Achillea, an Autopolyploid Complex of Ecological Races

Total Page:16

File Type:pdf, Size:1020Kb

Achillea, an Autopolyploid Complex of Ecological Races ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2007.00264.x RAPID ADAPTIVE DIVERGENCE IN NEW WORLD ACHILLEA, AN AUTOPOLYPLOID COMPLEX OF ECOLOGICAL RACES Justin Ramsey,1,2,3 Alexander Robertson,1 and Brian Husband1 1Department of Integrated Biology, University of Guelph, 488 Gordon St, Guelph, ON N1G 2W1, Canada 2E-mail: justin [email protected] Received February 9, 2006 Accepted September 4, 2007 Adaptive evolution is often associated with speciation. In plants, however, ecotypic differentiation is common within widespread species, suggesting that climatic and edaphic specialization can outpace cladogenesis and the evolution of postzygotic reproductive isolation. We used cpDNA sequence (5 noncoding regions, 3.5 kb) and amplified fragment length polymorphisms (AFLPs: 4 primer pairs, 1013 loci) to evaluate the history of ecological differentiation in the North American Achillea millefolium, an autopolyploid complex of “ecological races” exhibiting morphological, physiological, and life-history adaptations to diverse environments. Phy- logenetic analyses reveal North American A. millefolium to be a monophyletic group distinct from its European and Asian relatives. Based on patterns of sequence divergence, as well as fossil and paleoecological data, colonization of North America appears to have occurred via the Bering Land Bridge during the Pleistocene (1.8 MYA to 11,500 years ago). Population genetic analyses indi- cate negligible structure within North American A. millefolium associated with varietal identity, geographic distribution, or ploidy level. North American populations, moreover, exhibit the signature of demographic expansion. These results affirm the “ecotype” concept of the North American Achillea advocated by classical research and demonstrate the rapid rate of ecological differentiation that sometimes occurs in plants. KEYWORDS: Achillea, adaptation, ecotype, niche, phylogeography, polyploidy, speciation. Botanists have historically emphasized intraspecific ecologi- and Grant 1996). In contrast, discussions of ecological differen- cal races as primary examples of adaptive evolution (Turesson tiation in animals have tended to emphasize niche conservatism, 1925; Clausen et al. 1939, 1940, 1948; Stebbins 1950; Clausen developmental constraints, and the coincidence of adaptation and 1951; Kruckeberg 1951). Classical transplant studies by G¨ote speciation (Futuyma 1987; Gould and Eldridge 1993; Schluter Turesson and Jens Clausen demonstrated dramatic examples 2000; Wiens 2004). of adaptation—including fundamental changes in anatomical, Surprisingly, few molecular studies have tested the phyloge- life-history and physiological characteristics—occurring within netic hypotheses of early plant evolutionists, in particular, that so- widespread plant species. Such ecotypic differences exist at small called ecotypes do not in fact represent well-differentiated cryp- spatial scales and involve populations isolated by few intrinsic tic species with distinct evolutionary histories. Here we evaluate reproductive barriers. As a consequence, botanists often regard the phylogenetic and demographic history of the North Amer- ecological differentiation as a rapid process that can be decoupled ican Achillea millefolium, a complex of “ecological races” that from speciation (Antonovics et al. 1971; Schemske 1984; Linhart is a textbook example of plant ecotypic differentiation. In their studies, Clausen and his colleagues at the Carnegie Institute of 3Present address: Department of Biology, University of Rochester, Washington (Division of Plant Biology, Stanford University) 213 Hutchison Hall, River Campus, Rochester, NY 14627. investigated phenotypic characteristics of Achillea populations C C ! 2008 The Author(s). Journal compilation ! 2008 The Society for the Study of Evolution. 