M-AAA and I-AAA Complexes Coordinate to Regulate OMA1, The

Total Page:16

File Type:pdf, Size:1020Kb

M-AAA and I-AAA Complexes Coordinate to Regulate OMA1, The © 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs213546. doi:10.1242/jcs.213546 SHORT REPORT m-AAA and i-AAA complexes coordinate to regulate OMA1, the stress-activated supervisor of mitochondrial dynamics Francesco Consolato1,*, Francesca Maltecca1,*, Susanna Tulli1, Irene Sambri2 and Giorgio Casari1,2,‡ ABSTRACT and fission (L and S forms, respectively) (Anand et al., 2014). The The proteolytic processing of dynamin-like GTPase OPA1, mediated balance between long and short OPA1 forms is finely regulated by two by the activity of both YME1L1 [intermembrane (i)-AAA protease mitochondrial inner membrane proteases, OMA1 (Ehses et al., 2009) complex] and OMA1, is a crucial step in the regulation of mitochondrial and YME1L1, which cleave OPA1 at different sites (Song et al., 2007). dynamics. OMA1 is a zinc metallopeptidase of the inner mitochondrial The intermembrane (i)-AAA protease YME1L1 exposes its membrane that undergoes pre-activating proteolytic and auto- catalytic domain to the intermembrane space (Leonhard et al., 1996) proteolytic cleavage after mitochondrial import. Here, we identify and is responsible for generation of the S2-OPA1 form by proteolytic AFG3L2 [matrix (m)-AAA complex] as the major protease mediating cleavage, whereas OMA1 gives rise to the S1 and S3 forms (Anand this event, which acts by maturing the 60 kDa pre-pro-OMA1 to the et al., 2014; MacVicar and Langer, 2016; Quirós et al., 2012). 40 kDa pro-OMA1 form by severing the N-terminal portion without OMA1 harbours an M48 metallopeptidase domain and is the major recognizing a specific consensus sequence. Therefore, m-AAA and player in OPA1 processing under conditions of stress (Quirós et al., Δϕ i-AAA complexes coordinately regulate OMA1 processing and 2012). Different stress stimuli, such as dissipation of , increased turnover, and consequently control which OPA1 isoforms are ROS production, decreased ATP level, heat shock and loss of present, thus adding new information on the molecular mechanisms mtDNA have been demonstrated to overactivate OMA1 (Anand of mitochondrial dynamics and neurodegenerative diseases affected et al., 2014; Baker et al., 2014; Ehses et al., 2009; Head et al., 2009). Δϕ by these phenomena. Recently, a threshold of was identified as a determinant of mitochondrial homeostasis mediated by OMA1 and DRP1, which This article has an associated First Person interview with the first cooperatively regulate OPA1 maintenance and processing, and author of the paper. therefore control fission and fusion pathways (Jones et al., 2017). The absence of YME1L1, which generates organellar stress, also KEY WORDS: OMA1, OPA1, m-AAA complex, Mitochondrial activates OMA1 (Stiburek et al., 2012); in fact, YME1L1 and dynamics OMA1 are reciprocally regulated in response to specific stress stimuli. OMA1 is degraded by YME1L after toxic insults that INTRODUCTION depolarize the mitochondrial membrane and cause ATP depletion. The mitochondrial network optimizes different activities by The balance of degradation activities of these two proteins tunes continuously changing its morphology by the essential and the proteolytic processing of OPA1, which, in turn, affects the antagonistic activities of fission and fusion (Pernas and Scorrano, mitochondrial morphology state, thus profoundly modulating 2016; Westermann, 2010). These dynamic processes are regulated mitochondrial functions (Rainbolt et al., 2016). by the pro-fission dynamin-related proteins (DRPs), DRP1, Fis1 OMA1 is synthesized as a pre-pro-protein of 60 kDa that and MFF1 (Gandre-Babbe and van der Bliek, 2008; James et al., undergoes proteolytic processing upon import into mitochondria 2003; Smirnova et al., 