Anthemideae (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Anthemideae (PDF) Published online on 25 October 2011. Lin, Y. R., Shi, Z., Humphries, C. J. & Gilbert, M. G. 2011. Anthemideae. Pp. 653–773 in: Wu, Z. Y., Raven, P. H. & Hong, D. Y., eds., Flora of China Volume 20–21 (Asteraceae). Science Press (Beijing) & Missouri Botanical Garden Press (St. Louis). 9. Tribe ANTHEMIDEAE 春黄菊族 chun huang ju zu Lin Yourun (林有润 Ling Yeou-ruenn, Ling Yuou-ruen), Shi Zhu (石铸 Shih Chu); Christopher J. Humphries, Michael G. Gilbert Shrubs, subshrubs, or annual or perennial herbs, aromatic; indumentum of short biseriate glandular hairs (glands) and uniseriate simple, T-shaped or stellate hairs. Leaves alternate, rarely opposite, fasciculate or in basal rosettes, pinnatisect, pinnatifid, lobed, ser- rulate, serrate, or dentate, rarely entire, rarely succulent, base sometimes with stipulelike auricles (“pseudostipules”). Synflorescences mostly terminal, sometimes axillary, cymose or racemose, often paniculate, often flat-topped. Capitula heterogamous, with marginal female florets and central bisexual or male disk florets, or homogamous with only bisexual tubular florets. Phyllaries in 2–7 rows, overlapping, usually with scarious margin and apices. Receptacle paleate or epaleate, rarely pilose or hirsute. Marginal female florets radiate, or corollas tubular to filiform, often 2-toothed, or absent, and capitula disciform, fertile or sterile; corolla yellow or white, less often purplish, pink, orange, or red. Disk florets bisexual or male, tubular or funnel-shaped, usually yellow, rarely whitish, purplish, or red, usually 4- or 5-lobed. Anthers mostly rounded, rarely shortly tailed at base, apical appendage ovate or triangular to subulate. Pollen with or without spines. Style base slender or bulbous; style branches usually free (rarely fused in functionally male florets), usually linear, rarely wider, with apex truncate, penicillate. Achenes often obovoid, obconical, or cylindric, sometimes dorsiventrally flattened, apex rounded or truncate, true pappus absent, sometimes with a pappuslike corona of rather few scarious or bristlelike scales, or with an auricle, usually adaxial. About 110 genera and ca. 1,750 species: worldwide, mainly concentrated in C Asia, the Mediterranean region, and S Africa; 29 genera (two endemic, four introduced) and 364 species (138 endemic, ten introduced) in China. This tribe includes well-known vegetables (Glebionis carinata, G. coronaria, and G. s ege t um) and famous ornamental plants (most notably “Chrysanthemum grandiflorum”; see note under Chrysanthemum). Insecticides are extracted from some species (e.g., Tanacetum (Pyrethrum) cine- rariifolium). Other species are very important medicinally (e.g., Artemisia annua, the source of the important anti-malarial drug artemisinin) while some are significant forage plants in dry regions. The generic sequence follows Oberprieler et al. (in Kadereit & C. Jeffrey, Fam. Gen. Vasc. Pl. 8: 342–373. 2007). Records of Anthemis tinctoria Linnaeus (Sp. Pl. 2: 896. 1753; Cota tinctoria (Linnaeus) J. Gay ex Gussone, Fl. Sicul. Sin. 2: 867. 1844–1845; 春黄菊 chun huang ju), Argyranthemum frutescens (Linnaeus) Schultz Bipontinus (in Webb & Berthelot, Hist. Nat. Iles Canaries 2: 264. 1844; Chrysanthemum frutescens Linnaeus, Sp. Pl. 2: 887. 1753; Pyrethrum frutescens (Linnaeus) Willdenow; 木茼蒿 mu tong hao), Chamaemelum nobile (Linnaeus) Allioni (Fl. Pedem. 1: 185. 1785; Anthemis nobilis Linnaeus, Sp. Pl. 2: 894. 1753; 果香菊 guo xiang ju), and Coleostephus myconis (Linnaeus) Cassini (Dict. Sci. Nat. 41: 43. 1826; Chrysanthemum myconis Linnaeus, Sp. Pl., ed. 2, 1254. 1763; Myconia chrysanthemum Schultz Bipontinus; 鞘冠菊 qiao guan ju) in FRPS (76(1): 7, 9, 20, 74. 1983) were based on cultivated ornamental plants. 