FORMULAS from EPIDEMIOLOGY KEPT SIMPLE (3E) Chapter 3: Epidemiologic Measures

Total Page:16

File Type:pdf, Size:1020Kb

FORMULAS from EPIDEMIOLOGY KEPT SIMPLE (3E) Chapter 3: Epidemiologic Measures FORMULAS FROM EPIDEMIOLOGY KEPT SIMPLE (3e) Chapter 3: Epidemiologic Measures Basic epidemiologic measures used to quantify: • frequency of occurrence • the effect of an exposure • the potential impact of an intervention. Epidemiologic Measures Measures of disease Measures of Measures of potential frequency association impact (“Measures of Effect”) Incidence Prevalence Absolute measures of Relative measures of Attributable Fraction Attributable Fraction effect effect in exposed cases in the Population Incidence proportion Incidence rate Risk difference Risk Ratio (Cumulative (incidence density, (Incidence proportion (Incidence Incidence, Incidence hazard rate, person- difference) Proportion Ratio) Risk) time rate) Incidence odds Rate Difference Rate Ratio (Incidence density (Incidence density difference) ratio) Prevalence Odds Ratio Difference Macintosh HD:Users:buddygerstman:Dropbox:eks:formula_sheet.doc Page 1 of 7 3.1 Measures of Disease Frequency No. of onsets Incidence Proportion = No. at risk at beginning of follow-up • Also called risk, average risk, and cumulative incidence. • Can be measured in cohorts (closed populations) only. • Requires follow-up of individuals. No. of onsets Incidence Rate = ∑person-time • Also called incidence density and average hazard. • When disease is rare (incidence proportion < 5%), incidence rate ≈ incidence proportion. • In cohorts (closed populations), it is best to sum individual person-time longitudinally. It can also be estimated as Σperson-time ≈ (average population size) × (duration of follow-up). Actuarial adjustments may be needed when the disease outcome is not rare. • In an open populations, Σperson-time ≈ (average population size) × (duration of follow-up). Examples of incidence rates in open populations include: births Crude birth rate (per m) = × m mid-year population size deaths Crude mortality rate (per m) = × m mid-year population size deaths < 1 year of age Infant mortality rate (per m) = × m live births No. of cases Prevalence Proportion = No. of individuals in the study • Also called point prevalence or just prevalence. • The concept of period prevalence should be avoided when possible because it confuses the concepts of incidence and prevalence (Elandt-Johnson & Johnson, 1980). • Prevalence dependence on the “inflow” and “outflow” of disease according to this formula Prevalence ≈ (incidence rate) × (average duration of illness). Additional Notes • Terminology: The term “rate” is often used loosely, to refer to any of the above measures of disease frequency (even though the only true rate is the incidence density rate • Odds: Both prevalence and incidence proportions may be addressed in terms of odds. Let p represent the incidence proportion or prevalence proportion of disease and o represent the odds of disease. Thus, odds o = p / (1 – p). • Reporting: To report a risk or rate “per m,” simply multiply it by m. For example, an incidence proportion of 0.0010 = 0.0010 × 10,000 = 10 per 10,000. • Uni-cohort: To report a risk or rate as a unicohort, take its reciprocal and report it as 1 in 1 “unicohort.” For example, an incidence proportion of 0.0025 = 1 in or “1 in 400.” 0.0025 Macintosh HD:Users:buddygerstman:Dropbox:eks:formula_sheet.doc Page 2 of 7 3.2 Measures of Association (Measures of Effect) Notation and terminology: Concepts apply to incidence proportions, incidence rates, and prevalence proportions, all of which will be loosely called “rates.” Let R1 represent the rate or risk of disease in the exposed group and let R0 represent the rate or risk of disease in the non-exposed group. Absolute Measure of Effect (Rate Difference) RD = R1 − R0 Relative Measure of Effect (Rate Ratio) R RR = 1 R0 The relative effect of an exposure can also captured by the SMR (see section on Rate Adjustment) 2-by-2 Cross-Tabulation D+ D− Total E+ (Group 1) A1 B1 N1 E− (Group 0) A0 B0 N0 M1 M0 N • For person-time data (incidence rates/densities) ignore cells B1 and B0 and let N1 and N0 represent the person-time in group 1 and group 0, respectively. A1 A0 AN11/ • Rates, Rate Ratio, and Rate Difference: R1 = , R0 = , RR = , and N1 N0 AN00/ RD = (AN11/)(/)− AN 0 0 (cohort and cross-sectional data) AB • Odds ratio: OR = 10(independent samples only; for matched-pairs and tuples data, see text) AB01 • Rounding: Basic measures should be reported with 2 or 3 significant digit accuracy. Carry 4 or 5 significant digits to derive a final answer that is accurate to 2 or 3 significant digits, respectively. 