2001), and pro-fusion proteins, MFN1, to generate a mature form of 40 kDa (Baker et al., 2014; Head et al., MFN2 and OPA1, which are involved in the fusion of the outer and 2009). It has been proposed that 40 kDa OMA1 is a stress-sensitive inner mitochondrial membrane (OMM and IMM), respectively pro-protein that undergoes autocatalytic cleavage of a C-terminal (Cipolat et al., 2004; Pernas and Scorrano, 2016). subunit peptide upon stress stimuli to generate the active form of The GTPase protein OPA1 exists in different splicing isoforms that OMA1 that is ultimately responsible for OPA1 processing (Baker can be partially or totally proteolytically processed at one or two et al., 2014). All these findings indicate that OMA1 is a key sensor distinct sites (S1 and S2) (Delettre et al., 2001). The combination for a plethora of mitochondrial stress events. of splicing isoforms and proteolytic cleavage results in five Nevertheless, clear information on the generation of pro-OMA1 electrophoretically distinguishable protein bands, named L1, L2 (the and the proteases involved in this mechanism is still missing. Here, long forms) and S1, S2 and S3 (the short forms), which promote fusion we add an additional tile to this complex system of interlaced and regulated proteases by showing that (1) AFG3L2, the essential component of the matrix (m)-AAA complex, processes OMA1 by 1Vita-Salute San Raffaele University and Neurogenomics Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milano MI, Italy. 2Genomic mediating its conversion from pre-pro-OMA1 to pro-OMA1, Medicine Program, Telethon Institute of Genetics and Medicine (TIGEM), 80078 whereas (2) YME1L1 is tightly involved in pro-OMA1 catabolism, Pozzuoli NA, Italy. as previously suggested (Rainbolt et al., 2016). *These authors contributed equally to this work ‡Author for correspondence ([email protected]) RESULTS AND DISCUSSION AFG3L2 mediates OMA1 initial processing F.C., 0000-0002-2229-2644; F.M., 0000-0001-8095-8208; S.T., 0000-0001- 5504-4121; I.S., 0000-0003-3500-6958; G.C., 0000-0002-0115-8980 With the aim of identifying the peptidase involved in OMA1 processing, HeLa cells were transfected with OMA1-HA, and Received 24 November 2017; Accepted 13 March 2018 inhibitors of different classes of peptidases were added to monitor Journal of Cell Science 1 SHORT REPORT Journal of Cell Science (2018) 131, jcs213546. doi:10.1242/jcs.213546 the accumulation of the pre-pro-OMA1 form: PMSF to inhibit of substrate binding but lacks proteolytic activity (Atorino et al., 2003), serine proteases, E64 for cysteine proteases and O-phe to block as a trap for interacting proteins. As hypothesized, AFG3L2 co- metallopeptidases (see the Materials and Methods). Only O-phe immunoprecipitates with OMA1 (Fig. 2B). treatment induced the accumulation of the pre-pro-OMA1 form, To gain further evidence of the role of AFG3L2 in OMA1 indicating that the class of metallopeptidase is the one involved in processing in human cells, which unlike murine cells do not express the initial processing of the protein (Fig. 1A). the AFG3L2 homologue AFG3L1, we tested the accumulation A total of 380 putative mitochondrial proteases were selected from of pre-pro-OMA1 in HeLa cells silenced for AFG3L2 and four different protein databases: UniProt (UniProt Consortium, 2013), demonstrated that they behave similarly to Afg3l2−/− MEFs. In MitoCarta (Pagliarini et al., 2008), MitoMiner (Smith and Robinson, fact, upon silencing of AFG3L2, we detected the accumulation of 2009) and Gene Ontology (Ashburner et al., 2000). Combining O-phe the pre-pro-OMA1 and the presence of intermediate bands between sensitivity with the presence of the protease in at least two of the pre-pro-OMA1 and pro-OMA1 (Fig. 2C, first two lanes). Moreover, databases, we reduced candidates to 27 proteins. Among them, all expression