Vaccine R&D Success Rates and Development Times

Total Page:16

File Type:pdf, Size:1020Kb

Vaccine R&D Success Rates and Development Times © 1996 Nature Publishing Group http://www.nature.com/naturebiotechnology • FEATURE VACCINE DEVELOPMENT TIMES Vaccine R&D success rates and development times The real time saving in vaccine development is not in the preclinical development itself, but in the accelerated clinical development and reduced regulatory process of dossier preparation and review. Mark-M. Struck Two of the most important factors in compa­ give life-long protection against disease from database1' . Success rate statistics were derived nies' decisions about whether or not to very few administrations. However, because from a total of 266 projects-not all projects, develop vaccines---the time of development vaccines are given to healthy people, adverse just those for which reports could be traced and the success rate in development-are events associated with vaccinations must be in the literature, from company reports, or relatively poorly characterized. This article lower than for drugs. Although vaccines other sources. In addition, I included 14 vac­ endeavors to remedy that by providing esti­ comprise a specialized pharmaceutical mar­ cine projects (7 launched, 3 discontinued, 4 mates of these factors from data on the ket, they can achieve substantial sales (for ongoing) from our company; these are not progress of vaccine projects between 1983 instance, the hepatitis B vaccine). listed in Pharma Projects but have been pub­ and 1994. Similar data have also been used to lished elsewhere" ". predict more generally the growth rate for The analysis In this survey, vaccine candidates are con­ the pharmaceutical and biopharmaceutical I have designated seven stages of develop­ sidered to have failed if a project has been industries'". Combined with other consider­ ment through which any vaccine project has terminated or suspended. The rare with­ ations, such as return on investment, price, to progress to reach the market place: pre­ drawals of vaccines from the market in the potential market volume, achievable vaccine clinical development; clinical phases I,II, and postmarketing surveillance period have been coverage, and acceptance and distribution', III; preregistration; registration; and launch. excluded from the analysis'•. such data can aid rational decision processes There is a limited preclinical phase in which It is difficult to estimate the extent to in development. The data indicate that to evaluate potential toxicological, pharma­ which failed projects are underreported in although vaccine development-from pre­ cokinetic, and pharmacodynamic effects'. publicly available databases'". However, there clinical studies to launch-takes an average Then follow clinical studies in phase I and is some reassurance in the fact that the inclu­ of two years less than biopharmaceutical phase II', in which investigators look at sion of data on 14 extra vaccine projects development, only half as many preclinical immunogenicity, generate limited safety from our company did not significantly alter vaccine candidates make it through the data, and study adjuvant effects, dosage, and the transition probabilities and development process. The disease prevention-driven vaccination schemes. Subsequent clinical times. approach underlying vaccine development, phase III trials evaluate efficacy in field stud­ and the nature of the data that its clinical tri­ ies, household contact studies, or challenge Progression through the pipeline als yield, account for much of the differences study settings10• The next phase is preregis­ The numbers of projects per development in the development pattern. tration, during which data is evaluated, ana­ stage (Table 1) decreases along the research Alarming reports of waning immunity in lyzed, and compiled for submission to and development pipeline, as expected. adults', the emergence of new diseases, and regulatory agencies for review"·". Once regu­ The first interesting aspect of the phase the resurgence of old ones'·' have put vacci­ latory approval has been granted, batches of transition data (Table 2) is the similarity of nation back in the public spotlight. This has vaccines are released by prompted numerous vaccination initiatives the national control Table 1. Breakdown of vaccine projects per development worldwide, including Article 129 of the authority and market stage. European Community treaty