EPI Case Study 1 Incidence, Prevalence, and Disease
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FDA Oncology Experience in Innovative Adaptive Trial Designs
Innovative Adaptive Trial Designs Rajeshwari Sridhara, Ph.D. Director, Division of Biometrics V Office of Biostatistics, CDER, FDA 9/3/2015 Sridhara - Ovarian cancer workshop 1 Fixed Sample Designs • Patient population, disease assessments, treatment, sample size, hypothesis to be tested, primary outcome measure - all fixed • No change in the design features during the study Adaptive Designs • A study that includes a prospectively planned opportunity for modification of one or more specified aspects of the study design and hypotheses based on analysis of data (interim data) from subjects in the study 9/3/2015 Sridhara - Ovarian cancer workshop 2 Bayesian Designs • In the Bayesian paradigm, the parameter measuring treatment effect is regarded as a random variable • Bayesian inference is based on the posterior distribution (Bayes’ Rule – updated based on observed data) – Outcome adaptive • By definition adaptive design 9/3/2015 Sridhara - Ovarian cancer workshop 3 Adaptive Designs (Frequentist or Bayesian) • Allows for planned design modifications • Modifications based on data accrued in the trial up to the interim time • Unblinded or blinded interim results • Control probability of false positive rate for multiple options • Control operational bias • Assumes independent increments of information 9/3/2015 Sridhara - Ovarian cancer workshop 4 Enrichment Designs – Prognostic or Predictive • Untargeted or All comers design: – post-hoc enrichment, prospective-retrospective designs – Marker evaluation after randomization (example: KRAS in cetuximab -
FORMULAS from EPIDEMIOLOGY KEPT SIMPLE (3E) Chapter 3: Epidemiologic Measures
FORMULAS FROM EPIDEMIOLOGY KEPT SIMPLE (3e) Chapter 3: Epidemiologic Measures Basic epidemiologic measures used to quantify: • frequency of occurrence • the effect of an exposure • the potential impact of an intervention. Epidemiologic Measures Measures of disease Measures of Measures of potential frequency association impact (“Measures of Effect”) Incidence Prevalence Absolute measures of Relative measures of Attributable Fraction Attributable Fraction effect effect in exposed cases in the Population Incidence proportion Incidence rate Risk difference Risk Ratio (Cumulative (incidence density, (Incidence proportion (Incidence Incidence, Incidence hazard rate, person- difference) Proportion Ratio) Risk) time rate) Incidence odds Rate Difference Rate Ratio (Incidence density (Incidence density difference) ratio) Prevalence Odds Ratio Difference Macintosh HD:Users:buddygerstman:Dropbox:eks:formula_sheet.doc Page 1 of 7 3.1 Measures of Disease Frequency No. of onsets Incidence Proportion = No. at risk at beginning of follow-up • Also called risk, average risk, and cumulative incidence. • Can be measured in cohorts (closed populations) only. • Requires follow-up of individuals. No. of onsets Incidence Rate = ∑person-time • Also called incidence density and average hazard. • When disease is rare (incidence proportion < 5%), incidence rate ≈ incidence proportion. • In cohorts (closed populations), it is best to sum individual person-time longitudinally. It can also be estimated as Σperson-time ≈ (average population size) × (duration of follow-up). Actuarial adjustments may be needed when the disease outcome is not rare. • In an open populations, Σperson-time ≈ (average population size) × (duration of follow-up). Examples of incidence rates in open populations include: births Crude birth rate (per m) = × m mid-year population size deaths Crude mortality rate (per m) = × m mid-year population size deaths < 1 year of age Infant mortality rate (per m) = × m live births No. -
Incidence and Secondary Transmission of SARS-Cov-2 Infections in Schools