of proteolytic siRNA-insensitive AFG3L2 mutants proteins inhibited by metal ions or recognizing specific consensus (AFG3L2-ins-Q1-Myc, AFG3L2-ins-Q2-Myc) failed to reduce the sequence not present in OMA1 or showing deacetylase/hydrolase amount of the pre-pro-OMA1 form (Fig. 2C, right panel). activity were excluded. Since OMA1 is localized in the IMM (Baker In order to identify the putative target sequence, a series of et al., 2014) and presumably its cleavage occurs in this site, four segmentally deleted OMA1 mutants revealed that pre-pro-OMA1 to proteins localized in the IMM were prioritized: paraplegin (encoded pro-OMA1 maturation is the consequence of an N-terminal trimming by the SPG7 gene), AFG3L2, YME1L1 and OMA1 (Fig. 1B). effect operated by the m-AAA complex, similar to maturation of We excluded OMA1 itself from this initial step since the expression MRPL32, another m-AAA-specific substrate (Bonn et al., 2011) of the proteolytic inactive mutant (OMA1-Q-HA) does not affect the (Fig. 2D). Moreover, since the N-terminus of 40 kDa OMA1 has been pre-pro OMA1 to pro-OMA1 cleavage (Fig. 1C). However, we mapped at amino acid 140 (Baker et al., 2014), we generated a vector confirmed that OMA1 has an active role on its own processing, in expressing a truncated form of OMA1 that mimics pro-OMA1 by particular in the conversion from the pro-OMA1 to the fragment of removing 53 amino acids between the mitochondrial leader sequence ∼30 kDa, as previously reported (Baker et al., 2014). Indeed, we and the first N-terminal amino acids of pro-OMA1. This mutant observed that the expression of OMA1-Q-HA prevents the processing (OMA1-Δ92-144-HA) encodes a protein of 50 kDa and is processed to the 30 kDa OMA1 fragment, demonstrating that it is generated by like the wild-type protein to generate pro-OMA1 (Fig. 2E). We also auto-processing (Fig. 1C). By transfecting OMA1-HA in HSP patient found that OMA1-Δ92-144 is proteolytically active since it is able to fibroblasts lacking paraplegin (Atorino et al., 2003), we found no cleave L-OPA1, restoring the bands S1 and S3, which both alteration of OMA1 processing (Fig. 1D), thus excluding paraplegin disappeared after OMA1 silencing (Fig. 2E). from candidates and confirming previous findings (Ehses et al., 2009). Our findings demonstrate the major role of AFG3L2 in OMA1 We then evaluated OMA1 processing in the absence of AFG3L2 in processing, and in particular, in the conversion from the pre-pro- MEFs (Fig.
Recommended publications
  • Mitochondrial Protein Quality Control Mechanisms
    G C A T T A C G G C A T genes Review Mitochondrial Protein Quality Control Mechanisms Pooja Jadiya * and Dhanendra Tomar * Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA * Correspondence: [email protected] (P.J.); [email protected] (D.T.); Tel.: +1-215-707-9144 (D.T.) Received: 29 April 2020; Accepted: 15 May 2020; Published: 18 May 2020 Abstract: Mitochondria serve as a hub for many cellular processes, including bioenergetics, metabolism, cellular signaling, redox balance, calcium homeostasis, and cell death. The mitochondrial proteome includes over a thousand proteins, encoded by both the mitochondrial and nuclear genomes. The majority (~99%) of proteins are nuclear encoded that are synthesized in the cytosol and subsequently imported into the mitochondria. Within the mitochondria, polypeptides fold and assemble into their native functional form. Mitochondria health and integrity depend on correct protein import, folding, and regulated turnover termed as mitochondrial protein quality control (MPQC). Failure to maintain these processes can cause mitochondrial dysfunction that leads to various pathophysiological outcomes and the commencement of diseases. Here, we summarize the current knowledge about the role of different MPQC regulatory systems such as mitochondrial chaperones, proteases, the