3.3 Measures of Potential Impact RR− RR −1 • The attributable fraction in exposed cases AF = 10, or equivalently, AF = . e e RR R1 RR− • The attributable fraction in the population AF = 0 p R Equivalent, AFpec= AF× p where pc represents proportion of population cases that are exposed Macintosh HD:Users:buddygerstman:Dropbox:eks:formula_sheet.doc Page 3 of 7 3.4 Rate Adjustment (“Standardization”) For uniformity of language, the term rate will be used to refer to any incidence or prevalence measure. Direct Standardization The directly adjusted rate (aRdirect) is a weighted average of strata-specific rates with weights derived from a reference population: aRdirect = ∑wiri N where w = i i N ∑ i Ni represents the size of strata i of the reference population ri represents rate in strata i of the study population. Note that capital letters denote values that come from the reference population and lower case letters denote values the come from the study population. Indirect Standardization Indirect standardization is based on the Standardized Mortality Ratio (SMR) Observed SMR = Expected where “Observed” is the observed number of cases and “Expected” is the expected number of cases in the population based on this formula: Expected R n where Ri represents the rate in strata i of the reference population = ∑ i i and ni represents the number of people strata i of the study population. The Expected in the population can be understood in terms of the expected number of cases within strata i, which is: Expected R n . Thus: Expected Expected . i = i i = ∑ i The SMR is a population-based relative risk estimate in which “1” represents a population in which the observed rate equals the expected rate. Optional: Use the SMR to derive the indirectly adjusted rate via this formula: aRindirect = (crude rate) × SMR Macintosh HD:Users:buddygerstman:Dropbox:eks:formula_sheet.doc Page 4 of 7 Chapter 10: Screening for Disease Reproducibility (Agreement) Rater B Rater A + − + a b g1 − c d g2 f1 f2 N pp ad+ fg11+ fg 2 2 obs− exp pobs = pexp = 2 κ = N N 1− pexp Validity (Sensitivity, Specificity, PVPT, PVNT) Disease + Disease − Total Test + TP FP TP + FP (those who test positive) Test − FN TN FN + TN (those who test negative) Total TP + FN FP + TN N (those with disease) (those w/out disease) SEN = (TP) / (those with disease) [note: TP = (SEN)(TP + FN)] = (TP) / (TP + FN) SPEC = (TN) / (those without disease) [note: TN = (SPEC)(FP + TN)] = (TN) / (TN + FP) PVP = (TP) / (those who test positive) = (TP) / (TP + FP) PVN = (TN) / (those who test negative) = (TN) / (TN + FN) True prevalence = (TP + FN) / N [also known as “prior probability”] Bayesian equivalents for PVP and PVN are presented in the text. Macintosh HD:Users:buddygerstman:Dropbox:eks:formula_sheet.doc Page 5 of 7 TEN COMMANDMENTS FOR DEALING WITH CONFOUNDING Source: EPIB-601 McGill University, Montreal, Canada [email protected], http://www.teachepi.org/documents/courses/Ten%20Commandments%20for%20Dealing%20with%20Con founding.pdf I. Always worry about confounding in your research, especially at the design/protocol stage. Try to use design elements (e.g. randomization) that will help reduce potential confounding. II. Prior to the study, review the literature and consider the underlying causal mechanisms (e.g. draw causal diagrams such as directed acyclic graphs [DAGs]). Then make sure you collect data on all potential confounders; otherwise you will not be able to adjust for them in your analyses. III. Know your field or collaborate with an expert who does! Subject-matter knowledge is important to recognize (e.g. draw causal diagrams) and adjust for confounding. IV. Use a priori and data-based methods to check if the potential confounders are indeed confounders that should be adjusted for. V. Use stratified analyses and multivariable methods to handle confounding at the analysis stage. Choose the multivariate model that best suits the type of data (e.g. dichotomous vs. continuous) you collected and the design you employed (e.g. case- control vs. cohort). VI. Do not adjust for covariates that may be intermediate causes (on the causal pathway between the exposure and disease). Do not adjust for covariates that may not be genuine confounders. And beware of time-varying covariates that will need special approaches. VII. Use matching with great caution. Use analytic methods that are appropriate for the design used; for example, if