Prepublication Release Incidence and Secondary Transmission of SARS-CoV-2 Infections in Schools Kanecia O. Zimmerman, MD; Ibukunoluwa C. Akinboyo, MD; M. Alan Brookhart, PhD; Angelique E. Boutzoukas, MD; Kathleen McGann, MD; Michael J. Smith, MD, MSCE; Gabriela Maradiaga Panayotti, MD; Sarah C. Armstrong, MD; Helen Bristow, MPH; Donna Parker, MPH; Sabrina Zadrozny, PhD; David J. Weber, MD, MPH; Daniel K. Benjamin, Jr., MD, PhD; for The ABC Science Collaborative DOI: 10.1542/peds.2020-048090 Journal: Pediatrics Article Type: Regular Article Citation: Zimmerman KO, Akinboyo IC, Brookhart A, et al. Incidence and secondary transmission of SARS-CoV-2 infections in schools. Pediatrics. 2021; doi: 10.1542/peds.2020- 048090 This is a prepublication version of an article that has undergone peer review and been accepted for publication but is not the final version of record. This paper may be cited using the DOI and date of access. This paper may contain information that has errors in facts, figures, and statements, and will be corrected in the final published version. The journal is providing an early version of this article to expedite access to this information. The American Academy of Pediatrics, the editors, and authors are not responsible for inaccurate information and data described in this version. Downloaded from©2021 www.aappublications.org/news American Academy by of guest Pediatrics on September 27, 2021 Prepublication Release Incidence and Secondary Transmission of SARS-CoV-2 Infections in Schools Kanecia O. Zimmerman, MD1,2,3; Ibukunoluwa C. Akinboyo, MD1,2; M. Alan Brookhart, PhD4; Angelique E. Boutzoukas, MD1,2; Kathleen McGann, MD2; Michael J. -
Statistical Guidance on Reporting Results from Studies Evaluating Diagnostic Tests Document Issued On: March 13, 2007
Guidance for Industry and FDA Staff Statistical Guidance on Reporting Results from Studies Evaluating Diagnostic Tests Document issued on: March 13, 2007 The draft of this document was issued on March 12, 2003. For questions regarding this document, contact Kristen Meier at 240-276-3060, or send an e-mail to [email protected]. U.S. Department of Health and Human Services Food and Drug Administration Center for Devices and Radiological Health Diagnostic Devices Branch Division of Biostatistics Office of Surveillance and Biometrics Contains Nonbinding Recommendations Preface Public Comment Written comments and suggestions may be submitted at any time for Agency consideration to the Division of Dockets Management, Food and Drug Administration, 5630 Fishers Lane, Room 1061, (HFA-305), Rockville, MD, 20852. Alternatively, electronic comments may be submitted to http://www.fda.gov/dockets/ecomments. When submitting comments, please refer to Docket No. 2003D-0044. Comments may not be acted upon by the Agency until the document is next revised or updated. Additional Copies Additional copies are available from the Internet at: http://www.fda.gov/cdrh/osb/guidance/1620.pdf. You may also send an e-mail request to [email protected] to receive an electronic copy of the guidance or send a fax request to 240-276-3151 to receive a hard copy. Please use the document number 1620 to identify the guidance you are requesting. Contains Nonbinding Recommendations Table of Contents 1. Background....................................................................................................4 -
Estimated HIV Incidence and Prevalence in the United States
Volume 26, Number 1 Estimated HIV Incidence and Prevalence in the United States, 2015–2019 This issue of the HIV Surveillance Supplemental Report is published by the Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention (CDC), U.S. Department of Health and Human Services, Atlanta, Georgia. Estimates are presented for the incidence and prevalence of HIV infection among adults and adolescents (aged 13 years and older) based on data reported to CDC through December 2020. The HIV Surveillance Supplemental Report is not copyrighted and may be used and reproduced without permission. Citation of the source is, however, appreciated. Suggested citation Centers for Disease Control and Prevention. Estimated HIV incidence and prevalence in the United States, 2015–2019. HIV Surveillance Supplemental Report 2021;26(No. 1). http://www.cdc.gov/ hiv/library/reports/hiv-surveillance.html. Published May 2021. Accessed [date]. On the Web: http://www.cdc.gov/hiv/library/reports/hiv-surveillance.html Confidential information, referrals, and educational material on HIV infection CDC-INFO 1-800-232-4636 (in English, en Español) 1-888-232-6348 (TTY) http://wwwn.cdc.gov/dcs/ContactUs/Form Acknowledgments Publication of this report was made possible by the contributions of the state and territorial health departments and the HIV surveillance programs that provided surveillance data to CDC. This report was prepared by the following staff and contractors of the Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, CDC: Laurie Linley, Anna Satcher Johnson, Ruiguang Song, Sherry Hu, Baohua Wu, H. -