of Maastricht. launch is initiated. Change in stage Successful Suspended Discontinued Vaccination is the most elegant and cost­ Of course, vaccine Preclinical to phase I 27 3 111 effective way to prevent outbreak of a disease development does not Phase I to phase II 17 3 32 and sequelae resulting from it. The Mercer always follow this scheme Phase II to phase Ill 16 0 15 Report commissioned by the US Department exactly (for reasons dis­ Phase Ill to preregistration 5 0 10 of Health and Human Services (Washington, cussed previously for Preregistration to 2 0 2 registration DC) found that vaccines offer very high eco­ biopharmaceuticals1). Registration to launch 22 nomic and health returns on investment'. Multicomponent vac­ 0 They often contain multiple active ingredi­ cines, especially, may not ents (in contrast to single active ingredients always fit into this Table 2. Transition probabilities of vaccines compared to used in drugs or biopharmaceuticals) and scheme"·". biopharmaceuticals. The analysis here is Transition Vaccine Biopharmaceutical based on 577 vaccine Preclinical to phase I 0.57 0.57 Mark-M. Struck is head of registration and projects between 1983 Phase I to phase II 0.72 0,88 regulatory affairs at Swiss Serum and Vaccine, and 1994 using source Phase II to phase Ill 0.79 0.86 Phase 111 to registration 0.71 0.93 79, CH-3018 Bern, data from the publicly Inc. , Rehhagstrasse Registration to launch 0.96 1.00 Switzerland. available Pharma Projects NATURE BIOTECHNOLOGY VOLUME 14 MAY 1996 591 © 1996 Nature Publishing Group http://www.nature.com/naturebiotechnology FEATURE VACCINE• DEVELOPMENT TIMES the preclinical to phase I transition probabili­ development, the product has only been test­ pharmaceutical groups for the phase III to ties for vaccines and biopharmaceuticals and ed in healthy volunteers up to this point. preregistration and preregistration to regis­ the fact that the probability in both cases is Although surrogate markers of efficacy such trations phase are statistically significant (by much higher than for "non-bio" pharmaceu­ as serum titers, animal challenge data, or the Student t-test). ticals. For both vaccines and biopharmaceu­ neutralizing antibodies for vaccines are mon­ The overall development (preclinical to ticals, species specificity means that there is itored in early development phases, they may launch) time for vaccines is less-by roughly little animal toxicological data that could be misleading as indicators of the real efficacy two years-than biopharmaceuticals and stop a project from developing past preclini­ of the vaccine. Pharmaceuticals and biophar­ "non-bio" drugs; ten years compared with cal studies. Equally, pharmacological investi­ maceuticals will have been given to affected twelve. Two years less in development means gations with vaccines are rarely performed' patient subsets in phase I or II". Therefore, two years earlier into the market, a signifi­ so projects are unlikely to fail on that count. the decision to put vaccines into phase III is cant advantage in cost-saving, sales genera­ The other main difference is that "lead struc­ based on generally less decisive data. tion, and market positioning. tures" for vaccines and biopharmaceuticals are much easier to identify at the beginning The chances of ultimate success Conclusions of the preclinical phase than are drug leads. So what are the chances that a vaccine at a Vaccine development, like the development We can know at the outset that an attenuated given stage of development will make it to the of other pharmaceuticals, is still a complex organism has a chance of being a vaccine or market? Market entrance probabilities (Table process that takes substantial resources and that a protein will correct a protein-deficien­ 3) can be calculated by multiplying the vari­ requires serious and enthusiastic commit­ cy disease in a way that we cannot know it ous phase transition probabilities. The mar­ ment over a period of roughly ten years. for small molecule drugs. Thus, proportion­ ket entrance probabilities for preclinical The contexts for vaccine and biopharma­ ally fewer "hopeless" vaccine and biophar­ vaccine candidates is about half that for pre­ ceutical development are very different. The maceutical candidates will enter the clinical biopharmaceuticals1, largely, of general clinical settings and study endpoints preclinical phase. course, because of the lower phase I to phase for vaccines are clearer from the start