matching was done, use methods that take matching into account (e.g. conditional logistic regression, matched pairs analyses). VIII. Always consider effect measure modification, but perform and interpret subgroup analyses with caution. The subgroup analysis should be one of a small number of hypotheses tested, and the hypothesis should precede rather than follow the analysis (i.e. subgroups must be pre-specified). IX. Always remember that adjustment for confounding can be inadequate due to residual confounding because of unmeasured confounders, misclassification of confounders, and inadequate adjustment procedures (e.g. model misspecification, categorization of continuous covariates). X. If conventional methods prove to be inadequate, consider using newer approaches such as propensity scores, matched sampling, instrumental variables and marginal Macintosh HD:Users:buddygerstman:Dropbox:eks:formula_sheet.doc Page 6 of 7 structural models. However, make sure you work with statisticians who understand these new methods (not many do). When all else fails, pray! If prayer fails, consider changing professions!! Macintosh HD:Users:buddygerstman:Dropbox:eks:formula_sheet.doc Page 7 of 7 .
Recommended publications
  • Descriptive Statistics (Part 2): Interpreting Study Results
    Statistical Notes II Descriptive statistics (Part 2): Interpreting study results A Cook and A Sheikh he previous paper in this series looked at ‘baseline’. Investigations of treatment effects can be descriptive statistics, showing how to use and made in similar fashion by comparisons of disease T interpret fundamental measures such as the probability in treated and untreated patients. mean and standard deviation. Here we continue with descriptive statistics, looking at measures more The relative risk (RR), also sometimes known as specific to medical research. We start by defining the risk ratio, compares the risk of exposed and risk and odds, the two basic measures of disease unexposed subjects, while the odds ratio (OR) probability. Then we show how the effect of a disease compares odds. A relative risk or odds ratio greater risk factor, or a treatment, can be measured using the than one indicates an exposure to be harmful, while relative risk or the odds ratio. Finally we discuss the a value less than one indicates a protective effect. ‘number needed to treat’, a measure derived from the RR = 1.2 means exposed people are 20% more likely relative risk, which has gained popularity because of to be diseased, RR = 1.4 means 40% more likely. its clinical usefulness. Examples from the literature OR = 1.2 means that the odds of disease is 20% higher are used to illustrate important concepts. in exposed people. RISK AND ODDS Among workers at factory two (‘exposed’ workers) The probability of an individual becoming diseased the risk is 13 / 116 = 0.11, compared to an ‘unexposed’ is the risk.
    [Show full text]
  • Meta-Analysis of Proportions
    NCSS Statistical Software NCSS.com Chapter 456 Meta-Analysis of Proportions Introduction This module performs a meta-analysis of a set of two-group, binary-event studies. These studies have a treatment group (arm) and a control group. The results of each study may be summarized as counts in a 2-by-2 table. The program provides a complete set of numeric reports and plots to allow the investigation and presentation of the studies. The plots include the forest plot, radial plot, and L’Abbe plot. Both fixed-, and random-, effects models are available for analysis. Meta-Analysis refers to methods for the systematic review of a set of individual studies with the aim to combine their results. Meta-analysis has become popular for a number of reasons: 1. The adoption of evidence-based medicine which requires that all reliable information is considered. 2. The desire to avoid narrative reviews which are often misleading. 3. The desire to interpret the large number of studies that may have been conducted about a specific treatment. 4. The desire to increase the statistical power of the results be combining many small-size studies. The goals of meta-analysis may be summarized as follows. A meta-analysis seeks to systematically review all pertinent evidence, provide quantitative summaries, integrate results across studies, and provide an overall interpretation of these studies. We have found many books and articles on meta-analysis. In this chapter, we briefly summarize the information in Sutton et al (2000) and Thompson (1998). Refer to those sources for more details about how to conduct a meta- analysis.