1a. Capitula radiate; ray florets often conspicuous, but sometimes not so. 2a. Receptacle scales present at least near margins of receptacle. 3a. Capitula in ± flat-topped panicles; involucres 2–7(–9) mm in diam.; mostly wild plants, only occasionally cultivated as medicinal plants ............................................................................................................................ 167. Achillea 3b. Capitula solitary, long pedunculate; involucres 7–15 mm in diam.; mostly grown as ornamentals and only occasionally found as an escape .............................................................................................................. 168. Anthemis 2b. Receptacle scales absent, but receptacle sometimes hairy. 4a. Achene winged: marginal achenes 2- or 3-winged, disk achenes 1- or 2-winged; ray florets mostly bright yellow; plants often grown as vegetables or ornamentals .................................................................... 172. Glebionis 4b. Achene not winged; ray florets mostly white or pink, less often yellow (Brachanthemum, some species of Chrysanthemum). 5a. Pappus or corona absent, but achenes sometimes with an obtuse rim or with ribs apically projected. 6a. Achene with ribs projected at apex. 7a. Marsh plants; ray florets sterile ......................................................................................... 163. Leucanthemella 7b. Grassland plants, often grown as ornamentals and only occasionally found as an escape; ray florets fertile .................................................................................................... 173. Leucanthemum 6b. Achene with ribs not projected at apex. 8a. Dwarf shrubs or subshrubs; involucres campanulate, hemispheric, or obconical; ray florets yellow, lamina ovate, to 3 mm .............................................................................. 149. Brachanthemum 8b. Herbs, annual or perennial; involucres shallowly cup-shaped; ray florets white, red, or violet, less often yellow (some species of Chrysanthemum), lamina oblong, often more than 5 mm. 9a. Perennial herbs or subshrubs; achenes terete, ribs 5–8, uniformly spaced, rather obscure ............................................................................................................. 150. Chrysanthemum 653 654 ANTHEMIDEAE 9b. Annual herbs; achenes dorsiventrally compressed, ribs 3–5, mainly adaxial, slender but distinct .............................................................................................................. 171. Matricaria 5b. Pappuslike corona present. 10a. Corona of separate scales or bristles. 11a. Corona scales obovate, brown tipped ..................................................................................... 158. Richteria 11b. Corona scales bristlelike or subulate. 12a. Corona scales many, bristlelike, with flat and palmate bases ......................................... 156. Allardia 12b. Corona scales 4–6, subulate, unequal, mainly abaxial ........................................ 165. Opisthopappus 10b. Corona cupular, shallowly or deeply divided or divided to base. 13a. Achene with multicellular hairs between ribs ................................................................. 164. Microcephala 13b. Achene glabrous. 14a. Achene with 5–10 equal ribs, without resin sacs ........................................................ 169. Tanacetum 14b. Achene with both thick and thin ribs, abaxially and apically with distinct resin sacs ......................................................................................................... 170. Tripleurospermum 1b. Capitula discoid with all florets bisexual, tubular, or capitula disciform with marginal florets inconspicuous, corollas narrowly tubular to filiform or absent. 15a. Capitula heterogamous, disciform: marginal florets female or neuter, corolla tubular or narrowly tubular or absent, disk florets male or bisexual, tubular. 