639 Evolution 62-3: 639–653 JUSTINRAMSEYETAL. Figure 1. Geographic distribution of the ecological races of North American A. millefolium. Pictograms show characteristics of the sampled varieties, including stem size, root structure, pubescence, and vegetative growth (see Table 1). along an altitudinal transect in California that ran from sea level current neopolyploid formation via unreduced gametes (Clausen to alpine regions (Clausen et al. 1940, 1948). Using experimental et al. 1940, 1948; Lawrence 1947; Kruckeberg 1951; Hiesey and transplant gardens, the Carnegie group documented local adap- Nobs 1970; Ehrendorfer 1973; Tyrl 1975; Purdy and Bayer 1996; tation of A. millefolium populations to their native environments. Ramsey 2007). The North American Achillea belongs to the cir- In total, nine ecological races were described from western North cumpolar “A. millefolium aggregate,” and ecological races are America, including forms adapted to coastal habitats, salt marshes, generally recognized as varieties of A. millefolium (Nobs 1960; oak woodlands, coniferous forests, sagebrush steppe, and alpine Hiesey and Nobs 1970; Hickman 1993; Table 1). Eurasian mem- meadows (Nobs 1960). The varieties are distinguished primarily bers of the A. millefolium aggregate are geographically widespread on the basis of stem features (height and diameter), leaf char- but phenotypically less diverse than North American populations acteristics (pubescence, color, fleshiness), phenology (dormancy, and are largely restricted to grasslands and forest margins (Tutin flowering times), and habitat associations (Fig. 1; Table 1). et al. 1976; Stace 1997; Ehrendorfer and Guo 2006; Table 1). The North American A. millefolium is an autopolyploid com- Here we use phylogenetic and population genetic analyses of plex of tetraploid (2n 4x 36) and hexaploid (2n 6x chloroplast sequence and amplified fragment length polymor- = = = = 54) populations that exhibit multisomic inheritance (random as- phisms (AFLPs) to evaluate historical relationships among the sociation of homologous chromosomes during meiosis) and re- North American A. millefolium and related Eurasian taxa. We 640 EVOLUTION MARCH 2008 Table 1. Distribution, ecology, and phenotypic characteristics of North American A. millefolium and related Eurasian taxa. Taxon Ploidy Geographic Habitat Stems Foliage Roots Vegetative Flowering level distribution reproduction phenology A. millefolium 4x w. North America alpine 10–30 cm; gray, villous fibrous, along extensive July–Sept. var. alpicola (mountains) meadows slender rhizomes A. millefolium 6x w. North America sand dunes, 20–80 cm; gray, densely fibrous plus extensive April–June var. arenicola (coasts of CA, OR, WA) grasslands stout villous, fleshy central taproot A. millefolium 6x w. North America sand dunes, 20–40 cm dark green, fibrous, along extensive June–Sept. var. borealis (coasts of AK, BC) forest margins lightly villous rhizomes A. millefolium 6x w. North America oak woodlands 30–120 cm gray green, fibrous plus extensive March–June var. californica (interior CA, OR) villous central taproot A. millefolium 6x w. North America freshwater 100–220 cm; gray, wooly deep taproot absent (all May–July var. gigantea (Central Valley, CA) “tule” ponds robust stems repro- ductive) A. millefolium 4x w. North America sagebrush steppe, 30–70 cm; gray, wooly fibrous plus extensive April–June var. lanulosa (Great Basin, Palouse) dry grasslands stout central taproot A. millefolium 4x w. North America (coasts mesic grasslands, 30–90 cm; dark green, fibrous plus extensive June–Sept. var. litoralis of CA, OR, WA, BC) forest margins robust sparsely villous, central taproot RAPIDECOLOGICALDIVERGENCEIN fleshy A. millefolium 4x w. North America open coniferous 30–90 cm; green, fibrous, along extensive June-Sept. var. pacifica (Pacific lowlands) forest slender sparsely villous rhizomes EVOLUTION A. millefolium 4x w. North America salt marshes 80–180 cm; dark green, fibrous, absent (all July–Sept. var. puberula (coast of central CA) robust hairless, very at stem base stems repro- ± fleshy ductive) A. millefolium 2x,4x China, Russia grasslands, riparian 20–60 cm; green, fibrous, along extensive June-Sept. MARCH 2008 var. mandshuricum areas sparsely villous rhizomes A. millefolium 2x Spain, France open coniferous 20–40 cm; green, fibrous, along extensive July–Sept. var. ceretanica (Pyrenees Mountains) forest slender sparsely villous rhizomes A. millefolium 6x Europe grasslands, riparian 20–60 cm green, fibrous, along extensive June–Sept. var. millefolium areas sparsely villous rhizomes 641 ACHILLEA JUSTINRAMSEYETAL. seek to identify the timeframe of adaptation and ask whether the on agarose gels to confirm amplification. Products were purified North American plants represent (1) a monophyletic grouping with Montage´ TM plates (Millipore, Billerica, MA). of recently diverged but ecologically distinct forms; (2) a