta (pol) plays an important role in base excision repair, DNA replication and translesion synthesis. This study aims to investigate the expression and prognostic significance of DNA pol in esophageal cancer. DNA pol expres- sion was analyzed using real-time quantitative PCR (RT-qPCR) and immunohistochemical staining on tissue samples from a consecutive series of 114 esophageal squamous carcinoma patients who underwent resections between 2002 and 2006. Pol ex- pression was investigated on its correlation to clinico-pathological factors and survival. RT-qPCR results showed higher expres- sion of DNA pol mRNA in tumor tissue than in its matched adjacent non-tumor tissue sample, different expression of DNA pol mRNA was noticed with significance between tumors with and without lymph node metastasis. Immunohistochemistry staining results indicated the pol strong-positive rate was 44.73% (51/114) in tumor tissue samples and 0.00% in matched adjacent non-tumor tissue samples, with significant difference. Kaplan-Meier survival curves revealed that high expression of pol was associated with tumor metastasis and poor prognosis in esophageal cancer patients. Our data suggests that pol plays an important role in tumor progression and that high pol expression predicts an unfavorable prognosis in esophageal squamous carcinoma patients. -
Low Biological Fluctuation of Mitochondrial Cpg and Non-Cpg
www.nature.com/scientificreports OPEN Low biological fuctuation of mitochondrial CpG and non‑CpG methylation at the single‑molecule level Chloe Goldsmith1*, Jesús Rafael Rodríguez‑Aguilera2, Ines El‑Rifai1, Adrien Jarretier‑Yuste1, Valérie Hervieu3, Olivier Raineteau4, Pierre Saintigny5,6, Victoria Chagoya de Sánchez2, Robert Dante7, Gabriel Ichim8,9 & Hector Hernandez‑Vargas1,6* Mammalian cytosine DNA methylation (5mC) is associated with the integrity of the genome and the transcriptional status of nuclear DNA. Due to technical limitations, it has been less clear if mitochondrial DNA (mtDNA) is methylated and whether 5mC has a regulatory role in this context. Here, we used bisulfte‑independent single‑molecule sequencing of native human and mouse DNA to study mitochondrial 5mC across diferent biological conditions. We frst validated the ability of long‑read nanopore sequencing to detect 5mC in CpG (5mCpG) and non‑CpG (5mCpH) context in nuclear DNA at expected genomic locations (i.e. promoters, gene bodies, enhancers, and cell type‑ specifc transcription factor binding sites). Next, using high coverage nanopore sequencing we found low levels of mtDNA CpG and CpH methylation (with several exceptions) and little variation across biological processes: diferentiation, oxidative stress, and cancer. 5mCpG and 5mCpH were overall higher in tissues compared to cell lines, with small additional variation between cell lines of diferent origin. Despite general low levels, global and single‑base diferences were found in cancer tissues compared to their adjacent counterparts, in particular for 5mCpG. In conclusion, nanopore sequencing is a useful tool for the detection of modifed DNA bases on mitochondria that avoid the biases introduced by bisulfte and PCR amplifcation. -
Mitochondrial DNA Replication in Mammalian Cells: Overview of the Pathway
Essays in Biochemistry (2018) 62 287–296 https://doi.org/10.1042/EBC20170100 Review Article Mitochondrial DNA replication in mammalian cells: overview of the pathway Maria Falkenberg Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, 405 30 Gothenburg, Sweden Correspondence: Maria Falkenberg ([email protected]) Downloaded from http://portlandpress.com/essaysbiochem/article-pdf/62/3/287/486690/ebc-2017-0100c.pdf by guest on 05 October 2020 Mammalian mitochondria contain multiple copies of a circular, double-stranded DNA genome and a dedicated DNA replication machinery is required for its maintenance. Many disease-causing mutations affect mitochondrial replication factors and a detailed under- standing of the replication process may help to explain the pathogenic mechanisms under- lying a number of mitochondrial diseases. We here give a brief overview of DNA replication in mammalian mitochondria, describing our current understanding of this process and some unanswered questions remaining. Introduction MitochondrialDNA (mtDNA) is a double-stranded moleculeof16.6 kb (Figure 1, lower panel). The two strandsofmtDNA differ in their base composition, with one being rich in guanines, making it possible to separate a heavy (H)and a light (L) strand by density centrifugation in alkaline CsCl2 gradients [1]. The mtDNA contains one longer noncoding region (NCR) also referred to as the control region. Inthe NCR, there are promoters for polycistronic transcription, one for each mtDNA strand; the light strand promoter (LSP) and the heavy strand promoter (HSP). The NCRalso harbors the origin for H-strand DNA replication (OH). A second origin for L-strandDNA replication (OL)islocated outsidetheNCR, withinatRNAcluster approximately 11,000 bp downstream of OH. -
