<<

University of South Florida Scholar Commons

Graduate Theses and Dissertations Graduate School

10-29-2008 Resting Consumption Rates in Divers Using Diver Propulsion Devices Adam J. Smith University of South Florida

Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the American Studies Commons

Scholar Commons Citation Smith, Adam J., "Resting Oxygen Consumption Rates in Divers Using Diver Propulsion Devices" (2008). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/502

This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. RestingOxygenConsumptionRatesinDiversUsingDiverPropulsionDevices by AdamJ.Smith Athesissubmittedinpartialfulfillment oftherequirementsforthedegreeof MasterofScienceinBiomedicalEngineering DepartmentofChemical&BiomedicalEngineering CollegeofEngineering UniversityofSouthFlorida MajorProfessor:WilliamE.LeeIII,Ph.D. JohnR.Clarke,Ph.D. RolandD.Shytle,Ph.D. DateofApproval: October29,2008 Keywords:OxygenConsumption,Diving,,PropagationofError, InjectionRate,,Semiclosed ©Copyright2008,AdamJ.Smith Dedication Thisthesisisdedicatedtomyfamilywhohavelovedandsupportedme throughoutmystudies.Iamblessedtohavesuchgreatrolemodelsasmy parents. Acknowledgments First,IwouldliketoexpressthedeepestofgratitudetoDr.JohnClarke.

AfterbeginninganinternshipwiththeExperimentalDivingUnit,Dr.Clarke familiarizedmewithhisexperimentandinvitedmetocontribute.Iwillalwaysbe gratefulforthehardworkheputintotheexperimentaldesignandforbringingme uptospeedondiving,asubjectwhichIknewverylittleaboutgoing intothisproject.Thisworkwouldhavenotbeenpossiblewithouthiscontinual advisementandsupport.

Iwouldalsoliketothanktheothermembersofmycommittee,Drs.Bill

LeeandDougShytle.Dr.LeehasalwaystakenthetimetomakesurethatI choosecourseswhichcomplimentmyresearchinterestsandstrengthenmy education.Dr.Shytlehiredmeashisresearchassistant.Notonlydidthis supportmyfinancialrequirements,buttheexperienceandknowledgegained hasalreadyproventobeparamounttomygraduateeducation.

ThoseresponsiblefortheOfficeofNavalResearch:NavalResearch

EnterpriseInternProgram(NREIP)shouldnotbeoverlooked.Thisisthe programwhichfundedmytriptotheNavyExperimentalDivingUnitinPanama

CityBeach,FL.Ifitwerenotforthisprogram,Iwouldhaveneverhadthe opportunitytobeinvolvedinthisproject.EdLinsenmeyeristhecoordinatorof theNREIPprogramattheNavalSurfaceWarfareCenter.Becauseofhishard workanddedication,studentslikemehavetheopportunitytoexperience workingfortheDepartmentofDefense. TableofContents ListofFigures iii Abstract iv Chapter1Introduction 1 1.1MotivationforThesis 2 1.2Risks 3 1.3ContributionstotheField 6 1.4ThesisStructure 7 Chapter2TheoreticalFoundations 8 2.1DivingPhysiology 8 2.1.1GasLaws 8 2.2 11 2.3GoverningEquations 15 Chapter3MaterialsandMethods 17 3.1General 17 3.1.1ShadowExcursion 17 3.2ExperimentalDesign 18 3.3RebreatherModifications 18 3.4TestProcedures 20 3.5DataAnalysis 21 Chapter4Results 23 4.1CurveFits 23 4.1.1InitialCurveFit 24 4.1.2DriverCompilation 26 4.1.3PassengerCompilation 28 4.1.4TotalCompilation 29 4.2PropagationofError 31

i Chapter5Discussion 35 5.1CurveTrends 35 5.1.1Drivervs.Passenger 35 5.1.2NegativeSlope 38 5.2PropagationofError 39 5.3Limitations 39 Chapter6Conclusion 41 6.1Recommendation 41 6.2NextSteps 42 References 43 Appendices 45 AppendixA:DriverCurveFit–NumericSummary 46 AppendixB:PassengerCurveFit–NumericSummary 47 AppendixC:TotalCurveFit–NumericSummary 48 AppendixD:ComparisonofVariances 49

ii ListofFigures Figure1. SchematicofaSemiclosedRebreather 14

Figure2. DiveComputer 19 Figure3. CurveFitofTotalCompilationofDataFiles 25 Figure4. EstimatedDriverOxygenConsumptionRatevs.Time 27