    [Show full text]
  • Von Mises' Frequentist Approach to Probability
    Section on Statistical Education – JSM 2008 Von Mises’ Frequentist Approach to Probability Milo Schield1 and Thomas V. V. Burnham2 1 Augsburg College, Minneapolis, MN 2 Cognitive Systems, San Antonio, TX Abstract Richard Von Mises (1883-1953), the originator of the birthday problem, viewed statistics and probability theory as a science that deals with and is based on real objects rather than as a branch of mathematics that simply postulates relationships from which conclusions are derived. In this context, he formulated a strict Frequentist approach to probability. This approach is limited to observations where there are sufficient reasons to project future stability – to believe that the relative frequency of the observed attributes would tend to a fixed limit if the observations were continued indefinitely by sampling from a collective. This approach is reviewed. Some suggestions are made for statistical education. 1. Richard von Mises Richard von Mises (1883-1953) may not be well-known by statistical educators even though in 1939 he first proposed a problem that is today widely-known as the birthday problem.1 There are several reasons for this lack of recognition. First, he was educated in engineering and worked in that area for his first 30 years. Second, he published primarily in German. Third, his works in statistics focused more on theoretical foundations. Finally, his inductive approach to deriving the basic operations of probability is very different from the postulate-and-derive approach normally taught in introductory statistics. See Frank (1954) and Studies in Mathematics and Mechanics (1954) for a review of von Mises’ works. This paper is based on his two English-language books on probability: Probability, Statistics and Truth (1936) and Mathematical Theory of Probability and Statistics (1964).
    [Show full text]
  • Autocorrelation and Frequency-Resolved Optical Gating Measurements Based on the Third Harmonic Generation in a Gaseous Medium
    Appl. Sci. 2015, 5, 136-144; doi:10.3390/app5020136 OPEN ACCESS applied sciences ISSN 2076-3417 www.mdpi.com/journal/applsci Article Autocorrelation and Frequency-Resolved Optical Gating Measurements Based on the Third Harmonic Generation in a Gaseous Medium Yoshinari Takao 1,†, Tomoko Imasaka 2,†, Yuichiro Kida 1,† and Totaro Imasaka 1,3,* 1 Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan; E-Mails: [email protected] (Y.T.); [email protected] (Y.K.) 2 Laboratory of Chemistry, Graduate School of Design, Kyushu University, 4-9-1, Shiobaru, Minami-ku, Fukuoka 815-8540, Japan; E-Mail: [email protected] 3 Division of Optoelectronics and Photonics, Center for Future Chemistry, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +81-92-802-2883; Fax: +81-92-802-2888. Academic Editor: Takayoshi Kobayashi Received: 7 April 2015 / Accepted: 3 June 2015 / Published: 9 June 2015 Abstract: A gas was utilized in producing the third harmonic emission as a nonlinear optical medium for autocorrelation and frequency-resolved optical gating measurements to evaluate the pulse width and chirp of a Ti:sapphire laser. Due to a wide frequency domain available for a gas, this approach has potential for use in measuring the pulse width in the optical (ultraviolet/visible) region beyond one octave and thus for measuring an optical pulse width less than 1 fs.