mono- Cycle-sequencing reactions were performed in a 12.5-␮l phyletic grouping of highly divergent evolutionary lineages; or (3) volume that included 1 ␮l cleaned PCR product, 1 ␮l of each a polyphyletic assemblage of historically Eurasian lineages that primer (10 mM stock), 1␮l Big Dye (ver. 3.1; Applied Biosys- now co-occur in the western United States and Canada. tems, Foster City, CA) and 1 ␮l Big Dye buffer (5 Termina- × tor; Applied Biosystems). Samples were sequenced in forward and reverse directions. Sequence products were cleaned using Materials and Methods sephadex columns in combination with HV Plates (Millipore) and sequenced on an ABI 3730 capillary sequencer. Sequences were SAMPLING manually aligned using SequencherTM (ver. 4.1; Gene Codes, Ann We sampled the nine varieties of western North American
Recommended publications
  • Imprints of Independent Allopolyploid Formations On
    Chen et al. BMC Genomics (2021) 22:264 https://doi.org/10.1186/s12864-021-07566-6 RESEARCH ARTICLE Open Access Imprints of independent allopolyploid formations on patterns of gene expression in two sibling yarrow species (Achillea, Asteraceae) Duo Chen1†, Peng-Cheng Yan2† and Yan-Ping Guo1* Abstract Background: Polyploid species often originate recurrently. While this is well known, there is little information on the extent to which distinct allotetraploid species formed from the same parent species differ in gene expression. The tetraploid yarrow species Achillea alpina and A. wilsoniana arose independently from allopolyploidization between diploid A. acuminata and A. asiatica. The genetics and geography of these origins are clear from previous studies, providing a solid basis for comparing gene expression patterns of sibling allopolyploid species that arose independently. Results: We conducted comparative RNA-sequencing analyses on the two Achillea tetraploid species and their diploid progenitors to evaluate: 1) species-specific gene expression and coexpression across the four species; 2) patterns of inheritance of parental gene expression; 3) parental contributions to gene expression in the allotetraploid species, and homeolog expression bias. Diploid A. asiatica showed a higher contribution than diploid A. acuminata to the transcriptomes of both tetraploids and also greater homeolog bias in these transcriptomes, possibly reflecting a maternal effect. Comparing expressed genes in the two allotetraploids, we found expression of ca. 30% genes were species-specific in each, which were most enriched for GO terms pertaining to “defense response”. Despite species-specific and differentially expressed genes between the two allotetraploids, they display similar transcriptome changes in comparison to their diploid progenitors.
    [Show full text]
  • In-Vitro Cardiovascular Protective Activity of a New Achillinoside from Achillea Alpina
    Revista Brasileira de Farmacognosia 29 (2019) 445–448 ww w.elsevier.com/locate/bjp Original Article In-vitro cardiovascular protective activity of a new achillinoside from Achillea alpina ∗ Fei Zhou , Song Li , Jian Yang , Jiawang Ding , Chao He , Lin Teng Institute of Cardiovascular Diseases, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, PR China a a b s t r a c t r t i c l e i n f o Article history: Achillinoside was isolated from methanol extract of Achillea alpina L., Asteraceae. The structure of the com- Received 28 August 2018 pound was characterized based on various spectrum data, including IR, HR-ESI-MS, 1D and 2D NMR. The Accepted 25 February 2019 cardiovascular protective effect of achillinoside was tested on H2O2-induced H9c2 cells. In our research, Available online 27 March 2019 achillinoside could increase the cell viability dose-dependently in H2O2-induced H9c2 cells. In addition, the levels of caspase-3/9 cells were significantly decreased in H2O2 and achillinoside incubated H9c2 Keywords: cells. Achillinoside © 2019 Sociedade Brasileira de Farmacognosia. Published by Elsevier Editora Ltda. This is an open Apoptosis inhibition access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Spectroscopic analysis H9c2 cells Introduction because H9c2 cell keeps the main characteristics of primary car- diomyocytes in vivo (Silva et al., 2010; Watkins et al., 2011). Herein The genus Achillea, Asteraceae, consists of 85 species around we describe the isolation and structure elucidation of the com- the world, and mainly distributed in eastern and southern Asia.