16a. Marginal female florets in many rows. 17a. Capitula pedunculate, terminal; achenes without persistent style ........................................................ 145. Cotula 17b. Capitula sessile, axillary; achenes with persistent style ......................................................................... 146. Soliva 16b. Marginal female florets in 1 row. 18a. Capitula in spikes or racemes, often secund, often grouped into panicles. 19a. Pappuslike corona present ............................................................................................. 153. Crossostephium 19b. Corona absent. 20a. Marginal florets female, disk florets bisexual, fertile; achenes all over receptacle; leaf blade very variable but never pectinate-pinnatisect .............................. 151. Artemisia 20b. Marginal florets partly female, disk florets bisexual, fertile and sterile; achenes in a row around base of receptacle; leaf blade pinnatisect with ± pectinately arranged lateral lobes ............................................................................ 155. Neopallasia 18b. Capitula in terminal, rounded to flat-topped panicles, clusters, or solitary. 21a. Corolla exterior stellate hairy or apically densely pilose with erect straight hairs. 22a. Annual herbs; corolla exterior apically densely pilose with erect straight hairs ......... 148. Ajaniopsis 22b. Subshrubs; corolla exterior with stellate hairs ........................................................... 162. Kaschgaria 21b. Corolla exterior glabrous or with lower part only sparsely pilose. 23a. Achene 5–10-ribbed, corona present, 0.1–0.4 mm ...................................................... 169. Tanacetum 23b. Achene 2–6-striate, corona absent. 24a. Florets all fertile; achenes 4 or 5(or 6)-striate/ribbed ............................................... 147. Ajania 24b. Central disk florets sterile; achenes 2-striate
Recommended publications
  • Chamaemelum Nobile (L.) All., Flos
    27 January 2011 EMA/HMPC/560733/2010 Committee on Herbal Medicinal Products (HMPC) List of references supporting the assessment of Chamaemelum nobile (L.) All., flos Draft The Agency acknowledges that copies of the underlying works used to produce this monograph were provided for research only with exclusion of any commercial purpose. Abramson W, Basch E, Cheung L, Dacey C, Giese N, Hashmi S, Santos A, Seamon E, Ulbricht C, Varghese M, Weissner W, Woods J. Chamomile (Matricaria recutita, Chamaemelum nobile). In: Ulbricht C, Basch E editors. Natural Standard Professional Database, Foods, Herbs & Supplements. Natural Standard Inc. 2010. Available at: http://www.naturalstandard.com/naturalstandard/monographs/monoframeset.asp?monograph=/mono graphs/herbssupplements/aux1- chamomile.asp&patientVersion=/monographs/herbssupplements/patient-chamomile.asp Accessed 01/07/2010. Abou-Zied EN, Rizk AM. Phytochemical investigation of Anthemis nobilis growing in Egypt. Qual Plant Mater Veg 1973, 22:141-144. Antonelli A, Fabbri C. Study on Roman chamomile (Chamaemelum nobile L. All.) oil. JEOR 1998, 10:571-574. Augustin B, Javorka S, Giovannini R, Rom P. Magyar gyógynövények [Hungarian Herbal Drugs] I. Általános és leíró rész (I. General and describing part) Földművelésügyi Minisztérium, Budapest, 1948, 299-300. [Hungarian] Bail S, Buchbauer G, Jirovetz L, Denkova Z, Slavchev A, Stoyanova A, Schmidt E, Geissler M. Antimicrobial Activities of Roman Chamomile Oil From France and Its Main Compounds. JEOR 2009, 21:283-286. Balbaa SI, Zaki AY, El-Zalabani SM. The volatile oil of Anthemis nobilis L. growing in Egypt. Egypt J Pharmaceut Sci 1975, 16:161-173. Bandoniene D, Pukalskas A, Venskutonis PR, Gruzdiene D. Preliminary screening of antioxidant activity of some plant extracts in rapeseed oil.