    [Show full text]
  • FDA Oncology Experience in Innovative Adaptive Trial Designs
    Innovative Adaptive Trial Designs Rajeshwari Sridhara, Ph.D. Director, Division of Biometrics V Office of Biostatistics, CDER, FDA 9/3/2015 Sridhara - Ovarian cancer workshop 1 Fixed Sample Designs • Patient population, disease assessments, treatment, sample size, hypothesis to be tested, primary outcome measure - all fixed • No change in the design features during the study Adaptive Designs • A study that includes a prospectively planned opportunity for modification of one or more specified aspects of the study design and hypotheses based on analysis of data (interim data) from subjects in the study 9/3/2015 Sridhara - Ovarian cancer workshop 2 Bayesian Designs • In the Bayesian paradigm, the parameter measuring treatment effect is regarded as a random variable • Bayesian inference is based on the posterior distribution (Bayes’ Rule – updated based on observed data) – Outcome adaptive • By definition adaptive design 9/3/2015 Sridhara - Ovarian cancer workshop 3 Adaptive Designs (Frequentist or Bayesian) • Allows for planned design modifications • Modifications based on data accrued in the trial up to the interim time • Unblinded or blinded interim results • Control probability of false positive rate for multiple options • Control operational bias • Assumes independent increments of information 9/3/2015 Sridhara - Ovarian cancer workshop 4 Enrichment Designs – Prognostic or Predictive • Untargeted or All comers design: – post-hoc enrichment, prospective-retrospective designs – Marker evaluation after randomization (example: KRAS in cetuximab
    [Show full text]
  • Incidence and Secondary Transmission of SARS-Cov-2 Infections in Schools
    Prepublication Release Incidence and Secondary Transmission of SARS-CoV-2 Infections in Schools Kanecia O. Zimmerman, MD; Ibukunoluwa C. Akinboyo, MD; M. Alan Brookhart, PhD; Angelique E. Boutzoukas, MD; Kathleen McGann, MD; Michael J. Smith, MD, MSCE; Gabriela Maradiaga Panayotti, MD; Sarah C. Armstrong, MD; Helen Bristow, MPH; Donna Parker, MPH; Sabrina Zadrozny, PhD; David J. Weber, MD, MPH; Daniel K. Benjamin, Jr., MD, PhD; for The ABC Science Collaborative DOI: 10.1542/peds.2020-048090 Journal: Pediatrics Article Type: Regular Article Citation: Zimmerman KO, Akinboyo IC, Brookhart A, et al. Incidence and secondary transmission of SARS-CoV-2 infections in schools. Pediatrics. 2021; doi: 10.1542/peds.2020- 048090 This is a prepublication version of an article that has undergone peer review and been accepted for publication but is not the final version of record. This paper may be cited using the DOI and date of access. This paper may contain information that has errors in facts, figures, and statements, and will be corrected in the final published version. The journal is providing an early version of this article to expedite access to this information. The American Academy of Pediatrics, the editors, and authors are not responsible for inaccurate information and data described in this version. Downloaded from©2021 www.aappublications.org/news American Academy by of guest Pediatrics on September 27, 2021 Prepublication Release Incidence and Secondary Transmission of SARS-CoV-2 Infections in Schools Kanecia O. Zimmerman, MD1,2,3; Ibukunoluwa C. Akinboyo, MD1,2; M. Alan Brookhart, PhD4; Angelique E. Boutzoukas, MD1,2; Kathleen McGann, MD2; Michael J.
    [Show full text]
  • Statistical Guidance on Reporting Results from Studies Evaluating Diagnostic Tests Document Issued On: March 13, 2007
    Guidance for Industry and FDA Staff Statistical Guidance on Reporting Results from Studies Evaluating Diagnostic Tests Document issued on: March 13, 2007 The draft of this document was issued on March 12, 2003. For questions regarding this document, contact Kristen Meier at 240-276-3060, or send an e-mail to [email protected]. U.S. Department of Health and Human Services Food and Drug Administration Center for Devices and Radiological Health Diagnostic Devices Branch Division of Biostatistics Office of Surveillance and Biometrics Contains Nonbinding Recommendations Preface Public Comment Written comments and suggestions may be submitted at any time for Agency consideration to the Division of Dockets Management, Food and Drug Administration, 5630 Fishers Lane, Room 1061, (HFA-305), Rockville, MD, 20852. Alternatively, electronic comments may be submitted to http://www.fda.gov/dockets/ecomments. When submitting comments, please refer to Docket No. 2003D-0044. Comments may not be acted upon by the Agency until the document is next revised or updated. Additional Copies Additional copies are available from the Internet at: http://www.fda.gov/cdrh/osb/guidance/1620.pdf. You may also send an e-mail request to [email protected] to receive an electronic copy of the guidance or send a fax request to 240-276-3151 to receive a hard copy. Please use the document number 1620 to identify the guidance you are requesting. Contains Nonbinding Recommendations Table of Contents 1. Background....................................................................................................4
    [Show full text]
  • Estimated HIV Incidence and Prevalence in the United States
    Volume 26, Number 1 Estimated HIV Incidence and Prevalence in the United States, 2015–2019 This issue of the HIV Surveillance Supplemental Report is published by the Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention (CDC), U.S. Department of Health and Human Services, Atlanta, Georgia. Estimates are presented for the incidence and prevalence of HIV infection among adults and adolescents (aged 13 years and older) based on data reported to CDC through December 2020. The HIV Surveillance Supplemental Report is not copyrighted and may be used and reproduced without permission. Citation of the source is, however, appreciated. Suggested citation Centers for Disease Control and Prevention. Estimated HIV incidence and prevalence in the United States, 2015–2019. HIV Surveillance Supplemental Report 2021;26(No. 1). http://www.cdc.gov/ hiv/library/reports/hiv-surveillance.html. Published May 2021. Accessed [date]. On the Web: http://www.cdc.gov/hiv/library/reports/hiv-surveillance.html Confidential information, referrals, and educational material on HIV infection CDC-INFO 1-800-232-4636 (in English, en Español) 1-888-232-6348 (TTY) http://wwwn.cdc.gov/dcs/ContactUs/Form Acknowledgments Publication of this report was made possible by the contributions of the state and territorial health departments and the HIV surveillance programs that provided surveillance data to CDC. This report was prepared by the following staff and contractors of the Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, CDC: Laurie Linley, Anna Satcher Johnson, Ruiguang Song, Sherry Hu, Baohua Wu, H.