ubiquitin-proteasome system, mitochondrial unfolded protein response, mitophagy, and mitochondria-derived vesicles in the maintenance of mitochondrial proteome and health. The proper understanding of mitochondrial protein quality control mechanisms will provide relevant insights to treat multiple human diseases. Keywords: mitochondria; proteome; ubiquitin; proteasome; chaperones; protease; mitophagy; mitochondrial protein quality control; mitochondria-associated degradation; mitochondrial unfolded protein response 1. Introduction Mitochondria are double membrane, dynamic, and semiautonomous organelles which have several critical cellular functions.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Thrombocytopenia-Associated Mutations in Ser/Thr Kinase MASTL Deregulate Actin Cytoskeletal Dynamics in Platelets
    Thrombocytopenia-associated mutations in Ser/Thr kinase MASTL deregulate actin cytoskeletal dynamics in platelets Begoña Hurtado, … , Pablo García de Frutos, Marcos Malumbres J Clin Invest. 2018;128(12):5351-5367. https://doi.org/10.1172/JCI121876. Research Article Cell biology Hematology Graphical abstract Find the latest version: https://jci.me/121876/pdf The Journal of Clinical Investigation RESEARCH ARTICLE Thrombocytopenia-associated mutations in Ser/Thr kinase MASTL deregulate actin cytoskeletal dynamics in platelets Begoña Hurtado,1,2 Marianna Trakala,1 Pilar Ximénez-Embún,3 Aicha El Bakkali,1 David Partida,1 Belén Sanz-Castillo,1 Mónica Álvarez-Fernández,1 María Maroto,1 Ruth Sánchez-Martínez,1 Lola Martínez4, Javier Muñoz,3 Pablo García de Frutos,2 and Marcos Malumbres1 1Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. 2Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas- Institut d’Investigacions Biomèdiques August Pi i Sunyer- (IIBB-CSIC-IDIBAPS), Barcelona, Spain. 3ProteoRed – Instituto de Salud Carlos III (ISCIII) and Proteomics Unit, CNIO, Madrid, Spain. 4Cytometry Unit, CNIO, Madrid, Spain. MASTL, a Ser/Thr kinase that inhibits PP2A-B55 complexes during mitosis, is mutated in autosomal dominant thrombocytopenia. However, the connections between the cell-cycle machinery and this human disease remain unexplored. We report here that, whereas Mastl ablation in megakaryocytes prevented proper maturation of these cells, mice carrying the thrombocytopenia-associated mutation developed thrombocytopenia as a consequence of aberrant activation and survival of platelets. Activation of mutant platelets was characterized by hyperstabilized pseudopods mimicking the effect of PP2A inhibition and actin polymerization defects.
    [Show full text]
  • Oxygen Tension Modulates the Mitochondrial Genetic Bottleneck and Influences the Segregation of a Heteroplasmic Mtdna Variant in Vitro
    ARTICLE https://doi.org/10.1038/s42003-021-02069-2 OPEN Oxygen tension modulates the mitochondrial genetic bottleneck and influences the segregation of a heteroplasmic mtDNA variant in vitro Mikael G. Pezet1,2,6, Aurora Gomez-Duran1,2,7, Florian Klimm2,3,7, Juvid Aryaman1,2,3, Stephen Burr1,2, ✉ Wei Wei1,2, Mitinori Saitou4,5, Julien Prudent 2 & Patrick F. Chinnery 1,2 Most humans carry a mixed population of mitochondrial DNA (mtDNA heteroplasmy) affecting ~1–2% of molecules, but rapid percentage shifts occur over one generation leading to severe mitochondrial diseases. A decrease in the amount of mtDNA within the developing 1234567890():,; female germ line appears to play a role, but other sub-cellular mechanisms have been implicated. Establishing an in vitro model of early mammalian germ cell development from embryonic stem cells, here we show that the reduction of mtDNA content is modulated by oxygen and reaches a nadir immediately before germ cell specification. The observed genetic bottleneck was accompanied by a decrease in mtDNA replicating foci and the segregation of heteroplasmy, which were both abolished at higher oxygen levels. Thus, differences in oxygen tension occurring during early development likely modulate the amount of mtDNA, facil- itating mtDNA segregation and contributing to tissue-specific mutation loads. 1 Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. 2 Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK. 3 Department of Mathematics, Imperial College London, London SW7 2AZ, UK. 4 Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