    [Show full text]
  • (Glebionis Carinatum) and Crown Daisy (G. Coronaria) Using Ovule Culture
    Plant Biotechnology 25, 535–539 (2008) Original Paper Intergeneric hybridization of marguerite (Argyranthemum frutescens) with annual chrysanthemum (Glebionis carinatum) Special Issue and crown daisy (G. coronaria) using ovule culture Hisao Ohtsuka1,*, Zentaro Inaba2 1 Shizuoka Research Institute of Agriculture and Forestry, Iwata, Shizuoka 438-0803, Japan; 2 Shizuoka Research Institute of Agriculture and Forestry/Izu Agricultural Research Center, Higashiizu, Shizuoka 413-0411, Japan * E-mail: [email protected] Tel: ϩ81-538-36-1553 Fax: ϩ81-538-37-8466 Received August 20, 2008; accepted November 10, 2008 (Edited by T. Handa) Abstract To diversify flower color and growth habit of marguerite (Argyranthemum frutescens), intergeneric crossing was carried out using marguerite as the seed parent and annual chrysanthemum (Glebionis carinatum) or crown daisy (G. coronaria) as the pollen parent. After cross-pollination, seedlings were successfully obtained by applying ovule culture. Ovule culture-derived plants showed novel characteristics in flower shape and color (orange, reddish brown, or wisteria pink) that are not observed in marguerite. Some also showed novel flowering habits such as perpetual flowering. The results indicate that these ovule culture-derived plants were intergeneric hybrids and that the hybrids obtained in the present study may be useful for further breeding of marguerite, especially for introducing valuable characteristics such as a wide range of flower color. Key words: Argyranthemum, Glebionis, intergeneric hybridization, ovule culture. Marguerite (Argyranthemum frutescens) is a perennial germplasm for the breeding of marguerite, but most of plant native to the Canary Islands, Spain (Bramwell et them have white flowers and diversity in flower color and al. 2001) and Madeira, Portugal (Press et al.
    [Show full text]
  • Achillea Millefolium L
    SPECIES Achillea millefolium L. Tribe: Anthemideae Family: Asteraceae USDA CODE: Order: Asterales Subclass: Asteridae ACMI2 Class: Magnoliopsida FEIS CODE: D. Kopp 2009 San Bernardino Mtns. ACHMIL A. Montalvo 2010 Monterey Co. coast; tripinnate, pubescent form A. Montalvo 2010 Monterey Co. Subspecific taxa JepsonOnline 2010 and FNA 2010 do not recognize subspecific taxa of A. millefolium . The USDA PLANTS database (viewed Sept. 24, 2010) recognizes 12 subspecific taxa as occurring in North America: Taxon introduced and naturalized in North America (thought to be native to Europe): NRCS CODES: 1. A. m. L. var. millefolium 1. ACMIM2 Taxa native to California: 2. ACMIA 2. A. m. L. var. alpicola (Rydb.) Garrolt 3. ACMIA2 3. A. m. L. var. arenicola (Heller) Nobs 4. ACMIC 4. A. m. L. var. californica (Pollard) Jepson 5. ACMIG 5. A. m. L. var. gigantea (Pollard) Nobs 6. ACMIO 6. A. m. L. var. occidentalis (DC.) Hyl. 7. ACMIP 7. A. m. L. var. pacifica (Rydb.) G.N.Jones 8. ACMIP2 8. A. m. L. var. puberula (Rydb.) Nobs. 9. ACMIB Additional taxa outside California (mostly northerly): 10. ACMIL2 9. A. m. L. var. borealis (Bong.) Farw. 11. ACMIM5 10. A. m. L. var. litoralis (Ehrend.) Nobs 12. ACMIN 11. A. m. L. var. megacephala (Raup) Bolvin. 12. A. m. L. var. nigrescens E. Mey. Synonyms (USDA PLANTS) 2. A. alpicola (Rydb.) Rydb.; A. fusca Rydb.; A. lanulosa Nutt. ssp. alpicola (Rydb.) D.D. Keck; A. l. Nutt. var. alpicola Rydb.; A. m. L. var. fusca (Rydb.) G.N. Jones; A. subalpina Greene Taxa numbered as above 3.