Chronic Lymphocytic Leukemia in a Black
L OPEN ACCESS Freely available online al of euk rn em u i o a J Journal of Leukemia ISSN: 2329-6917 Case Report Chronic Lymphocytic Leukemia in A Black African Man: A Cameroonian Case Report Raspail Carrel Founou1*, Julius Nwobegahay2, Regine Gandji3, Cedrice Tsayem4, Sandra Yopa5, Martin Kuete6 and Luria Leslie Founou7 1Department of Clinical Microbiology, Centre of Expertise and Biological Diagnostic of Cameroon (CEDBCAM), Yaounde, Cameroon; 2Military Health Research Centre (CRESAR), Yaounde, Cameroon; 3Department of Biological Sciences, Higher Institute of Medical Technology, Yaoundé, Cameroon; 4Department of Clinical Biochemistry, Centre of Expertise and Biological Diagnostic of Cameroon (CEDBCAM), Yaounde, Cameroon; 5Department of Emergency, District Hospital of Biyem-Assi, Yaounde, Cameroon; 6Department of Biomedical and Applied Health, Faculty of Health Sciences, Université des Montagnes, Bangante, Cameroon; 7Department of Food Safety and Environmental Microbiology, Centre of Expertise and Biological Diagnostic of Cameroon (CEDBCAM), Yaounde, Cameroo ABSTRACT Chronic Lymphocytic Leukemia (CLL) is an acquired monoclonal disorder characterized by a gradual accumulation of functionally incompetent lymphocytes. It generally presents a clonal B cells arrested in the B-cell differentiation pathway that resemble morphologically to mature lymphocytes in the peripheral blood. There is a scarcity of CLL data among sub-Saharan African countries such as Cameroon. We herein report a case of CLL that remained stable over a period of seven years in a 54 years old Black African man. The patient had no history of exposure to toxic chemicals or ionizing radiation and presented with several complaints and clinical symptoms. Clinical and laboratory investigations indicated a CLL in stage B of the Binet staging system. -
Understanding Relative Risk, Odds Ratio, and Related Terms: As Simple As It Can Get Chittaranjan Andrade, MD
Understanding Relative Risk, Odds Ratio, and Related Terms: As Simple as It Can Get Chittaranjan Andrade, MD Each month in his online Introduction column, Dr Andrade Many research papers present findings as odds ratios (ORs) and considers theoretical and relative risks (RRs) as measures of effect size for categorical outcomes. practical ideas in clinical Whereas these and related terms have been well explained in many psychopharmacology articles,1–5 this article presents a version, with examples, that is meant with a view to update the knowledge and skills to be both simple and practical. Readers may note that the explanations of medical practitioners and examples provided apply mostly to randomized controlled trials who treat patients with (RCTs), cohort studies, and case-control studies. Nevertheless, similar psychiatric conditions. principles operate when these concepts are applied in epidemiologic Department of Psychopharmacology, National Institute research. Whereas the terms may be applied slightly differently in of Mental Health and Neurosciences, Bangalore, India different explanatory texts, the general principles are the same. ([email protected]). ABSTRACT Clinical Situation Risk, and related measures of effect size (for Consider a hypothetical RCT in which 76 depressed patients were categorical outcomes) such as relative risks and randomly assigned to receive either venlafaxine (n = 40) or placebo odds ratios, are frequently presented in research (n = 36) for 8 weeks. During the trial, new-onset sexual dysfunction articles. Not all readers know how these statistics was identified in 8 patients treated with venlafaxine and in 3 patients are derived and interpreted, nor are all readers treated with placebo. These results are presented in Table 1. -
Ethics of Vaccine Research