and In later phases transitions, there are dif­ II and phase III to registration transition seem to be better controlled than for bio­ ferences between vaccines and biopharma­ probabilities. In other words, preclinical bio­ pharmaceuticals. Researchers already know ceuticals (see Table 2), differences that are pharmaceuticals are nearly twice as likely to about the disease, the responsible pathogens, statistically significant despite the sparseness succeed than preclinical vaccine candidates. and the immune response elicited in humans of some of the data. Vaccine projects have a The strikingly high success rate for bio­ during infection. Disease staging is not a 72% chance of progressing from phase I to pharmaceuticals is
Recommended publications
  • Vaccination Certificate Information Version: 21 July 2021
    معلومات عن شهادة التطعيم، بالعربية 中文疫苗接种凭证信息 Informations sur le certificat de vaccination en FRANÇAIS Информация о сертификате вакцинации на РУССКОМ ЯЗЫКЕ Información sobre el Certificado de Vacunación en ESPAÑOL UN SYSTEM-WIDE COVID-19 VACCINATION PROGRAMME VACCINATION CERTIFICATE INFORMATION VERSION: 21 JULY 2021 ABOUT THE UN SYSTEM-WIDE COVID-19 VACCINATION PROGRAMME The UN is committed to ensuring the protection of its personnel. Tasked by the Secretary-General, the Department of Operational Support (DOS) is leading a coordinated, UN-system-wide effort to ensure the availability of vaccine to UN personnel, their dependents and implementing partners. The roll-out of the UN System-wide COVID-19 Vaccination Programme (the “Programme”) for UN personnel will provide a significant boost to the ability of personnel to stay and deliver on the Organization's mandates, to support beneficiaries in the communities they serve, and to contribute to our on-going work to recover better together from the pandemic. Information about the Programme is available at: https://www.un.org/en/coronavirus/vaccination ABOUT THE VACCINATION CERTIFICATE Upon administration of the requisite vaccine dosage, a certificate of vaccination is generated through the Programme’s registration platform (the “Platform”). The certificate generated by the Platform uses a standardized format, similar to the one used by the WHO in its “International Certificate of Vaccination or Prophylaxis” (Yellow) vaccination booklet. Note: This certificate may not dispense with travel restrictions put in place by the country(ies) of destination. As the nature of the pandemic continues to rapidly evolve, it is highly advisable to check the latest travel regulations.
    [Show full text]
  • Global Dynamics of a Vaccination Model for Infectious Diseases with Asymptomatic Carriers
    MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2016019 AND ENGINEERING Volume 13, Number 4, August 2016 pp. 813{840 GLOBAL DYNAMICS OF A VACCINATION MODEL FOR INFECTIOUS DISEASES WITH ASYMPTOMATIC CARRIERS Martin Luther Mann Manyombe1;2 and Joseph Mbang1;2 Department of Mathematics, Faculty of Science University of Yaounde 1, P.O. Box 812 Yaounde, Cameroon 1;2;3; Jean Lubuma and Berge Tsanou ∗ Department of Mathematics and Applied Mathematics University of Pretoria, Pretoria 0002, South Africa (Communicated by Abba Gumel) Abstract. In this paper, an epidemic model is investigated for infectious dis- eases that can be transmitted through both the infectious individuals and the asymptomatic carriers (i.e., infected individuals who are contagious but do not show any disease symptoms). We propose a dose-structured vaccination model with multiple transmission pathways. Based on the range of the explic- itly computed basic reproduction number, we prove the global stability of the disease-free when this threshold number is less or equal to the unity. Moreover, whenever it is greater than one, the existence of the unique endemic equilibrium is shown and its global stability is established for the case where the changes of displaying the disease symptoms are independent of the vulnerable classes. Further, the model is shown to exhibit a transcritical bifurcation with the unit basic reproduction number being the bifurcation parameter. The impacts of the asymptomatic carriers and the effectiveness of vaccination on the disease transmission are discussed through through the local and the global sensitivity analyses of the basic reproduction number. Finally, a case study of hepatitis B virus disease (HBV) is considered, with the numerical simulations presented to support the analytical results.