    [Show full text]
  • CHAPTER 3 Comparing Disease Frequencies
    © Smartboy10/DigitalVision Vectors/Getty Images CHAPTER 3 Comparing Disease Frequencies LEARNING OBJECTIVES By the end of this chapter the reader will be able to: ■ Organize disease frequency data into a two-by-two table. ■ Describe and calculate absolute and relative measures of comparison, including rate/risk difference, population rate/risk difference, attributable proportion among the exposed and the total population and rate/risk ratio. ■ Verbally interpret each absolute and relative measure of comparison. ■ Describe the purpose of standardization and calculate directly standardized rates. ▸ Introduction Measures of disease frequency are the building blocks epidemiologists use to assess the effects of a disease on a population. Comparing measures of disease frequency organizes these building blocks in a meaningful way that allows one to describe the relationship between a characteristic and a disease and to assess the public health effect of the exposure. Disease frequencies can be compared between different populations or between subgroups within a population. For example, one might be interested in comparing disease frequencies between residents of France and the United States or between subgroups within the U.S. population according to demographic characteristics, such as race, gender, or socio- economic status; personal habits, such as alcoholic beverage consump- tion or cigarette smoking; and environmental factors, such as the level of air pollution. For example, one might compare incidence rates of coronary heart disease between residents of France and those of the United States or 57 58 Chapter 3 Comparing Disease Frequencies among U.S. men and women, Blacks and Whites, alcohol drinkers and nondrinkers, and areas with high and low pollution levels.
    [Show full text]
  • Fundamental Frequency Detection
    Fundamental Frequency Detection Jan Cernock´y,ˇ Valentina Hubeika cernocky|ihubeika @fit.vutbr.cz { } DCGM FIT BUT Brno Fundamental Frequency Detection Jan Cernock´y,ValentinaHubeika,DCGMFITBUTBrnoˇ 1/37 Agenda Fundamental frequency characteristics. • Issues. • Autocorrelation method, AMDF, NFFC. • Formant impact reduction. • Long time predictor. • Cepstrum. • Improvements in fundamental frequency detection. • Fundamental Frequency Detection Jan Cernock´y,ValentinaHubeika,DCGMFITBUTBrnoˇ 2/37 Recap – speech production and its model Fundamental Frequency Detection Jan Cernock´y,ValentinaHubeika,DCGMFITBUTBrnoˇ 3/37 Introduction Fundamental frequency, pitch, is the frequency vocal cords oscillate on: F . • 0 The period of fundamental frequency, (pitch period) is T = 1 . • 0 F0 The term “lag” denotes the pitch period expressed in samples : L = T Fs, where Fs • 0 is the sampling frequency. Fundamental Frequency Detection Jan Cernock´y,ValentinaHubeika,DCGMFITBUTBrnoˇ 4/37 Fundamental Frequency Utilization speech synthesis – melody generation. • coding • – in simple encoding such as LPC, reduction of the bit-stream can be reached by separate transfer of the articulatory tract parameters, energy, voiced/unvoiced sound flag and pitch F0. – in more complex encoders (such as RPE-LTP or ACELP in the GSM cell phones) long time predictor LTP is used. LPT is a filter with a “long” impulse response which however contains only few non-zero components. Fundamental Frequency Detection Jan Cernock´y,ValentinaHubeika,DCGMFITBUTBrnoˇ 5/37 Fundamental Frequency Characteristics F takes the values from 50 Hz (males) to 400 Hz (children), with Fs=8000 Hz these • 0 frequencies correspond to the lags L=160 to 20 samples. It can be seen, that with low values F0 approaches the frame length (20 ms, which corresponds to 160 samples).