COMMENTARY Ethics of vaccine research Christine Grady Vaccination has attracted controversy at every stage of its development and use. Ethical debates should consider its basic goal, which is to benefit the community at large rather than the individual. accines truly represent one of the mira- include value, validity, fair subject selection, the context in which it will be used and Vcles of modern science. Responsible for favorable risk/benefit ratio, independent acceptable to those who will use it. This reducing morbidity and mortality from sev- review, informed consent and respect for assessment considers details about the pub- eral formidable diseases, vaccines have made enrolled participants. Applying these princi- lic health need (such as the prevalence, bur- substantial contributions to global public ples to vaccine research allows consideration den and natural history of the disease, as health. Generally very safe and effective, vac- of some of the particular challenges inherent well as existing strategies to prevent or con- cines are also an efficient and cost-effective in testing vaccines (Box 1). trol it), the scientific data and possibilities way of preventing disease. Yet, despite their Ethically salient features of clinical vac- (preclinical and clinical data, expected brilliant successes, vaccines have always been cine research include the fact that it involves mechanism of action and immune corre- controversial. Concerns about the safety and healthy subjects, often (or ultimately) chil- lates) and the likely use of the vaccine (who untoward effects of vaccines, about disturb- dren and usually (at least when testing effi- will use and benefit from it, safety, cost, dis- ing the natural order, about compelling indi- cacy) in very large numbers. -
Disease Incidence, Prevalence and Disability
Part 3 Disease incidence, prevalence and disability 9. How many people become sick each year? 28 10. Cancer incidence by site and region 29 11. How many people are sick at any given time? 31 12. Prevalence of moderate and severe disability 31 13. Leading causes of years lost due to disability in 2004 36 World Health Organization 9. How many people become sick each such as diarrhoeal disease or malaria, it is common year? for individuals to be infected repeatedly and have several episodes. For such conditions, the number The “incidence” of a condition is the number of new given in the table is the number of disease episodes, cases in a period of time – usually one year (Table 5). rather than the number of individuals affected. For most conditions in this table, the figure given is It is important to remember that the incidence of the number of individuals who developed the illness a disease or condition measures how many people or problem in 2004. However, for some conditions, are affected by it for the first time over a period of Table 5: Incidence (millions) of selected conditions by WHO region, 2004 Eastern The Mediter- South- Western World Africa Americas ranean Europe East Asia Pacific Tuberculosisa 7.8 1.4 0.4 0.6 0.6 2.8 2.1 HIV infectiona 2.8 1.9 0.2 0.1 0.2 0.2 0.1 Diarrhoeal diseaseb 4 620.4 912.9 543.1 424.9 207.1 1 276.5 1 255.9 Pertussisb 18.4 5.2 1.2 1.6 0.7 7.5 2.1 Measlesa 27.1 5.3 0.0e 1.0 0.2 17.4 3.3 Tetanusa 0.3 0.1 0.0 0.1 0.0 0.1 0.0 Meningitisb 0.7 0.3 0.1 0.1 0.0 0.2 0.1 Malariab 241.3 203.9 2.9 8.6 0.0 23.3 2.7 -
Generating Real-World Evidence by Strengthening Real-World Data Sources
Generating Real-World Evidence by Strengthening Real-World Data Sources Using “real-world evidence” to bring new “Every day, health care professionals are updating patients’ treatments to patients as part of the 21st electronic health records with data on clinical outcomes Century Cures Act (the “Cures Act”) is a key resulting from medical interventions used in routine clinical priority for the Department of Health and practice. As our experience with new medical products Human Services (HHS). Specifically, the Cures expands, our knowledge about how to best maximize their Act places focus on the use of real-world data benefits and minimize potential risks sharpens with each data to support regulatory decision-making, including point we gather. Every clinical use of a product produces data the approval of new indications for existing that can help better inform us about its safety and efficacy.” drugs in order to