    [Show full text]
  • FDA Oncology Experience in Innovative Adaptive Trial Designs
    Innovative Adaptive Trial Designs Rajeshwari Sridhara, Ph.D. Director, Division of Biometrics V Office of Biostatistics, CDER, FDA 9/3/2015 Sridhara - Ovarian cancer workshop 1 Fixed Sample Designs • Patient population, disease assessments, treatment, sample size, hypothesis to be tested, primary outcome measure - all fixed • No change in the design features during the study Adaptive Designs • A study that includes a prospectively planned opportunity for modification of one or more specified aspects of the study design and hypotheses based on analysis of data (interim data) from subjects in the study 9/3/2015 Sridhara - Ovarian cancer workshop 2 Bayesian Designs • In the Bayesian paradigm, the parameter measuring treatment effect is regarded as a random variable • Bayesian inference is based on the posterior distribution (Bayes’ Rule – updated based on observed data) – Outcome adaptive • By definition adaptive design 9/3/2015 Sridhara - Ovarian cancer workshop 3 Adaptive Designs (Frequentist or Bayesian) • Allows for planned design modifications • Modifications based on data accrued in the trial up to the interim time • Unblinded or blinded interim results • Control probability of false positive rate for multiple options • Control operational bias • Assumes independent increments of information 9/3/2015 Sridhara - Ovarian cancer workshop 4 Enrichment Designs – Prognostic or Predictive • Untargeted or All comers design: – post-hoc enrichment, prospective-retrospective designs – Marker evaluation after randomization (example: KRAS in cetuximab
    [Show full text]
  • FORMULAS from EPIDEMIOLOGY KEPT SIMPLE (3E) Chapter 3: Epidemiologic Measures
    FORMULAS FROM EPIDEMIOLOGY KEPT SIMPLE (3e) Chapter 3: Epidemiologic Measures Basic epidemiologic measures used to quantify: • frequency of occurrence • the effect of an exposure • the potential impact of an intervention. Epidemiologic Measures Measures of disease Measures of Measures of potential frequency association impact (“Measures of Effect”) Incidence Prevalence Absolute measures of Relative measures of Attributable Fraction Attributable Fraction effect effect in exposed cases in the Population Incidence proportion Incidence rate Risk difference Risk Ratio (Cumulative (incidence density, (Incidence proportion (Incidence Incidence, Incidence hazard rate, person- difference) Proportion Ratio) Risk) time rate) Incidence odds Rate Difference Rate Ratio (Incidence density (Incidence density difference) ratio) Prevalence Odds Ratio Difference Macintosh HD:Users:buddygerstman:Dropbox:eks:formula_sheet.doc Page 1 of 7 3.1 Measures of Disease Frequency No. of onsets Incidence Proportion = No. at risk at beginning of follow-up • Also called risk, average risk, and cumulative incidence. • Can be measured in cohorts (closed populations) only. • Requires follow-up of individuals. No. of onsets Incidence Rate = ∑person-time • Also called incidence density and average hazard. • When disease is rare (incidence proportion < 5%), incidence rate ≈ incidence proportion. • In cohorts (closed populations), it is best to sum individual person-time longitudinally. It can also be estimated as Σperson-time ≈ (average population size) × (duration of follow-up). Actuarial adjustments may be needed when the disease outcome is not rare. • In an open populations, Σperson-time ≈ (average population size) × (duration of follow-up). Examples of incidence rates in open populations include: births Crude birth rate (per m) = × m mid-year population size deaths Crude mortality rate (per m) = × m mid-year population size deaths < 1 year of age Infant mortality rate (per m) = × m live births No.
    [Show full text]
  • Incidence and Secondary Transmission of SARS-Cov-2 Infections in Schools
    Prepublication Release Incidence and Secondary Transmission of SARS-CoV-2 Infections in Schools Kanecia O. Zimmerman, MD; Ibukunoluwa C. Akinboyo, MD; M. Alan Brookhart, PhD; Angelique E. Boutzoukas, MD; Kathleen McGann, MD; Michael J. Smith, MD, MSCE; Gabriela Maradiaga Panayotti, MD; Sarah C. Armstrong, MD; Helen Bristow, MPH; Donna Parker, MPH; Sabrina Zadrozny, PhD; David J. Weber, MD, MPH; Daniel K. Benjamin, Jr., MD, PhD; for The ABC Science Collaborative DOI: 10.1542/peds.2020-048090 Journal: Pediatrics Article Type: Regular Article Citation: Zimmerman KO, Akinboyo IC, Brookhart A, et al. Incidence and secondary transmission of SARS-CoV-2 infections in schools. Pediatrics. 2021; doi: 10.1542/peds.2020- 048090 This is a prepublication version of an article that has undergone peer review and been accepted for publication but is not the final version of record. This paper may be cited using the DOI and date of access. This paper may contain information that has errors in facts, figures, and statements, and will be corrected in the final published version. The journal is providing an early version of this article to expedite access to this information. The American Academy of Pediatrics, the editors, and authors are not responsible for inaccurate information and data described in this version. Downloaded from©2021 www.aappublications.org/news American Academy by of guest Pediatrics on September 27, 2021 Prepublication Release Incidence and Secondary Transmission of SARS-CoV-2 Infections in Schools Kanecia O. Zimmerman, MD1,2,3; Ibukunoluwa C. Akinboyo, MD1,2; M. Alan Brookhart, PhD4; Angelique E. Boutzoukas, MD1,2; Kathleen McGann, MD2; Michael J.