    [Show full text]
  • Functional Ecology Published by John Wiley & Sons Ltd on Behalf of British Ecological Society
    Received: 22 June 2017 | Accepted: 14 February 2018 DOI: 10.1111/1365-2435.13085 RESEARCH ARTICLE Insular woody daisies (Argyranthemum, Asteraceae) are more resistant to drought- induced hydraulic failure than their herbaceous relatives Larissa C. Dória1 | Diego S. Podadera2 | Marcelino del Arco3 | Thibaud Chauvin4,5 | Erik Smets1 | Sylvain Delzon6 | Frederic Lens1 1Naturalis Biodiversity Center, Leiden University, Leiden, The Netherlands; 2Programa de Pós-Graduação em Ecologia, UNICAMP, Campinas, São Paulo, Brazil; 3Department of Plant Biology (Botany), La Laguna University, La Laguna, Tenerife, Spain; 4PIAF, INRA, University of Clermont Auvergne, Clermont-Ferrand, France; 5AGPF, INRA Orléans, Olivet Cedex, France and 6BIOGECO INRA, University of Bordeaux, Cestas, France Correspondence Frederic Lens Abstract Email: [email protected] 1. Insular woodiness refers to the evolutionary transition from herbaceousness to- Funding information wards derived woodiness on (sub)tropical islands and leads to island floras that have Conselho Nacional de Desenvolvimento a higher proportion of woody species compared to floras of nearby continents. Científico e Tecnológico, Grant/Award Number: 206433/2014-0; French National 2. Several hypotheses have tried to explain insular woodiness since Darwin’s original Agency for Research, Grant/Award Number: observations, but experimental evidence why plants became woody on islands is ANR-10-EQPX-16 and ANR-10-LABX-45; Alberta Mennega Stichting scarce at best. 3. Here, we combine experimental measurements of hydraulic failure in stems (as a Handling Editor: Rafael Oliveira proxy for drought stress resistance) with stem anatomical observations in the daisy lineage (Asteraceae), including insular woody Argyranthemum species from the Canary Islands and their herbaceous continental relatives. 4. Our results show that stems of insular woody daisies are more resistant to drought- induced hydraulic failure than the stems of their herbaceous counterparts.
    [Show full text]
  • Chamaemelum Nobile
    Chamaemelum nobile Status Disc florets UK Biodiversity Action Plan Priority species. IUCN threat category: Vulnerable (2005). Ray florets Taxonomy Magnoliopsida: Asteraceae Scientific name: Chamaemelum nobile (L.) All. Receptacle Common names: Chamomile, Camri. Chamaemelum nobile (Anthemis nobilis L.) is one of the superficially similar group of plants often referred to as Mayweeds. Mayweeds usually have leaves divided into narrow segments and daisy-like heads with yellow disc florets in the centres and white ray florets outside (Figure 1). Chamaemelum nobile itself is not a variable species in the wild, though some populations are distinctive (Kay & John 1994) and there are many cultivars (the Leaves aromatic, latter rarely escape or persist in the wild). Once finely divided, known, it is easily recognised, but the distinctive and hairy well-known aroma of crushed leaves is similar to some Anthemis species. No hybrids are known. Biology & Distribution Rooting Chamaemelum nobile is predominantly recorded at nodes in SW and SE England and SW Ireland, and is Figure 1. Chamaemelum nobile (from J. E. Smith & J. Sowerby rare or extinct in Wales and central England. It is (1852). English Botany. London). occasionally introduced elsewhere (Preston et al. 2002). It is characteristic of seasonally-inundated turf, heathland, grassland, sports fields and grassy sea Key characters Procumbent, hairy, perennial herb rooting at the cliffs, especially where grazing or mowing keeps the nodes and often forming patches. Pleasantly aromatic vegetation short and open (Winship 1994). when rubbed. Leaves finely divided. Flowering Identification & Field survey heads 18-25 mm across, solitary, on long stalks. Ray florets white, spreading (rarely absent), disc florets It is easiest to identify Chamaemelum from other yellow.
