Subic Bay Philippines
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Australasian Bat Society Newsletter
The Australasian Bat Society Newsletter Number 21 November 2003 ABS Website: http://abs.ausbats.org.au ABS Listserver: [email protected] ISSN 1448-5877 The Australasian Bat Society Newsletter, Number 21, Nov 2003 – Instructions for Contributors – The Australasian Bat Society Newsletter will accept contributions under one of the following two sections: Research Papers, and all other articles or notes. There are two deadlines each year: 31 st March for the April issue, and 31 st October for the November issue. The Editor reserves the right to hold over contributions for subsequent issues of the Newsletter , and meeting the deadline is not a guarantee of immediate publication. Opinions expressed in contributions to the Newsletter are the responsibility of the author, and do not necessarily reflect the views of the Australasian Bat Society, its Executive or members. For consistency, the following guidelines should be followed: • Emailed electronic copy of manuscripts or articles, sent as an attachment, is the preferred method of submission. Manuscripts can also be sent on 3½” floppy disk preferably in IBM format. Faxed and hard copy manuscripts will be accepted but reluctantly! Please send all submissions to the Newsletter Editor at the email or postal address below. • Electronic copy should be in 11 point Arial font, left and right justified with 16 mm left and right margins. Please use Microsoft Word; any version is acceptable. • Manuscripts should be submitted in clear, concise English and free from typographical and spelling errors. Please leave two spaces after each sentence. • Research Papers should include: Title; Names and addresses of authors; Abstract (approx. -
Final Report on the Project
BP Conservation Programme (CLP) 2005 PROJECT NO. 101405 - BRONZE AWARD WINNER ECOLOGY, DISTRIBUTION, STATUS AND PROTECTION OF THREE CONGOLESE FRUIT BATS FINAL REPORT Patrick KIPALU Team Leader Observatoire Congolais pour la Protection de l’Environnement OCPE – ong Kinshasa – Democratic Republic of the Congo E-mail: [email protected] APRIL 2009 1 Table of Content Acknowledgements…………………………………………………………………. p3 I. Project Summary……………………………………………………………….. p4 II. Introduction…………………………………………………………………… p4-p7 III. Materials and Methods ……………………………………………………….. p7-p10 IV. Results per Study Site…………………………………………………………. p10-p15 1. Pointe-Noire ………………………………………………………….. p10-p12 2. Mayumbe Forest /Luki Reserve……………………………………….. p12-p13 3. Zongo Forest…………………………………………………………... p14 4. Mbanza-Ngungu ………………………………………………………. P15 V. General Results ………………………………………………………………p15-p16 VI. Discussions……………………………………………………………………p17-18 VII. Conclusion and Recommendations……………………………………….p 18-p19 VIII. Bibliography………………………………………………………………p20-p21 Acknowledgements 2 The OCPE (Observatoire Congolais pour la Protection de l’Environnement) project team would like to start by expressing our gratefulness and saying thank you to the BP Conservation Program, which has funded the execution of this project. The OCPE also thanks the Van Tienhoven Foundation which provided a further financial support. Without these organisations, execution of the project would not have been possible. We would like to thank specially the BPCP “dream team”: Marianne D. Carter, Robyn Dalzen and our regretted Kate Stoke for their time, advices, expertise and care, which helped us to complete this work, Our special gratitude goes to Dr. Wim Bergmans, who was the hero behind the scene from the conception to the execution of the research work. Without his expertise, advices and network it would had been difficult for the project team to produce any result from this project. -
Index of Handbook of the Mammals of the World. Vol. 9. Bats
Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A. -
Investigating the Role of Bats in Emerging Zoonoses
12 ISSN 1810-1119 FAO ANIMAL PRODUCTION AND HEALTH manual INVESTIGATING THE ROLE OF BATS IN EMERGING ZOONOSES Balancing ecology, conservation and public health interest Cover photographs: Left: © Jon Epstein. EcoHealth Alliance Center: © Jon Epstein. EcoHealth Alliance Right: © Samuel Castro. Bureau of Animal Industry Philippines 12 FAO ANIMAL PRODUCTION AND HEALTH manual INVESTIGATING THE ROLE OF BATS IN EMERGING ZOONOSES Balancing ecology, conservation and public health interest Edited by Scott H. Newman, Hume Field, Jon Epstein and Carol de Jong FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2011 Recommended Citation Food and Agriculture Organisation of the United Nations. 2011. Investigating the role of bats in emerging zoonoses: Balancing ecology, conservation and public health interests. Edited by S.H. Newman, H.E. Field, C.E. de Jong and J.H. Epstein. FAO Animal Production and Health Manual No. 12. Rome. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views of FAO. -