    [Show full text]
  • Estimated HIV Incidence and Prevalence in the United States
    Volume 26, Number 1 Estimated HIV Incidence and Prevalence in the United States, 2015–2019 This issue of the HIV Surveillance Supplemental Report is published by the Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention (CDC), U.S. Department of Health and Human Services, Atlanta, Georgia. Estimates are presented for the incidence and prevalence of HIV infection among adults and adolescents (aged 13 years and older) based on data reported to CDC through December 2020. The HIV Surveillance Supplemental Report is not copyrighted and may be used and reproduced without permission. Citation of the source is, however, appreciated. Suggested citation Centers for Disease Control and Prevention. Estimated HIV incidence and prevalence in the United States, 2015–2019. HIV Surveillance Supplemental Report 2021;26(No. 1). http://www.cdc.gov/ hiv/library/reports/hiv-surveillance.html. Published May 2021. Accessed [date]. On the Web: http://www.cdc.gov/hiv/library/reports/hiv-surveillance.html Confidential information, referrals, and educational material on HIV infection CDC-INFO 1-800-232-4636 (in English, en Español) 1-888-232-6348 (TTY) http://wwwn.cdc.gov/dcs/ContactUs/Form Acknowledgments Publication of this report was made possible by the contributions of the state and territorial health departments and the HIV surveillance programs that provided surveillance data to CDC. This report was prepared by the following staff and contractors of the Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, CDC: Laurie Linley, Anna Satcher Johnson, Ruiguang Song, Sherry Hu, Baohua Wu, H.
    [Show full text]
  • Understanding Relative Risk, Odds Ratio, and Related Terms: As Simple As It Can Get Chittaranjan Andrade, MD
    Understanding Relative Risk, Odds Ratio, and Related Terms: As Simple as It Can Get Chittaranjan Andrade, MD Each month in his online Introduction column, Dr Andrade Many research papers present findings as odds ratios (ORs) and considers theoretical and relative risks (RRs) as measures of effect size for categorical outcomes. practical ideas in clinical Whereas these and related terms have been well explained in many psychopharmacology articles,1–5 this article presents a version, with examples, that is meant with a view to update the knowledge and skills to be both simple and practical. Readers may note that the explanations of medical practitioners and examples provided apply mostly to randomized controlled trials who treat patients with (RCTs), cohort studies, and case-control studies. Nevertheless, similar psychiatric conditions. principles operate when these concepts are applied in epidemiologic Department of Psychopharmacology, National Institute research. Whereas the terms may be applied slightly differently in of Mental Health and Neurosciences, Bangalore, India different explanatory texts, the general principles are the same. ([email protected]). ABSTRACT Clinical Situation Risk, and related measures of effect size (for Consider a hypothetical RCT in which 76 depressed patients were categorical outcomes) such as relative risks and randomly assigned to receive either venlafaxine (n = 40) or placebo odds ratios, are frequently presented in research (n = 36) for 8 weeks. During the trial, new-onset sexual dysfunction articles. Not all readers know how these statistics was identified in 8 patients treated with venlafaxine and in 3 patients are derived and interpreted, nor are all readers treated with placebo. These results are presented in Table 1.