    [Show full text]
  • Imprints of Independent Allopolyploid Formations On
    Chen et al. BMC Genomics (2021) 22:264 https://doi.org/10.1186/s12864-021-07566-6 RESEARCH ARTICLE Open Access Imprints of independent allopolyploid formations on patterns of gene expression in two sibling yarrow species (Achillea, Asteraceae) Duo Chen1†, Peng-Cheng Yan2† and Yan-Ping Guo1* Abstract Background: Polyploid species often originate recurrently. While this is well known, there is little information on the extent to which distinct allotetraploid species formed from the same parent species differ in gene expression. The tetraploid yarrow species Achillea alpina and A. wilsoniana arose independently from allopolyploidization between diploid A. acuminata and A. asiatica. The genetics and geography of these origins are clear from previous studies, providing a solid basis for comparing gene expression patterns of sibling allopolyploid species that arose independently. Results: We conducted comparative RNA-sequencing analyses on the two Achillea tetraploid species and their diploid progenitors to evaluate: 1) species-specific gene expression and coexpression across the four species; 2) patterns of inheritance of parental gene expression; 3) parental contributions to gene expression in the allotetraploid species, and homeolog expression bias. Diploid A. asiatica showed a higher contribution than diploid A. acuminata to the transcriptomes of both tetraploids and also greater homeolog bias in these transcriptomes, possibly reflecting a maternal effect. Comparing expressed genes in the two allotetraploids, we found expression of ca. 30% genes were species-specific in each, which were most enriched for GO terms pertaining to “defense response”. Despite species-specific and differentially expressed genes between the two allotetraploids, they display similar transcriptome changes in comparison to their diploid progenitors.
    [Show full text]
  • Chapter 4 Phytogeography of Northeast Asia
    Chapter 4 Phytogeography of Northeast Asia Hong QIAN 1, Pavel KRESTOV 2, Pei-Yun FU 3, Qing-Li WANG 3, Jong-Suk SONG 4 and Christine CHOURMOUZIS 5 1 Research and Collections Center, Illinois State Museum, 1011 East Ash Street, Springfield, IL 62703, USA, e-mail: [email protected]; 2 Institute of Biology and Soil Science, Russian Academy of Sciences, Vladivostok, 690022, Russia, e-mail: [email protected]; 3 Institute of Applied Ecology, Chinese Academy of Sciences, P.O. Box 417, Shenyang 110015, China; 4 Department of Biological Science, College of Natural Sciences, Andong National University, Andong 760-749, Korea, e-mail: [email protected]; 5 Department of Forest Sciences, University of British Columbia, 3041-2424 mail Mall, Vancouver, B.C., V6T 1Z4, Canada, e-mail: [email protected] Abstract: Northeast Asia as defined in this study includes the Russian Far East, Northeast China, the northern part of the Korean Peninsula, and Hokkaido Island (Japan). We determined the species richness of Northeast Asia at various spatial scales, analyzed the floristic relationships among geographic regions within Northeast Asia, and compared the flora of Northeast Asia with surrounding floras. The flora of Northeast Asia consists of 971 genera and 4953 species of native vascular plants. Based on their worldwide distributions, the 971 gen- era were grouped into fourteen phytogeographic elements. Over 900 species of vascular plants are endemic to Northeast Asia. Northeast Asia shares 39% of its species with eastern Siberia-Mongolia, 24% with Europe, 16.2% with western North America, and 12.4% with eastern North America.