Bats of the YUS Conservation Area Papua New Guinea
Bats of the YUS Conservation Area Papua New Guinea Simon KA Robson1, 1 Tamara E Inkster & 2 Andrew K Krockenberger 1Centre for Tropical Biodiversity & Climate Change 2Centre for Tropical Environmental & Sustainability Science School of Marine & Tropical Biology James Cook University, Australia © 2012 Table of Contents Executive summary 5 Introduction and rationale 5 Methodology 6 Survey effort 6 Acoustic monitoring 6 Monitoring via mist nets and harp traps 8 Microbats of YUS 9 The role of acoustic monitoring in bat surveys 14 Species accounts 16 Aselliscus triscupidatus: Trident Leaf-nosed Bat 17 Hipposideros cervinus: Fawn Leaf-nosed Bat 19 Hipposiders diadema: Diadem Leaf-nosed Bat 21 Hipposideros maggietaylorae: Maggie Taylor’s Leaf-nosed Bat 23 Rhinolophus euryotis: New Guinea Horseshoe Bat 25 Rhinolophus megaphyllus: Eastern Horseshoe Bat 27 Pipistrellus collinus: Montain Pipistrelle 29 Murina florium: Insectivorous Tube-nosed Bat 31 Nyctophlus microtus: Papuan Big-eared Bat 33 Kerivouls muscina: Fly River Woolly Bat 35 Mosia nigrescens: Lesser Sheath-tailed Bat 37 cf35 38 cffm46 39 fm12 40 fm52 41 fm55 42 sfm9 43 sfm14 44 sfm22 45 sfm42 46 sfm45 47 sfm55 48 Macroglossus minimus nanus: Least Blossom Bat 49 Nyctimine albiventer: Common Tube-nosed Bat 51 Paranyctimene raptor: Green Tube-nosed-Bat 53 Syconycteris australis: Common Blossom Bat 55 Acknowledgements 57 References 57 Executive Summary This project provides the first description of and harp traps) and more recently developed bat community structure across a complete altitudinal -
The Mammals of Southern West Sepik Province, Papua New Guinea: Their Distribution, Abundance, Human Use and Zoogeography
AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Flannery, Tim F., & Seri, L., 1990. The mammals of southern West Sepik Province, Papua New Guinea: their distribution, abundance, human use and zoogeography. Records of the Australian Museum 42(2): 173–208. [6 July 1990]. doi:10.3853/j.0067-1975.42.1990.114 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia Records of the Australian Museum (1990) Vol. 42: 173-208. ISSN 0067 1975 173 The Mammals of Southern West Sepik Province, Papua New Guinea: their Distribution, Abundance, Human Use and Zoogeography T.F. FLANNERyl & L. SERI2 IThe Australian Museum, 6 College Street, Sydney, NSW 2000, Australia 2Department of Environment and Conservation, Division of Wildlife, P.O. Box 6601, Boroko, Papua New Guinea ABSTRACT. A mammal survey was carried out between 1984 and 1987 in southern West Sepik Province, Papua New Guinea. Eleven major collecting localities, as well as some more minor ones, lying at altitudes of between 120 and 3,200 m were investigated. Voucher specimens for 87 indigenous mammal taxa were obtained, but research suggests that mammal diversity in the area may be as high as 120 species. This is the highest mammal diversity recorded anywhere in Australasia. A similar high bird diversity suggests that the area may be one of exceptionally high biodiversity overall. The most diverse mammal assemblages in the study area are found in the midmontane oak forests (between 1,500 and 2,500 m). -
Reproductive Energetics of Captive and Free-Ranging Egyptian Fruit Bats (Rouseitus Aegyptiacus)
Ecology, 85(1), 2004, pp, 220-230 © 2004 by the Ecological Society of America REPRODUCTIVE ENERGETICS OF CAPTIVE AND FREE-RANGING EGYPTIAN FRUIT BATS (ROUSEITUS AEGYPTIACUS) CARMI KORINE,1,2,4 JOHN SPEAKMAN,3 AND ZEEV ARAD1 [Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel 'Mitrani Department of Desert Ecology, Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990 Israel 3School of Biological Sciences, University ~f Aberdeen, TiIlydrone Avenue, Aberdeen ABU 2TZ, and Division of Energy Balance and Obesity, Rowett Research Institute, Aberdeen, AB24 935, Scotland, u.K. Abstract. This study explored how a flying frugivorous mammal, the Egyptian fruit bat (Rousettus aegyptiacus), meets the increased energy requirements of reproduction. This bat feeds on low-protein fruit, and females have bimodal polyestrous cycles that are rel atively long for a small mammal. We measured the energy and water balance of captive nonreproductive, pregnant, and lactating females, and of free-ranging lactating females, Our results indicate that females use more than one strategy to cope with the high energy demands of reproduction, These strategies may change according to the availability of food and reproductive status, The primary strategy near the end of pregnancy and at peak lactation was increased food consumption, In the laboratory, mean metabolizable energy intake (MEl) of pregnant and lactating females (271 and 360 kJ/d, respectively) increased by 35% and 80%, respectively, compared to that of nonreproductive females (200 kJ/d), At peak lac tation, energy intake measured by doubly labeled water averaged 350 kJ/d. During late pregnancy, water turnover rate (WTO) increased by 15-23% compared to that of nonre productive females. -