    [Show full text]
  • Disease Incidence, Prevalence and Disability
    Part 3 Disease incidence, prevalence and disability 9. How many people become sick each year? 28 10. Cancer incidence by site and region 29 11. How many people are sick at any given time? 31 12. Prevalence of moderate and severe disability 31 13. Leading causes of years lost due to disability in 2004 36 World Health Organization 9. How many people become sick each such as diarrhoeal disease or malaria, it is common year? for individuals to be infected repeatedly and have several episodes. For such conditions, the number The “incidence” of a condition is the number of new given in the table is the number of disease episodes, cases in a period of time – usually one year (Table 5). rather than the number of individuals affected. For most conditions in this table, the figure given is It is important to remember that the incidence of the number of individuals who developed the illness a disease or condition measures how many people or problem in 2004. However, for some conditions, are affected by it for the first time over a period of Table 5: Incidence (millions) of selected conditions by WHO region, 2004 Eastern The Mediter- South- Western World Africa Americas ranean Europe East Asia Pacific Tuberculosisa 7.8 1.4 0.4 0.6 0.6 2.8 2.1 HIV infectiona 2.8 1.9 0.2 0.1 0.2 0.2 0.1 Diarrhoeal diseaseb 4 620.4 912.9 543.1 424.9 207.1 1 276.5 1 255.9 Pertussisb 18.4 5.2 1.2 1.6 0.7 7.5 2.1 Measlesa 27.1 5.3 0.0e 1.0 0.2 17.4 3.3 Tetanusa 0.3 0.1 0.0 0.1 0.0 0.1 0.0 Meningitisb 0.7 0.3 0.1 0.1 0.0 0.2 0.1 Malariab 241.3 203.9 2.9 8.6 0.0 23.3 2.7
    [Show full text]
  • Vaccine Hesitancy
    WHY CHILDREN WORKSHOP ON IMMUNIZATIONS ARE NOT VACCINATED? VACCINE HESITANCY José Esparza MD, PhD - Adjunct Professor, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA - Robert Koch Fellow, Robert Koch Institute, Berlin, Germany - Senior Advisor, Global Virus Network, Baltimore, MD, USA. Formerly: - Bill & Melinda Gates Foundation, Seattle, WA, USA - World Health Organization, Geneva, Switzerland The value of vaccination “The impact of vaccination on the health of the world’s people is hard to exaggerate. With the exception of safe water, no other modality has had such a major effect on mortality reduction and population growth” Stanley Plotkin (2013) VACCINES VAILABLE TO PROTECT AGAINST MORE DISEASES (US) BASIC VACCINES RECOMMENDED BY WHO For all: BCG, hepatitis B, polio, DTP, Hib, Pneumococcal (conjugated), rotavirus, measles, rubella, HPV. For certain regions: Japanese encephalitis, yellow fever, tick-borne encephalitis. For some high-risk populations: typhoid, cholera, meningococcal, hepatitis A, rabies. For certain immunization programs: mumps, influenza Vaccines save millions of lives annually, worldwide WHAT THE WORLD HAS ACHIEVED: 40 YEARS OF INCREASING REACH OF BASIC VACCINES “Bill Gates Chart” 17 M GAVI 5.6 M 4.2 M Today (ca 2015): <5% of children in GAVI countries fully immunised with the 11 WHO- recommended vaccines Seth Berkley (GAVI) The goal: 50% of children in GAVI countries fully immunised by 2020 Seth Berkley (GAVI) The current world immunization efforts are achieving: • Equity between high and low-income countries • Bringing the power of vaccines to even the world’s poorest countries • Reducing morbidity and mortality in developing countries • Eliminating and eradicating disease WHY CHILDREN ARE NOT VACCINATED? •Vaccines are not available •Deficient health care systems •Poverty •Vaccine hesitancy (reticencia a la vacunacion) VACCINE HESITANCE: WHO DEFINITION “Vaccine hesitancy refers to delay in acceptance or refusal of vaccines despite availability of vaccination services.
    [Show full text]
  • AAMC Standardized Immunization Form
    AAMC Standardized Immunization Form Middle Last Name: First Name: Initial: DOB: Street Address: Medical School: City: Cell Phone: State: Primary Email: ZIP Code: AAMC ID: MMR (Measles, Mumps, Rubella) – 2 doses of MMR vaccine or two (2) doses of Measles, two (2) doses of Mumps and (1) dose of Rubella; or serologic proof of immunity for Measles, Mumps and/or Rubella. Choose only one option. Copy Note: a 3rd dose of MMR vaccine may be advised during regional outbreaks of measles or mumps if original MMR vaccination was received in childhood. Attached Option1 Vaccine Date MMR Dose #1 MMR -2 doses of MMR vaccine MMR Dose #2 Option 2 Vaccine or Test Date Measles Vaccine Dose #1 Serology Results Measles Qualitative -2 doses of vaccine or Measles Vaccine Dose #2 Titer Results: Positive Negative positive serology Quantitative Serologic Immunity (IgG antibody titer) Titer Results: _____ IU/ml Mumps Vaccine Dose #1 Serology Results Mumps Qualitative -2 doses of vaccine or Mumps Vaccine Dose #2 Titer Results: Positive Negative positive serology Quantitative Serologic Immunity (IgG antibody titer) Titer Results: _____ IU/ml Serology Results Rubella Qualitative Positive Negative -1 dose of vaccine or Rubella Vaccine Titer Results: positive serology Quantitative Serologic Immunity (IgG antibody titer) Titer Results: _____ IU/ml Tetanus-diphtheria-pertussis – 1 dose of adult Tdap; if last Tdap is more than 10 years old, provide date of last Td or Tdap booster Tdap Vaccine (Adacel, Boostrix, etc) Td Vaccine or Tdap Vaccine booster (if more than 10 years since last Tdap) Varicella (Chicken Pox) - 2 doses of varicella vaccine or positive serology Varicella Vaccine #1 Serology Results Qualitative Varicella Vaccine #2 Titer Results: Positive Negative Serologic Immunity (IgG antibody titer) Quantitative Titer Results: _____ IU/ml Influenza Vaccine --1 dose annually each fall Date Flu Vaccine © 2020 AAMC.