    [Show full text]
  • Sustainable Sourcing : Markets for Certified Chinese
    SUSTAINABLE SOURCING: MARKETS FOR CERTIFIED CHINESE MEDICINAL AND AROMATIC PLANTS In collaboration with SUSTAINABLE SOURCING: MARKETS FOR CERTIFIED CHINESE MEDICINAL AND AROMATIC PLANTS SUSTAINABLE SOURCING: MARKETS FOR CERTIFIED CHINESE MEDICINAL AND AROMATIC PLANTS Abstract for trade information services ID=43163 2016 SITC-292.4 SUS International Trade Centre (ITC) Sustainable Sourcing: Markets for Certified Chinese Medicinal and Aromatic Plants. Geneva: ITC, 2016. xvi, 141 pages (Technical paper) Doc. No. SC-2016-5.E This study on the market potential of sustainably wild-collected botanical ingredients originating from the People’s Republic of China with fair and organic certifications provides an overview of current export trade in both wild-collected and cultivated botanical, algal and fungal ingredients from China, market segments such as the fair trade and organic sectors, and the market trends for certified ingredients. It also investigates which international standards would be the most appropriate and applicable to the special case of China in consideration of its biodiversity conservation efforts in traditional wild collection communities and regions, and includes bibliographical references (pp. 139–140). Descriptors: Medicinal Plants, Spices, Certification, Organic Products, Fair Trade, China, Market Research English For further information on this technical paper, contact Mr. Alexander Kasterine ([email protected]) The International Trade Centre (ITC) is the joint agency of the World Trade Organization and the United Nations. ITC, Palais des Nations, 1211 Geneva 10, Switzerland (www.intracen.org) Suggested citation: International Trade Centre (2016). Sustainable Sourcing: Markets for Certified Chinese Medicinal and Aromatic Plants, International Trade Centre, Geneva, Switzerland. This publication has been produced with the financial assistance of the European Union.
    [Show full text]
  • Identification of Transient Receptor Potential Vanilloid 3 Antagonists
    molecules Article Identification of Transient Receptor Potential Vanilloid 3 Antagonists from Achillea alpina L. and Separation by Liquid-Liquid-Refining Extraction and High-Speed Counter-Current Chromatography Shi-Wei Sun y , Rong-Rong Wang y, Xiao-Ying Sun, Jia-He Fan, Hang Qi, Yang Liu, Guo-Qing Qin and Wei Wang * Department of Natural Medicine and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, China; [email protected] (S.-W.S.); [email protected] (R.-R.W.); [email protected] (X.-Y.S.); [email protected] (J.-H.F.); [email protected] (H.Q.); [email protected] (Y.L.); [email protected] (G.-Q.Q.) * Correspondence: [email protected]; Tel.: +86-532-8699-1172 These authors contribute equally to this work and joint first authors. y Academic Editor: Natalizia Miceli Received: 8 April 2020; Accepted: 23 April 2020; Published: 26 April 2020 Abstract: Bioassay-guided fractionation of the ethanol extract of whole herbs of Achillea alpina led to the isolation of isochlorogenic acids A and B as transient receptor potential vanilloid 3 (TRPV3) channel antagonists by using a calcium fluorescent assay. The structures were identified by spectroscopic analysis and the inhibitory activities of isochlorogenic acids A and B were confirmed by whole-cell patch clamp recordings of human embryonic kidney 293 (HEK293) cells expressing human TRPV3. Molecular docking results revealed that these two compounds reside in the same active pocket of human TRPV3 channel protein with lower binding energy than the agonist 2-aminoethoxydiphenyl borate (2-APB). High-speed counter-current chromatography (HSCCC) coupled with a liquid-liquid extraction approach was successfully established for the separation of isochlorogenic acids A and B from the whole herbs of A.