    [Show full text]
  • Molecular Phylogeny of Subtribe Artemisiinae (Asteraceae), Including Artemisia and Its Allied and Segregate Genera Linda E
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in the Biological Sciences Papers in the Biological Sciences 9-26-2002 Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera Linda E. Watson Miami University, [email protected] Paul E. Bates University of Nebraska-Lincoln, [email protected] Timonthy M. Evans Hope College, [email protected] Matthew M. Unwin Miami University, [email protected] James R. Estes University of Nebraska State Museum, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/bioscifacpub Watson, Linda E.; Bates, Paul E.; Evans, Timonthy M.; Unwin, Matthew M.; and Estes, James R., "Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera" (2002). Faculty Publications in the Biological Sciences. 378. http://digitalcommons.unl.edu/bioscifacpub/378 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in the Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. BMC Evolutionary Biology BioMed Central Research2 BMC2002, Evolutionary article Biology x Open Access Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera Linda E Watson*1, Paul L Bates2, Timothy M Evans3,
    [Show full text]
  • In-Vitro Cardiovascular Protective Activity of a New Achillinoside from Achillea Alpina
    Revista Brasileira de Farmacognosia 29 (2019) 445–448 ww w.elsevier.com/locate/bjp Original Article In-vitro cardiovascular protective activity of a new achillinoside from Achillea alpina ∗ Fei Zhou , Song Li , Jian Yang , Jiawang Ding , Chao He , Lin Teng Institute of Cardiovascular Diseases, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, PR China a a b s t r a c t r t i c l e i n f o Article history: Achillinoside was isolated from methanol extract of Achillea alpina L., Asteraceae. The structure of the com- Received 28 August 2018 pound was characterized based on various spectrum data, including IR, HR-ESI-MS, 1D and 2D NMR. The Accepted 25 February 2019 cardiovascular protective effect of achillinoside was tested on H2O2-induced H9c2 cells. In our research, Available online 27 March 2019 achillinoside could increase the cell viability dose-dependently in H2O2-induced H9c2 cells. In addition, the levels of caspase-3/9 cells were significantly decreased in H2O2 and achillinoside incubated H9c2 Keywords: cells. Achillinoside © 2019 Sociedade Brasileira de Farmacognosia. Published by Elsevier Editora Ltda. This is an open Apoptosis inhibition access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Spectroscopic analysis H9c2 cells Introduction because H9c2 cell keeps the main characteristics of primary car- diomyocytes in vivo (Silva et al., 2010; Watkins et al., 2011). Herein The genus Achillea, Asteraceae, consists of 85 species around we describe the isolation and structure elucidation of the com- the world, and mainly distributed in eastern and southern Asia.
    [Show full text]
  • Anti-Helicobacter Pylori Activity of Artemisia Ludoviciana Subsp
    molecules Article Anti-Helicobacter pylori Activity of Artemisia ludoviciana subsp. mexicana and Two of Its Bioactive Components, Estafiatin and Eupatilin Juan Francisco Palacios-Espinosa 1 , Pablo Noé Núñez-Aragón 2, Erika Gomez-Chang 2 , Edelmira Linares 3, Robert Bye 3 and Irma Romero 2,* 1 Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco (UAM-X), Ciudad de México 04960, Mexico; [email protected] 2 Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México 04510, Mexico; [email protected] (P.N.N.-A.); [email protected] (E.G.-C.) 3 Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México 04510, Mexico; [email protected] (E.L.); [email protected] (R.B.) * Correspondence: [email protected]; Tel.: +52-555-623-2511 Abstract: Artemisia ludoviciana subsp. mexicana has been traditionally used for the treatment of digestive ailments such as gastritis, whose main etiological agent is Helicobacter pylori. In a previous screening study, the aqueous extract exhibited a good in vitro anti-H. pylori activity. With the aim of determining the efficacy of this species as a treatment for H. pylori related diseases and finding Citation: Palacios-Espinosa, J.F.; bioactive compounds, its aqueous extract was subjected to solvent partitioning and the fractions Núñez-Aragón, P.N.; Gomez-Chang, obtained were tested for their in vitro anti-H. pylori effect, as well as for their in vivo gastroprotective E.; Linares, E.; Bye, R.; Romero, I.