    [Show full text]
  • Statements Contained in This Release As the Result of New Information Or Future Events Or Developments
    Pfizer and BioNTech Provide Update on Booster Program in Light of the Delta-Variant NEW YORK and MAINZ, GERMANY, July 8, 2021 — As part of Pfizer’s and BioNTech’s continued efforts to stay ahead of the virus causing COVID-19 and circulating mutations, the companies are providing an update on their comprehensive booster strategy. Pfizer and BioNTech have seen encouraging data in the ongoing booster trial of a third dose of the current BNT162b2 vaccine. Initial data from the study demonstrate that a booster dose given 6 months after the second dose has a consistent tolerability profile while eliciting high neutralization titers against the wild type and the Beta variant, which are 5 to 10 times higher than after two primary doses. The companies expect to publish more definitive data soon as well as in a peer-reviewed journal and plan to submit the data to the FDA, EMA and other regulatory authorities in the coming weeks. In addition, data from a recent Nature paper demonstrate that immune sera obtained shortly after dose 2 of the primary two dose series of BNT162b2 have strong neutralization titers against the Delta variant (B.1.617.2 lineage) in laboratory tests. The companies anticipate that a third dose will boost those antibody titers even higher, similar to how the third dose performs for the Beta variant (B.1.351). Pfizer and BioNTech are conducting preclinical and clinical tests to confirm this hypothesis. While Pfizer and BioNTech believe a third dose of BNT162b2 has the potential to preserve the highest levels of protective efficacy against all currently known variants including Delta, the companies are remaining vigilant and are developing an updated version of the Pfizer-BioNTech COVID-19 vaccine that targets the full spike protein of the Delta variant.
    [Show full text]
  • COVID-19 Vaccines Frequently Asked Questions
    Page 1 of 12 COVID-19 Vaccines 2020a Frequently Asked Questions Michigan.gov/Coronavirus The information in this document will change frequently as we learn more about COVID-19 vaccines. There is a lot we are learning as the pandemic and COVID-19 vaccines evolve. The approach in Michigan will adapt as we learn more. September 29, 2021. Quick Links What’s new | Why COVID-19 vaccination is important | Booster and additional doses | What to expect when you get vaccinated | Safety of the vaccine | Vaccine distribution/prioritization | Additional vaccine information | Protecting your privacy | Where can I get more information? What’s new − Pfizer booster doses recommended for some people to boost waning immunity six months after completing the Pfizer vaccine. Why COVID-19 vaccination is important − If you are fully vaccinated, you don’t have to quarantine after being exposed to COVID-19, as long as you don’t have symptoms. This means missing less work, school, sports and other activities. − COVID-19 vaccination is the safest way to build protection. COVID-19 is still a threat, especially to people who are unvaccinated. Some people who get COVID-19 can become severely ill, which could result in hospitalization, and some people have ongoing health problems several weeks or even longer after getting infected. Even people who did not have symptoms when they were infected can have these ongoing health problems. − After you are fully vaccinated for COVID-19, you can resume many activities that you did before the pandemic. CDC recommends that fully vaccinated people wear a mask in public indoor settings if they are in an area of substantial or high transmission.
    [Show full text]