    [Show full text]
  • Introduction to DNA Metabarcoding
    Introduction to DNA metabarcoding Pierre Taberlet Laboratoire d'Ecologie Alpine, CNRS UMR 5553 Université Grenoble Alpes, Grenoble, France Porto, 1-5 May 2017 Introduction to DNA metabarcoding • Definitions • Technical context • Which marker for DNA metabarcoding? • The importance of bioinformatics • Key studies – For diet analysis – For current biodiversity surveys – For reconstructing past ecosystems • The future Introduction to DNA metabarcoding • Definitions • Technical context • Which marker for DNA metabarcoding? • The importance of bioinformatics • Key studies – For diet analysis – For current biodiversity surveys – For reconstructing past ecosystems • The future Environmental DNA • First reference in 1987 • Microbiology: from 2000 • Plants and animals: from 2003 • Environmental DNA: DNA that can be extracted from environmental samples (such as soil, water, or air), without first isolating any target organisms • Complex mixture of genomic DNA from many different organisms, possibly degraded • Contains intracellular and extracellular DNA Overview of the emergence of eDNA studies Taxonomic identification from environmental DNA: terminology metabarcoding Suggested terminology DNA DNA barcoding metabarcoding identification level DNA DNA eDNA barcoding metabarcoding metabarcoding (sensu lato) (sensu lato) species level type of markers standardized barcodes DNA DNA eDNA barcoding metabarcoding metabarcoding (sensu lato) (sensu lato) genus, family, or order level other markers complexity of DNA extract single multiple environmental specimen
    [Show full text]
  • Chemical Composition of the Essential Oils and Extracts of Achillea Species and Their Biological Activities: a Review
    LJMU Research Online Mohammadhosseini, M, Sarker, SD and Akbarzadeh, A Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review. http://researchonline.ljmu.ac.uk/id/eprint/5503/ Article Citation (please note it is advisable to refer to the publisher’s version if you intend to cite from this work) Mohammadhosseini, M, Sarker, SD and Akbarzadeh, A (2017) Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review. Journal of Ethnopharmacology (doi: 1). ISSN 0378-8741 LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain. The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription. For more information please contact [email protected] http://researchonline.ljmu.ac.uk/ Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review Majid Mohammadhosseini1*, Satyajit D. Sarker2 and Abolfazl Akbarzadeh3 1Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran 2Medicinal Chemistry and Natural Products Research Group, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom 3 Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran *Corresponding author at: Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran.
    [Show full text]
  • Anthemideae (PDF)
    Published online on 25 October 2011. Lin, Y. R., Shi, Z., Humphries, C. J. & Gilbert, M. G. 2011. Anthemideae. Pp. 653–773 in: Wu, Z. Y., Raven, P. H. & Hong, D. Y., eds., Flora of China Volume 20–21 (Asteraceae). Science Press (Beijing) & Missouri Botanical Garden Press (St. Louis). 9. Tribe ANTHEMIDEAE 春黄菊族 chun huang ju zu Lin Yourun (林有润 Ling Yeou-ruenn, Ling Yuou-ruen), Shi Zhu (石铸 Shih Chu); Christopher J. Humphries, Michael G. Gilbert Shrubs, subshrubs, or annual or perennial herbs, aromatic; indumentum of short biseriate glandular hairs (glands) and uniseriate simple, T-shaped or stellate hairs. Leaves alternate, rarely opposite, fasciculate or in basal rosettes, pinnatisect, pinnatifid, lobed, ser- rulate, serrate, or dentate, rarely entire, rarely succulent, base sometimes with stipulelike auricles (“pseudostipules”). Synflorescences mostly terminal, sometimes axillary, cymose or racemose, often paniculate, often flat-topped. Capitula heterogamous, with marginal female florets and central bisexual or male disk florets, or homogamous with only bisexual tubular florets. Phyllaries in 2–7 rows, overlapping, usually with scarious margin and apices. Receptacle paleate or epaleate, rarely pilose or hirsute. Marginal female florets radiate, or corollas tubular to filiform, often 2-toothed, or absent, and capitula disciform, fertile or sterile; corolla yellow or white, less often purplish, pink, orange, or red. Disk florets bisexual or male, tubular or funnel-shaped, usually yellow, rarely whitish, purplish, or red, usually 4- or 5-lobed. Anthers mostly rounded, rarely shortly tailed at base, apical appendage ovate or triangular to subulate. Pollen with or without spines. Style base slender or bulbous; style branches usually free (rarely fused in functionally male florets), usually linear, rarely wider, with apex truncate, penicillate.