Vertebrate Fauna Survey Worimi Conservation Lands
VERTEBRATE FAUNA SURVEY WORIMI CONSERVATION LANDS FINAL REPORT Prepared for NSW DEPARTMENT OF ENVIRONMENT AND CLIMATE CHANGE ECOTONE ECOLOGICAL CONSULTANTS Pty Ltd 39 Platt Street, Waratah NSW 2298 Phone: (02) 4968 4901 fax: (02) 4968 4960 E-mail: [email protected] EEC PROJECT No. 0583CW SEPTEMBER 2008 EXECUTIVE SUMMARY The Worimi Conservation Lands (WCL) cover an area of 4,200 hectares and are made up of three reserves: Worimi National Park, Worimi State Conservation Area and Worimi Regional Park. The WCL have been identified as a significant cultural landscape and are co-managed by a board of management. A vertebrate fauna survey of the Worimi Conservation lands has been undertaken in order to identify the fauna species assemblages within the WCL and record any significant species, including threatened species. As most of the previous studies were situated outside of or on the periphery of the WCL, a more detailed assessment of the fauna communities and habitat would assist in the future management for the WCL. From the literature review a total of 270 fauna species (excluding marine mammals) have been recorded within the study locality (2 km from the centre line of the WCL). These consisted of 189 bird, 49 mammal, 17 reptile and 15 frog species. It should be pointed out that it is unlikely that all of these species would occur within the WCL as the search area provides a greater variety of habitats than those identified within the WCL. Prior to the current survey a total of 135 species had been recorded within or very close to the WCL boundary. -
Bats and Fruit Bats at the Kafa Biosphere Reserve
NABU’s Biodiversity Assessment at the Kafa Biosphere Reserve, Ethiopia Bats and fruit bats at the Kafa Biosphere Reserve Ingrid Kaipf, Hartmut Rudolphi and Holger Meinig 206 BATS Highlights ´ This is the first time a systematic bat assessment has been conducted in the Kafa BR. ´ We recorded four fruit bat species, one of which is new for the Kafa BR but not for Ethiopia. ´ We recorded 29 bat species by capture or sound recording. Four bat species are new for the Kafa BR but occur in other parts of Ethiopia. ´ We recorded calls of a new species in the horseshoe bat family for Ethiopia via echolocation. This data needs to be confirmed by capture, because there is a chance it could be a species of Rhinolophus new to science. ´ We suggest two flagship species: the long-haired rousette for the bamboo forest and the hammer-headed fruit bat for the Alemgono Wetland and Gummi River. ´ The bamboo forests had the most bat activity at night, but the Gojeb Wetland had the highest species richness due to its highly diverse habitats. ´ All caves throughout the entire Kafa BR should be protected as bat roosts. ´ It will be necessary to develop an old tree management concept for the biosphere reserve to protect and increase tree roosts for bats. 207 NABU’s Biodiversity Assessment at the Kafa Biosphere Reserve, Ethiopia 1. Introduction Ethiopia has high megabat and microbat diversity, there were no buildings suitable for bats at any of the thanks to its special geographical position between study sites). So far, 70 bat species have been recorded the sub-Saharan region, East Africa and the Arabic in Ethiopia, five of them endemic to Ethiopia. -
Os Nomes Galegos Dos Morcegos 2018 2ª Ed
Os nomes galegos dos morcegos 2018 2ª ed. Citación recomendada / Recommended citation: A Chave (20182): Os nomes galegos dos morcegos. Xinzo de Limia (Ourense): A Chave. http://www.achave.ga"/wp#content/up"oads/achave_osnomes!a"egosdos$morcegos$2018.pd% Para a elaboración deste recurso léxico contouse coa colaboración de Lois de la Calle Carballal. Fotografía: orelludo cincento (Plecotus austriacus ). Autor: Jordi as. &sta o'ra est( su)eita a unha licenza Creative Commons de uso a'erto* con reco+ecemento da autor,a e sen o'ra derivada nin usos comerciais. -esumo da licenza: https://creativecommons.or!/"icences/'.#n #nd//.0/deed.!". Licenza comp"eta: https://creativecommons.or!/"icences/'.