    [Show full text]
  • Duodenal Mucosal Mitochondrial Gene Expression Is Associated with Delayed Gastric Emptying in Diabetic Gastroenteropathy
    Duodenal mucosal mitochondrial gene expression is associated with delayed gastric emptying in diabetic gastroenteropathy Susrutha Puthanmadhom Narayanan, … , Tamas Ordog, Adil E. Bharucha JCI Insight. 2021;6(2):e143596. https://doi.org/10.1172/jci.insight.143596. Research Article Endocrinology Gastroenterology Graphical abstract Find the latest version: https://jci.me/143596/pdf RESEARCH ARTICLE Duodenal mucosal mitochondrial gene expression is associated with delayed gastric emptying in diabetic gastroenteropathy Susrutha Puthanmadhom Narayanan,1 Daniel O’Brien,2 Mayank Sharma,1 Karl Miller,3 Peter Adams,3 João F. Passos,4 Alfonso Eirin,5 Tamas Ordog,4 and Adil E. Bharucha1 1Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA. 2Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA. 3Sanford Burnham Prebys Medical Discovery Institute, San Diego, California, USA. 4Department of Physiology and Biomedical Engineering and 5Division of Nephrology & Hypertension Research, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA. Hindered by a limited understanding of the mechanisms responsible for diabetic gastroenteropathy (DGE), management is symptomatic. We investigated the duodenal mucosal expression of protein- coding genes and microRNAs (miRNA) in DGE and related them to clinical features. The diabetic phenotype, gastric emptying, mRNA, and miRNA expression and ultrastructure of duodenal mucosal biopsies were compared in 39 DGE patients and 21 controls. Among 3175 differentially expressed genes (FDR < 0.05), several mitochondrial DNA–encoded (mtDNA-encoded) genes (12 of 13 protein coding genes involved in oxidative phosphorylation [OXPHOS], both rRNAs and 9 of 22 transfer RNAs) were downregulated; conversely, nuclear DNA–encoded (nDNA-encoded) mitochondrial genes (OXPHOS) were upregulated in DGE.
    [Show full text]
  • LONP1 Is Required for Maturation of a Subset of Mitochondrial Proteins and Its Loss Elicits
    bioRxiv preprint doi: https://doi.org/10.1101/306316; this version posted April 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. LONP1 is required for maturation of a subset of mitochondrial proteins and its loss elicits an integrated stress response Olga Zurita Rendón and Eric A. Shoubridge. Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, QC, Canada. Eric A. Shoubridge, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec, Canada H3A 2B4 Email: [email protected] Tel: 514-398-1997 FAX: 514-398-1509 bioRxiv preprint doi: https://doi.org/10.1101/306316; this version posted April 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract LONP1, a AAA+ mitochondrial protease, is implicated in protein quality control, but its substrates and precise role in this process remain poorly understood. Here we have investigated the role of human LONP1 in mitochondrial gene expression and proteostasis. Depletion of LONP1 resulted in partial loss of mtDNA, complete suppression of mitochondrial translation, a marked increase in the levels of a distinct subset of mitochondrial matrix proteins (SSBP1, MTERFD3, FASTKD2 and CLPX), and the accumulation of their unprocessed forms, with intact mitochondrial targeting sequences, in an insoluble protein fraction.