    [Show full text]
  • A Floristic Study of Vascular Plants in Ushishir, the Middle Kuril Islands
    J. Jpn. Bot. 91 Suppl.: 68–82 (2016) A Floristic Study of Vascular Plants in Ushishir, the Middle Kuril Islands a, b Hideki TAKAHASHI * and Vyacheslav Yu. BARKALOV aThe Hokkaido University Museum, Sappporo, 060-0810 JAPAN; bInstitute of Biology and Soil Science, Russian Academy of Sciences, Far Eastern Branch, Vladivostok, 690022 RUSSIA *Corresponding author: [email protected] (Accepted on January 9, 2016) A preliminary list of vascular plants is provided for the southern Yankicha and northern Ryponkicha islets of Ushishir, the middle Kuril Islands, based on herbarium specimens. The list represents 45 families, 114 genera, and 158 species for the whole of Ushishir. Only two species of non-native plants have been recorded from Ushishir- Yankicha. The main dominant families in Ushishir are Asteraceae, Poaceae, Cyperaceae, and Caryophyllaceae. Although the entire flora of Ushishir does not show distinguishing features different from those of adjacent Ketoi and Rasshua, a clear contrast of floristic composition was confirmed between Yankicha and Ryponkicha in Ushishir. Notably, a higher number of species and collections of Cyperaceae in Ryponkicha than in Yankicha was confirmed. A Ryponkicha bias is evident in several taxa, for example Rubus chamaemorus, Vaccinium uliginosum var. alpinum, Carex rariflora, and C. stylosa. The floristic contrast mainly reflects the common occurrence of herbaceous meadows on Yankicha and the presence of a shrubby heath community on the terrace of Ryponkicha. A clear difference of flora and vegetation between Yankicha and Ryponkicha may be due to the different topographical and geological features of the two islets. Key words: Middle Kurils, Ryponkicha, Ushishir, Yankicha. The Kuril Islands extend about 1200 km Hokkaido and 470 km southwest of Kamchatka between Hokkaido and the Kamchatka peninsula (Fig.
    [Show full text]
  • List of Alaskan Seed Plant and Fern Names Compiled from ALA, ACCS, PAF, WCSP, FNA
    List of Alaskan Seed Plant and Fern names Compiled from ALA, ACCS, PAF, WCSP, FNA (Questions to [email protected]) January 18, 2020 Acoraceae Acorus americanus (Raf.) Raf. (GUID: trop-2100001). In Alaska according to ALA, FNA. An accepted name according to ALA, FNA.A synonym of: • Acorus calamus var. americanus Raf. according to WCSP ; Comments: WCSP Acorus calamus L. (GUID: ipni-84009-1). In Alaska according to ACCS. An accepted name according to WCSP, ACCS. Adoxaceae Adoxa moschatellina L. (GUID: ipni-5331-2). In Alaska according to ALA, PAF, ACCS. An accepted name according to ALA, PAF, WCSP, ACCS. Sambucus pubens Michx. (GUID: ipni-227191-2). In Alaska according to ACCS. An accepted name according to WCSP, ALA.A synonym of: • Sambucus racemosa subsp. pubens (Michx.) Hultén according to PAF ; Comments: Subspecies [pubens] reaches the Arctic in southwestern Alaska. This hardy race is introduced in northern Norway and Iceland, escaping in Iceland, and may be found in the arctic parts. • Sambucus racemosa subsp. pubens (Michx.) House according to ACCS ; Comments: Panarctic Flora Checklist Sambucus racemosa L. (GUID: ipni-30056767-2). In Alaska according to ACCS. An accepted name according to ALA, WCSP, ACCS. Sambucus racemosa subsp. pubens (Michx.) House (GUID: NULL). In Alaska according to ACCS. An accepted name according to ACCS. Sambucus racemosa subsp. pubens (Michx.) Hultén (GUID: ipni-227221-2). In Alaska according to ALA, PAF. An accepted name according to ALA, PAF. Viburnum edule (Michx.) Raf. (GUID: ipni-149665-1). In Alaska according to ALA, PAF, ACCS. An accepted name according to ALA, PAF, ACCS. Viburnum opulus L.
    [Show full text]
  • A Newly Compiled Checklist of the Vascular Plants of the Habomais, the Little Kurils
    Title A Newly Compiled Checklist of the Vascular Plants of the Habomais, the Little Kurils Author(s) Gage, Sarah; Joneson, Suzanne L.; Barkalov, Vyacheslav Yu.; Eremenko, Natalia A.; Takahashi, Hideki Citation 北海道大学総合博物館研究報告, 3, 67-91 Issue Date 2006-03 Doc URL http://hdl.handle.net/2115/47827 Type bulletin (article) Note Biodiversity and Biogeography of the Kuril Islands and Sakhalin vol.2 File Information v. 2-3.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Biodiversity and Biogeography of the Kuril Islands and Sakhalin (2006) 2,67-91. A Newly Compiled Checklist of the Vascular Plants of the Habomais, the Little Kurils 1 1 2 Sarah Gage , Suzanne L. Joneson , Vyacheslav Yu. Barkalov , Natalia A. Eremenko3 and Hideki Takahashi4 'Herbarium, Department of Botany, University of Washington, Seattle, WA 98195-5325, USA; 21nstitute of Biology and Soil Science, Russian Academy of Sciences, Far Eastern Branch, Vladivostok 690022, Russia; 3 Natural Reserve "Kuril'sky", Yuzhno-Kuril'sk 694500, Russia; 4The Hokkaido University Museum, Sapporo 060-0810, Japan Abstract The new floristic checklist of the Habomais, the Little Kurils, was compiled from Barkalov and Eremenko (2003) and Eremenko (2003), and supplemented by the specimens collected by Gage and Joneson in 1998 and Eremenko in 2002. In the checklist, 61 families, 209 gen~ra and ~32 species were recognized. Scientific and vernacular names commonly adopted ~n RussIan and Japanese taxonomic references are listed and compared, and some taxonomIC notes are also added. This list will contribute the future critical taxonomic and nomenclatural studies on the vascular plants in this region.