Mice Lacking the Mitochondrial Exonuclease MGME1 Accumulate Mtdna Deletions Without Developing Progeria
ARTICLE DOI: 10.1038/s41467-018-03552-x OPEN Mice lacking the mitochondrial exonuclease MGME1 accumulate mtDNA deletions without developing progeria Stanka Matic1, Min Jiang1, Thomas J. Nicholls2, Jay P. Uhler2, Caren Dirksen-Schwanenland1, Paola Loguercio Polosa3, Marie-Lune Simard1, Xinping Li4, Ilian Atanassov 4, Oliver Rackham 5, Aleksandra Filipovska5, James B. Stewart 1, Maria Falkenberg2, Nils-Göran Larsson 1,6 & Dusanka Milenkovic 1 1234567890():,; Replication of mammalian mitochondrial DNA (mtDNA) is an essential process that requires high fidelity and control at multiple levels to ensure proper mitochondrial function. Mutations in the mitochondrial genome maintenance exonuclease 1 (MGME1) gene were recently reported in mitochondrial disease patients. Here, to study disease pathophysiology, we generated Mgme1 knockout mice and report that homozygous knockouts develop depletion and multiple deletions of mtDNA. The mtDNA replication stalling phenotypes vary drama- tically in different tissues of Mgme1 knockout mice. Mice with MGME1 deficiency accumulate a long linear subgenomic mtDNA species, similar to the one found in mtDNA mutator mice, but do not develop progeria. This finding resolves a long-standing debate by showing that point mutations of mtDNA are the main cause of progeria in mtDNA mutator mice. We also propose a role for MGME1 in the regulation of replication and transcription termination at the end of the control region of mtDNA. 1 Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany. 2 Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg 405 30, Sweden. 3 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari 70125, Italy. -
Epigenetic Mechanisms Involved in the Cellular Response to DNA Damage Processed by Base Excision Repair
Epigenetic mechanisms involved in the cellular response to DNA damage processed by Base Excision Repair Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Laura Gail Bennett November 2017 i Abstract Chromatin remodelling is required for access to occluded sequences of DNA by proteins involved in important biological processes, including DNA replication and transcription. There is an increasing amount of evidence for chromatin remodelling during DNA repair, although this has been mostly focused towards DNA double strand break and nucleotide excision repair. At this time there is little evidence for chromatin remodelling in base excision repair (BER). BER is a highly conserved DNA repair pathway which processes spontaneous endogenous DNA base damages generated by oxidative metabolism, but also those induced by exogenous agents (eg. ionising radiation), to maintain genome stability. The mechanism in which the BER repairs damaged bases has been extensively studied and the repair proteins involved are well known. However in terms of chromatin, BER is poorly understood. It is thought that chromatin remodelling occurs due to accumulating evidence indicating that certain BER enzymes are significantly less efficient at acting on sterically occluded sites and near the nucleosome dyad axis. At this time the mechanisms and enzymes involved to facilitate BER are unknown. Therefore, the study presented in this thesis aimed to identify specific histone modification enzymes and/or chromatin remodellers that are involved in the processing of DNA base damage during BER. A method to generate two mononucleosome substrates with a site specific synthetic AP site (tetrahydrofuran; THF) was used to measure recombinant AP endonuclease 1 (APE1) activity alone, and APE1 in HeLa whole cell extract (WCE) that contained chromatin modifiers. -
Loss-Of-Function Mutations in MGME1 Impair Mtdna Replication and Cause Multisystemic Mitochondrial Disease
LETTERS Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease Cornelia Kornblum1,13, Thomas J Nicholls2,13, Tobias B Haack3,13, Susanne Schöler4,5, Viktoriya Peeva4,5, Katharina Danhauser3, Kerstin Hallmann4,5, Gábor Zsurka4,5, Joanna Rorbach2, Arcangela Iuso3, Thomas Wieland3, Monica Sciacco6, Dario Ronchi7, Giacomo P Comi7, Maurizio Moggio6, Catarina M Quinzii8, Salvatore DiMauro8, Sarah E Calvo9–11, Vamsi K Mootha9–11, Thomas Klopstock12, Tim M Strom3, Thomas Meitinger3, Michal Minczuk2, Wolfram S Kunz4,5 & Holger Prokisch3 Known disease mechanisms in mitochondrial DNA (mtDNA) maintenance disorders. Their clinical manifestations range from maintenance disorders alter either the mitochondrial severe multiorgan involvement in early childhood to tissue- replication machinery (POLG, POLG2 and C10orf2)1–3 or specific manifestations, for example, myopathies, in