    [Show full text]
  • Understanding Relative Risk, Odds Ratio, and Related Terms: As Simple As It Can Get Chittaranjan Andrade, MD
    Understanding Relative Risk, Odds Ratio, and Related Terms: As Simple as It Can Get Chittaranjan Andrade, MD Each month in his online Introduction column, Dr Andrade Many research papers present findings as odds ratios (ORs) and considers theoretical and relative risks (RRs) as measures of effect size for categorical outcomes. practical ideas in clinical Whereas these and related terms have been well explained in many psychopharmacology articles,1–5 this article presents a version, with examples, that is meant with a view to update the knowledge and skills to be both simple and practical. Readers may note that the explanations of medical practitioners and examples provided apply mostly to randomized controlled trials who treat patients with (RCTs), cohort studies, and case-control studies. Nevertheless, similar psychiatric conditions. principles operate when these concepts are applied in epidemiologic Department of Psychopharmacology, National Institute research. Whereas the terms may be applied slightly differently in of Mental Health and Neurosciences, Bangalore, India different explanatory texts, the general principles are the same. ([email protected]). ABSTRACT Clinical Situation Risk, and related measures of effect size (for Consider a hypothetical RCT in which 76 depressed patients were categorical outcomes) such as relative risks and randomly assigned to receive either venlafaxine (n = 40) or placebo odds ratios, are frequently presented in research (n = 36) for 8 weeks. During the trial, new-onset sexual dysfunction articles. Not all readers know how these statistics was identified in 8 patients treated with venlafaxine and in 3 patients are derived and interpreted, nor are all readers treated with placebo. These results are presented in Table 1.
    [Show full text]
  • Outcome Reporting Bias in COVID-19 Mrna Vaccine Clinical Trials
    medicina Perspective Outcome Reporting Bias in COVID-19 mRNA Vaccine Clinical Trials Ronald B. Brown School of Public Health and Health Systems, University of Waterloo, Waterloo, ON N2L3G1, Canada; [email protected] Abstract: Relative risk reduction and absolute risk reduction measures in the evaluation of clinical trial data are poorly understood by health professionals and the public. The absence of reported absolute risk reduction in COVID-19 vaccine clinical trials can lead to outcome reporting bias that affects the interpretation of vaccine efficacy. The present article uses clinical epidemiologic tools to critically appraise reports of efficacy in Pfzier/BioNTech and Moderna COVID-19 mRNA vaccine clinical trials. Based on data reported by the manufacturer for Pfzier/BioNTech vaccine BNT162b2, this critical appraisal shows: relative risk reduction, 95.1%; 95% CI, 90.0% to 97.6%; p = 0.016; absolute risk reduction, 0.7%; 95% CI, 0.59% to 0.83%; p < 0.000. For the Moderna vaccine mRNA-1273, the appraisal shows: relative risk reduction, 94.1%; 95% CI, 89.1% to 96.8%; p = 0.004; absolute risk reduction, 1.1%; 95% CI, 0.97% to 1.32%; p < 0.000. Unreported absolute risk reduction measures of 0.7% and 1.1% for the Pfzier/BioNTech and Moderna vaccines, respectively, are very much lower than the reported relative risk reduction measures. Reporting absolute risk reduction measures is essential to prevent outcome reporting bias in evaluation of COVID-19 vaccine efficacy. Keywords: mRNA vaccine; COVID-19 vaccine; vaccine efficacy; relative risk reduction; absolute risk reduction; number needed to vaccinate; outcome reporting bias; clinical epidemiology; critical appraisal; evidence-based medicine Citation: Brown, R.B.
    [Show full text]