#n #nd//.0/"e!a"code0"an!ua!es. 1 !otas introdutorias " que contén este documento Na primeira edición deste documento (2016) fornecéronse denominacións galegas para as especies de morcegos : todas as que están presentes na Galiza (cando menos 2!) e máis de 500 especies do resto do mundo# Nesta segunda edición (2018) incorpórase o logo da %&a'e ao deseño do documento engádese algún nome galego máis e reescr*+ense as notas introdutorias# ,áis completa que a anterior nesta no'a edición ac&éganse nomes galegos para un total de 552 especies# A estrutura En primeiro lugar preséntase unha clasificación taxonómica que considera as superfamilias e familias de morcegos onde se apunta de maneira xeral os nomes dos morcegos que &ai en cada familia# / seguir 'én o corpo do documento unha listaxe onde se indica especie por especie, alén do nome cient*fico os nomes -
Epauletted Fruit Bats Display Exceptionally High
www.nature.com/scientificreports OPEN Epauletted fruit bats display exceptionally high infections with a Hepatocystis species complex in Received: 28 March 2017 Accepted: 22 June 2017 South Sudan Published online: 31 July 2017 Juliane Schaer1,2, Susan L. Perkins3, Imran Ejotre4, Megan E. Vodzak5,6, Kai Matuschewski1,4 & DeeAnn M. Reeder5 Hepatocystis parasites are closely related to mammalian Plasmodium species, the causative agents of malaria. Despite the close phylogenetic relationship, Hepatocystis parasites lack the intermittent erythrocytic replication cycles, the signature and exclusive cause of malaria-related morbidity and mortality. Hepatocystis population expansion in the mammalian host is thought to be restricted to the pre-erythrocytic liver phase. Complete diferentiation of frst generation blood stages into sexual stages for subsequent vector transmission indicates alternative parasite/host co-evolution. In this study, we identifed a region of exceptionally high prevalence of Hepatocystis infections in Old World fruit bats in South Sudan. Investigations over the course of fve consecutive surveys revealed an average of 93 percent prevalence in four genera of African epauletted fruit bats. We observed a clear seasonal pattern and tolerance of high parasite loads in these bats. Phylogenetic analyses revealed several cryptic Hepatocystis parasite species and, in contrast to mammalian Plasmodium parasites, neither host specifcity nor strong geographical patterns were evident. Together, our study provides evidence for Pan-African distribution and local high endemicity of a Hepatocystis species complex in Pteropodidae. Parasites of the mammal-infecting haemosporidian parasite genus Hepatocystis are closely related to mammalian Plasmodium species1–3. Hepatocystis parasites are largely confned to arboreal mammals of the Old World trop- ics, and they are common in and described from Old world monkeys, fruit bats and squirrels4. -
Diversity and Diversification Across the Global Radiation of Extant Bats
Diversity and Diversification Across the Global Radiation of Extant Bats by Jeff J. Shi A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ecology and Evolutionary Biology) in the University of Michigan 2018 Doctoral Committee: Professor Catherine Badgley, co-chair Assistant Professor and Assistant Curator Daniel Rabosky, co-chair Associate Professor Geoffrey Gerstner Associate Research Scientist Miriam Zelditch Kalong (Malay, traditional) Pteropus vampyrus (Linnaeus, 1758) Illustration by Gustav Mützel (Brehms Tierleben), 19271 1 Reproduced as a work in the public domain of the United States of America; accessible via the Wikimedia Commons repository. EPIGRAPHS “...one had to know the initial and final states to meet that goal; one needed knowledge of the effects before the causes could be initiated.” Ted Chiang; Story of Your Life (1998) “Dr. Eleven: What was it like for you, at the end? Captain Lonagan: It was exactly like waking up from a dream.” Emily St. John Mandel; Station Eleven (2014) Bill Watterson; Calvin & Hobbes (October 27, 1989)2 2 Reproduced according to the educational usage policies of, and direct correspondence with Andrews McMeel Syndication. © Jeff J. Shi 2018 [email protected] ORCID: 0000-0002-8529-7100 DEDICATION To the memory and life of Samantha Jade Wang. ii ACKNOWLEDGMENTS All of the research presented here was supported by a National Science Foundation (NSF) Graduate Research Fellowship, an Edwin H. Edwards Scholarship in Biology, and awards from the University of Michigan’s Rackham Graduate School and the Department of Ecology & Evolutionary Biology (EEB). A significant amount of computational work was funded by a Michigan Institute for Computational Discovery and Engineering fellowship; specimen scanning, loans, and research assistants were funded by the Museum of Zoology’s Hinsdale & Walker fund and an NSF Doctoral Dissertation Improvement Grant.