    [Show full text]
  • Japanese Plants in UK Gardens
    Conservation of threatened Japanese plants in UK gardens Ildikó Whitton and Suzanne Sharrock Conservation of threatened Japanese plants in UK gardens By Ildikó Whitton and Suzanne Sharrock August 2011 Recommended citation: Whitton, I. and Sharrock, S., 2011. Conservation of threatened Japanese plants in UK gardens. Botanic Gardens Conservation International, Richmond, UK. ISBN: 978-1-905164-36-3 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Front cover image: Rosa hirtula (Ildikó Whitton) Back cover image: Bletilla striata (John Anderson) Design: John Morgan, Seacape. www.seascapedesign.co.uk Acknowledgements This project was supported by the Daiwa Anglo-Japanese Foundation. BGCI is grateful for the efforts made by botanic gardens around the world to supply plant data to the PlantSearch database. We also acknowledge the contribution of the participating institutions that responded to our survey and provided information about their collections, especially our case study contributors. Particular thanks are due to Owen Johnson (The Tree Register) and Noelia Alvarez (Royal Botanic Gardens, Kew) for providing additional data, Meirion Jones at BGCI for assistance with data analysis, and Junko Katayama for translation into Japanese and coordination of contacts with the Japanese Association of Botanic Gardens. Botanic Gardens Conservation International (BGCI) Linking more than 800 botanic gardens and other partners in some 120 countries, BGCI forms the world’s largest plant conservation network. From grass-roots action to global policy development, BGCI operates at all levels to achieve plant conservation, environmental education and development goals. We aim to ensure that plants are recognised as one of the world’s most important natural resources, providing essential ecosystem services and underpinning all life on Earth.
    [Show full text]
  • Genetic Divergence and Hybrid Speciation
    BRIEF COMMUNICATION doi:10.1111/j.1558-5646.2007.00134.x GENETIC DIVERGENCE AND HYBRID SPECIATION Mark A. Chapman1,2 and John M. Burke1,3 1University of Georgia, Department of Plant Biology, Miller Plant Sciences Building, Athens, Georgia 30602 2E-mail: [email protected] 3E-mail: [email protected] Received January 4, 2007 Accepted February 28, 2007 Although the evolutionary importance of natural hybridization has been debated for decades, it has become increasingly clear that hybridization plays a fundamental role in the evolution of many plant and animal taxa, sometimes resulting in the formation of entirely new species. Although some hybrid species retain the base chromosome number of their parents, others combine the full chromosomal complements of their progenitors. Hybrid speciation can thus produce two fundamentally different types of evolutionary lineages, yet relatively little is known about the factors influencing ploidy level in hybrid neospecies. We estimated genetic divergence between species pairs that have given rise to homoploid and polyploid hybrid species and found that divergence is significantly greater for the parents of polyploids, even after controlling for potentially confounding factors. Our data thus provide the first direct evidence in support of the notion that the extent of genomic divergence between hybridizing species influences the likelihood of diploid versus polyploid hybrid speciation. KEY WORDS: Allopolyploid, genetic divergence, homoploid, hybridization, polyploidy, speciation. Natural hybridization has played a role in the evolution of a wide Alternatively, if the hybrids are fertile and viable, and at least variety of both plant and animal taxa (e.g., Arnold 1997; Riese- partially reproductively isolated from their parents, the end result berg 1997; Otto and Whitton 2000; Le Comber and Smith 2004).
    [Show full text]