late adulthood. the biosynthesis pathways of deoxyribonucleoside Progressive external ophthalmoplegia (PEO) is commonly associated 5′-triphosphates for mtDNA synthesis4–11. However, in many with these disorders, particularly the late-onset phenotypes. of these disorders, the underlying genetic defect has yet to We identified a Lebanese family (family I) with three chil- be discovered. Here, we identify homozygous nonsense and dren affected by a severe multisystemic mitochondrial disorder missense mutations in the orphan gene C20orf72 in three (Supplementary Fig. 1a). Initial symptoms included ptosis in child- families with a mitochondrial syndrome characterized by hood followed by mild PEO, diffuse skeletal muscle wasting and external ophthalmoplegia, emaciation and respiratory weakness, profound emaciation and respiratory distress. Skeletal failure. Muscle biopsies showed mtDNA depletion and muscle biopsies showed scattered cytochrome c oxidase (COX)- multiple mtDNA deletions. C20orf72, hereafter MGME1 negative fibers and ragged red fibers (RRFs) in all affected individu- (mitochondrial genome maintenance exonuclease 1), encodes als. -
Roles of the Mitochondrial Replisome in Mitochondrial DNA Deletion Formation
Genetics and Molecular Biology, 43, 1(suppl 1), e20190069 (2020) Copyright © 2020, Sociedade Brasileira de Genética. DOI: http://dx.doi.org/10.1590/1678-4685-GMB-2019-0069 Review Article Roles of the mitochondrial replisome in mitochondrial DNA deletion formation Marcos T. Oliveira1 , Carolina de Bovi Pontes2 and Grzegorz L. Ciesielski2 1Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Tecnologia, Jaboticabal, SP, Brazil. 2Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, U.S.A. Abstract Mitochondrial DNA (mtDNA) deletions are a common cause of human mitochondrial diseases. Mutations in the genes encoding components of the mitochondrial replisome, such as DNA polymerase gamma (Pol g) and the mtDNA helicase Twinkle, have been associated with the accumulation of such deletions and the development of pathological conditions in humans. Recently, we demonstrated that changes in the level of wild-type Twinkle pro- mote mtDNA deletions, which implies that not only mutations in, but also dysregulation of the stoichiometry between the replisome components is potentially pathogenic. The mechanism(s) by which alterations to the replisome func- tion generate mtDNA deletions is(are) currently under debate. It is commonly accepted that stalling of the replication fork at sites likely to form secondary structures precedes the deletion formation. The secondary structural elements can be bypassed by the replication-slippage mechanism. Otherwise, stalling of the replication fork can generate sin- gle- and double-strand breaks, which can be repaired through recombination leading to the elimination of segments between the recombination sites. Here, we discuss aberrances of the replisome in the context of the two debated outcomes, and suggest new mechanistic explanations based on replication restart and template switching that could account for all the deletion types reported for patients. -
Oxygen Tension Modulates the Mitochondrial Genetic Bottleneck and Influences the Segregation of a Heteroplasmic Mtdna Variant in Vitro
ARTICLE https://doi.org/10.1038/s42003-021-02069-2 OPEN Oxygen tension modulates the mitochondrial genetic bottleneck and influences the segregation of a heteroplasmic mtDNA variant in vitro Mikael G. Pezet1,2,6, Aurora Gomez-Duran1,2,7, Florian Klimm2,3,7, Juvid Aryaman1,2,3, Stephen Burr1,2, ✉ Wei Wei1,2, Mitinori Saitou4,5, Julien Prudent 2 & Patrick F. Chinnery 1,2 Most humans carry a mixed population of mitochondrial DNA (mtDNA heteroplasmy) affecting ~1–2% of molecules, but rapid percentage shifts occur over one generation leading to severe mitochondrial diseases. A decrease in the amount of mtDNA within the developing 1234567890():,; female germ line appears to play a role, but other sub-cellular mechanisms have been implicated. Establishing an in vitro model of early mammalian germ cell development from embryonic stem cells, here we show that the reduction of mtDNA content is modulated by oxygen and reaches a nadir immediately before germ cell specification. The observed genetic bottleneck was accompanied by a decrease in mtDNA replicating foci and the segregation of heteroplasmy, which were both abolished at higher oxygen levels. Thus, differences in oxygen tension occurring during early development likely modulate the amount of mtDNA, facil- itating mtDNA segregation and contributing to tissue-specific mutation loads. 1 Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. 2 Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK. 3 Department of Mathematics, Imperial College London, London SW7 2AZ, UK. 4 Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.