    [Show full text]
  • Second Contribution to the Vascular Flora of the Sevastopol Area
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Wulfenia Jahr/Year: 2015 Band/Volume: 22 Autor(en)/Author(s): Seregin Alexey P., Yevseyenkow Pavel E., Svirin Sergey A., Fateryga Alexander Artikel/Article: Second contribution to the vascular flora of the Sevastopol area (the Crimea) 33-82 © Landesmuseum für Kärnten; download www.landesmuseum.ktn.gv.at/wulfenia; www.zobodat.at Wulfenia 22 (2015): 33 – 82 Mitteilungen des Kärntner Botanikzentrums Klagenfurt Second contribution to the vascular flora of the Sevastopol area (the Crimea) Alexey P. Seregin, Pavel E. Yevseyenkov, Sergey A. Svirin & Alexander V. Fateryga Summary: We report 323 new vascular plant species for the Sevastopol area, an administrative unit in the south-western Crimea. Records of 204 species are confirmed by herbarium specimens, 60 species have been reported recently in literature and 59 species have been either photographed or recorded in field in 2008 –2014. Seventeen species and nothospecies are new records for the Crimea: Bupleurum veronense, Lemna turionifera, Typha austro-orientalis, Tyrimnus leucographus, × Agrotrigia hajastanica, Arctium × ambiguum, A. × mixtum, Potamogeton × angustifolius, P. × salicifolius (natives and archaeophytes); Bupleurum baldense, Campsis radicans, Clematis orientalis, Corispermum hyssopifolium, Halimodendron halodendron, Sagina apetala, Solidago gigantea, Ulmus pumila (aliens). Recently discovered Calystegia soldanella which was considered to be extinct in the Crimea is the most important confirmation of historical records. The Sevastopol area is one of the most floristically diverse areas of Eastern Europe with 1859 currently known species. Keywords: Crimea, checklist, local flora, taxonomy, new records A checklist of vascular plants recorded in the Sevastopol area was published seven years ago (Seregin 2008).
    [Show full text]
  • The Case of Artemisia Crithmifolia L. (Asteraceae, Anthemideae)
    CARYOLOGIA Vol. 62, no. 2: 152-160, 2009 Changes in genome size in a fragmented distribution area: the case of Artemisia crithmifolia L. (Asteraceae, Anthemideae). Pellicer Jaume1, Sònia Garcia2, Teresa Garnatje2 and Joan Vallès1* 1 Laboratori de Botànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, s.n., 08028 Barcelona, Catalonia, Spain. 2 Institut Botànic de Barcelona (CSIC-ICUB), Passeig del Migdia s.n., Parc de Montjuïc, 08038 Barcelona, Cata- lonia, Spain. Abstract — Artemisia crithmifolia is a hexaploid shrub which inhabits the coastal Atlantic sand dunes of Western Europe, from the Southern Iberian Peninsula to the Netherlands, reaching the British Isles. Genome size data of 45 populations of A. crithmifolia, covering its entire distribution area, were obtained using the flow cytometry method. The 2C nuclear DNA content in this species ranged from 14.27 to 15.72 pg, the mean value being 14.98 pg. A negative correlation between nuclear DNA amount and latitude has been found, and statistically significant differences between two groups resulting from the fragmentation of the distribution area were evidenced. Key words: 2C value, Compositae, dunes, flow cytometry, nuclear DNA amount. INTRODUCTION species occupies the maritime sands, principally at the back of the dunes in process of stabilization The genus Artemisia L. is one of the largest on the Northern Atlantic beaches, being part of of the Asteraceae, with more than 500 species two associations, Corynephoretum atlanticum and (OBERPRIELER et al. 2007). Different taxonomic Roseto-Ephedretum (KUHNZH O LTZ -LO RDAT 1927), rearrangements, based on morphological traits, which are closely related (VANDEN 1958). have been carried out, and five large subgenera Artemisia crithmifolia, a species from subgenus are considered at present (Absinthium DC., Ar- Dracunculus, presents capitula with glabrous re- temisia, Dracunculus Besser, Seriphidium Besser ceptacles, the outer florets female and the remain- and Tridentatae (Rydb.) McArthur).
    [Show full text]