make drug development faster jacqueline corrigan-curay, md, jd and more efficient. As such, the Cures Act director of the office of medical policy in fda’s center for drug evaluation and research has tasked the Food and Drug Administration (FDA) to develop a framework and guidance for evaluating real-world evidence in the context of drug regulation.1 Under the FDA’s framework, real-world evidence (RWE) is generated by different study designs or analyses, including but not limited to, randomized trials like large simple trials, pragmatic trials, and observational studies. RWE is the clinical evidence about the use, potential benefits, and potential risks of a medical product based on an analysis of real-world data (RWD). -
Autopsy Case Report and Review of the Literature Karyna C
Fatal Neonatal Echovirus 6 Infection: Autopsy Case Report and Review of the Literature Karyna C. Ventura, M.D., Hal Hawkins, M.D., Ph.D., Michael B. Smith, M.D., David H. Walker, M.D. Department of Pathology, University of Texas Medical Branch, Galveston, Texas CASE REPORT A full-term, healthy male neonate was delivered by caesarian section to a 26-year-old primigravida A full-term boy appropriate for his gestational age woman who had a history of fever and upper respi- was born via caesarian section to a 26-year-old G1P0 ratory tract infection. On the fourth day of life, the Latin American woman who had a medical history of a well-controlled seizure disorder for which she was neonate developed a sepsis-like syndrome, acute receiving carbamazepine. She had received regular respiratory and renal failure, and disseminated in- prenatal care, with negative prenatal serologic tests travascular coagulopathy. He died 13 days after for human immunodeficiency virus, hepatitis B virus, birth. Postmortem examination revealed jaundice, and syphilis. Two weeks before delivery, she experi- anasarca, massive hepatic necrosis, adrenal hemor- enced fever and an upper respiratory tract infection. rhagic necrosis, renal medullary hemorrhage, hem- At birth, the infant weighed 3838 g and had an Apgar orrhagic noninflammatory pneumonia, and severe score of 9. The neonate was put under an oxygen encephalomalacia. Echovirus type 6 was isolated hood, then was later slowly weaned from it. On his from blood, liver, and lungs. Although uncommon, fourth day of life, the neonate developed fever echovirus type 6 infection may produce a spectrum (38.6°C) and was observed to have decreased activity. -
The Value of Case Reports in Systematic Reviews from Rare Diseases
International Journal of Environmental Research and Public Health Article The Value of Case Reports in Systematic Reviews from Rare Diseases. The Example of Enzyme Replacement Therapy (ERT) in Patients with Mucopolysaccharidosis Type II (MPS-II) Miguel Sampayo-Cordero 1,2,*, Bernat Miguel-Huguet 3, Andrea Malfettone 1,2, José Manuel Pérez-García 1,2,4, Antonio Llombart-Cussac 1,2,5, Javier Cortés 1,2,4,6, Almudena Pardo 7 and Jordi Pérez-López 8 1 Medica Scientia Innovation Research (MedSIR), Ridgewood, NJ 07450, USA; [email protected] (A.M.); [email protected] (J.M.P.-G.); [email protected] (A.L.-C.); [email protected] (J.C.) 2 Medica Scientia Innovation Research (MedSIR), 08018 Barcelona, Spain 3 Department of Surgery, Hospital de Bellvitge, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; [email protected] 4 Institute of Breast Cancer, Quiron Group, 08023 Barcelona, Spain 5 Hospital Arnau de Vilanova, Universidad Católica de Valencia “San Vicente Mártir”, 46015 Valencia, Spain 6 Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain 7 Albiotech Consultores y Redacción Científica S.L., 28035 Madrid, Spain; [email protected] 8 Department of Internal Medicine, Hospital Vall d’Hebron, 08035 Barcelona, Spain; [email protected] * Correspondence: [email protected] Received: 3 August 2020; Accepted: 7 September 2020; Published: 10 September 2020 Abstract: Background: Case reports are usually excluded from systematic reviews. Patients with rare diseases are more dependent on novel individualized strategies than patients with common diseases. We reviewed and summarized the novelties reported by case reports in mucopolysaccharidosis type II (MPS-II) patients treated with enzyme replacement therapy (ERT).