    [Show full text]
  • MMP-25 Metalloprotease Regulates Innate Immune Response Through NF- Κb Signaling Clara Soria-Valles, Ana Gutiérrez-Fernández, Fernando G
    MMP-25 Metalloprotease Regulates Innate Immune Response through NF- κB Signaling Clara Soria-Valles, Ana Gutiérrez-Fernández, Fernando G. Osorio, Dido Carrero, Adolfo A. Ferrando, Enrique Colado, This information is current as M. Soledad Fernández-García, Elena Bonzon-Kulichenko, of October 5, 2021. Jesús Vázquez, Antonio Fueyo and Carlos López-Otín J Immunol published online 3 June 2016 http://www.jimmunol.org/content/early/2016/06/01/jimmun ol.1600094 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2016/06/01/jimmunol.160009 Material 4.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 5, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published June 3, 2016, doi:10.4049/jimmunol.1600094 The Journal of Immunology MMP-25 Metalloprotease Regulates Innate Immune Response through NF-kB Signaling Clara Soria-Valles,* Ana Gutie´rrez-Ferna´ndez,* Fernando G. Osorio,* Dido Carrero,* Adolfo A.
    [Show full text]
  • Full-Text.Pdf
    Systematic Evaluation of Genes and Genetic Variants Associated with Type 1 Diabetes Susceptibility This information is current as Ramesh Ram, Munish Mehta, Quang T. Nguyen, Irma of September 23, 2021. Larma, Bernhard O. Boehm, Flemming Pociot, Patrick Concannon and Grant Morahan J Immunol 2016; 196:3043-3053; Prepublished online 24 February 2016; doi: 10.4049/jimmunol.1502056 Downloaded from http://www.jimmunol.org/content/196/7/3043 Supplementary http://www.jimmunol.org/content/suppl/2016/02/19/jimmunol.150205 Material 6.DCSupplemental http://www.jimmunol.org/ References This article cites 44 articles, 5 of which you can access for free at: http://www.jimmunol.org/content/196/7/3043.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 23, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Systematic Evaluation of Genes and Genetic Variants Associated with Type 1 Diabetes Susceptibility Ramesh Ram,*,† Munish Mehta,*,† Quang T.
    [Show full text]
  • C6orf203 Controls OXPHOS Function Through Modulation of Mitochondrial Protein Biosynthesis
    bioRxiv preprint doi: https://doi.org/10.1101/704403; this version posted July 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. C6orf203 controls OXPHOS function through modulation of mitochondrial protein biosynthesis number of characters excluding Materials and Methods: 40,651 Sara Palacios-Zambrano1,2, Luis Vázquez-Fonseca1,2, Cristina González-Páramos1,2, Laura Mamblona1,2, Laura Sánchez-Caballero3, Leo Nijtmans3, Rafael Garesse1,2 and Miguel Angel Fernández-Moreno1,2,* 1 Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER). Facultad de Medicina, Universidad Autónoma de Madrid. Madrid 28029, Spain. 2 Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid 28041, Spain. 3 Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands. * To whom correspondence should be addressed. Tel:+34 91 497 31 29; Email: [email protected] Running title “C6orf203 controls mt-proteins synthesis” bioRxiv preprint doi: https://doi.org/10.1101/704403; this version posted July 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT Mitochondria are essential organelles present in the vast majority of eukaryotic cells. Their central function is to produce cellular energy through the OXPHOS system, and functional alterations provoke so-called mitochondrial OXPHOS diseases. It is estimated that several hundred mitochondrial proteins have unknown functions. Very recently, C6orf203 was described to participate in mitochondrial transcription under induced mitochondrial DNA depletion stress conditions.
    [Show full text]
  • Blueprint Genetics Optic Atrophy Panel
    Optic Atrophy Panel Test code: OP0301 Is a 68 gene panel that includes assessment of non-coding variants. In addition, it also includes the maternally inherited mitochondrial genome. This is ideal for patients with a clinical suspicion or diagnosis of isolated or syndromic optic atrophy. About Optic Atrophy Optic atrophy is a condition that affects the optic nerve, which carries impulses from the eye to the brain. Optic atrophy type 1 (OA1) is clinically characterized by progressive decrease in visual acuity from early childhood onwards. Clinical presentation can be highly variable. The visual impairment is usually moderate, but ranges from severe (legal blindness with acuity <1/20) to mild, accompanied by visual field and color vision defects. OA1 is characterized by the preferential loss of retinal ganglion cells and is inherited in an autosomal dominant manner. Approximately 80% of the familial and 50% of the sporadic cases with OA1 are explained by variants in OPA1, which encodes a mitochondrial inner membrane protein. Optic atrophy can also be syndromic. For example, deafness-dystonia-optic neuronopathy (DDON) syndrome (Mohr-Tranebjaerg syndrome) is inherited in an X-linked manner and caused by variants in TIMM8A. Biallelic variants in WFS1 are associated with optic atrophy as part of the autosomal recessive Wolfram syndrome. Autosomal dominant Charcot-Marie-Tooth hereditary neuropathy type 2A is caused by variants in MFN2. Variants in C12ORF65 are implicated in autosomal recessive hereditary spastic paraplegias. Availability 4 weeks
    [Show full text]
  • Thesis Reference
    Thesis C11orf83, a mitochondrial cardiolipin-binding protein involved in bc1 complex assembly and supercomplex stabilization DESMURS-ROUSSEAU, Marjorie Abstract Cette thèse a permis d'identifier C11orf83, désormais appelé UQCC3, comme étant une protéine mitochondriale ancrée dans la membrane interne. Nous avons constaté l'implication de C11orf83 dans l'assemblage du complexe III de la chaîne respiratoire via la stabilisation du complexe intermédiaire MT-CYB/UQCRB/UQCRQ. Nous avons également prouvé que C11orf83 était associée avec le dimère de complexe III et était détectée dans le supercomplexe III2/IV. Son absence induit une baisse significative de ce supercomplexe et du respirasome (I/III2/IV). La capacité de C11orf83 de lier les cardiolipines, connues pour être impliquées dans la formation et la stabilisation de ces supercomplexes, pourrait expliquer ces résultats. Ainsi, ce travail de thèse en lien avec une récente étude clinique mettant en évidence une déficience du complexe III chez un patient atteint d'une mutation du gène C11orf83 (Wanschers et al., 2014) permet d'améliorer les connaissances sur l'assemblage du complexe III et la compréhension d'une maladie mitochondriale. Reference DESMURS-ROUSSEAU, Marjorie. C11orf83, a mitochondrial cardiolipin-binding protein involved in bc1 complex assembly and supercomplex stabilization. Thèse de doctorat : Univ. Genève, 2015, no. Sc. 4857 DOI : 10.13097/archive-ouverte/unige:108015 URN : urn:nbn:ch:unige-1080158 Available at: http://archive-ouverte.unige.ch/unige:108015 Disclaimer: layout of this document may differ from the published version. 1 / 1 UNIVERSITÉ DE GENÈVE Département de Biologie Cellulaire FACULTÉ DES SCIENCES Professeur Jean-Claude Martinou Département de Science des Protéines Humaines FACULTÉ DE MEDECINE Professeur Amos Bairoch C11orf83, a mitochondrial cardiolipin-binding protein involved in bc1 complex assembly and supercomplex stabilization.
    [Show full text]
  • MAFB Determines Human Macrophage Anti-Inflammatory
    MAFB Determines Human Macrophage Anti-Inflammatory Polarization: Relevance for the Pathogenic Mechanisms Operating in Multicentric Carpotarsal Osteolysis This information is current as of October 4, 2021. Víctor D. Cuevas, Laura Anta, Rafael Samaniego, Emmanuel Orta-Zavalza, Juan Vladimir de la Rosa, Geneviève Baujat, Ángeles Domínguez-Soto, Paloma Sánchez-Mateos, María M. Escribese, Antonio Castrillo, Valérie Cormier-Daire, Miguel A. Vega and Ángel L. Corbí Downloaded from J Immunol 2017; 198:2070-2081; Prepublished online 16 January 2017; doi: 10.4049/jimmunol.1601667 http://www.jimmunol.org/content/198/5/2070 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2017/01/15/jimmunol.160166 Material 7.DCSupplemental References This article cites 69 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/198/5/2070.full#ref-list-1 by guest on October 4, 2021 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606.
    [Show full text]