Figure5. EstimatedPassengerOxygenConsumptionRatevs.Time 28 Figure6. EstimatedTotalOxygenConsumptionRatevs.Time 30 Figure7. SymbolicEvaluationofPartialDerivatives 32

Figure8. NumericEvaluationofPartialDerivatives 33

Figure9. PropagationofError 34

Figure10. Drivervs.PassengerComparison 37

iii RestingOxygenConsumptionRatesinDiversUsingDiverPropulsionDevices AdamJ.Smith

ABSTRACT

TheMarineCorpsSystemsCommanddocumentedmissionrequirements thatcannotbemetbyrebreathers.Theyneedtoextenddivetimes withoutcompromisingthestealthandcompactdesignofexistingdevices.This canbeaccomplishedbyreducingthefreshgasflowrate.Thecurrentflowrate isadequatetosupportadiverinheavywork.However,thediverwillbeutilizing aDiverPropulsionDevice(DPD)duringalargeportionofthemissionin question.Theassumption,then,isthatthisportionofthemissionwillnotrequire

“hardwork”.Thus,anewfreshgasflowratecanbeestablishedwhichis sufficienttosustainaMarinediverusingaDPDbutisconservativeenoughto extendthedurationofthedive.

Thisexperimentwasdesignedformannedtestingoftherebreathersin suchawaytoestablishtheaverageoxygenconsumptionratefordiversusinga

DPD.MarinediverswerefittedwithaDivexShadowExcursion(DSE)rebreather modifiedwithaDraegerC8APO 2monitorcoupledwithaDeltaPVR3dive computer.TheDSEisasemiclosed-circuitunderwaterapparatusthat providesaconstantflowofmixedgascontainingoxygenandor tothediver.Thepartialofoxygen(PO 2)anddiverdepthwere

iv monitoredandrecordedatten-secondintervals.TheNavyExperimentalDiving

UnithasdevelopedandtestedacomputationalalgorithmthatusesthePO 2and depthtocomputetheoxygenconsumptionrate.

Twotechniqueswereemployedtoestimatetheerrorinthisapproach: curvefittingandpropagationoferror.Thesemethodsaredetailedandthe resultsarepresented.Theyshowthatthefreshgasflowratecanbesafely reducedwhilethediverisutilizingtheDPD,whichconsequently,willsubstantially increasethedivetimeallowedbythedevice.

v Chapter1 Introduction

UnitedStatesMarineCorpsCombatantDiversaretrainedtoperform mainlyreconnaissanceandraidtypemissions.Thesedivershaveproventobe paramountinthesetypesofmilitaryapplications.Manyofthemissionsrequire theUSMCCombatantDiverstoremainundetectedbytheenemy.They accomplishthisbyutilizingrebreatherswhich,dependingonthetype,either greatlyreduceoreliminatebubblesfrombeingemittedintothewaterand revealingtheirlocation.Untilrecently,theyhavebeenabletosuccessfully completetheirmissionsbyutilizingtheMK25OxygenRebreather.

However,theMarineCorpsSystemCommandhassincedocumenteda missionrequirementthatcannotbemetbythecurrentrebreatherinuse.They intendtoreplacetheirinventorywithamulti-purpose,O 2closed-circuitornitrox semiclosed-circuitrebreathernamedtheEnhancedUnderwaterBreathing

Apparatus(EUBA).Previously,theNavyExperimentalDivingUnitwasaskedto reviewwhethertherigswouldmeetthemissionprofile.ThreeUBA’sunderwent testingtodetermineiftheycouldmeetthemissionprofile.Itwasdiscovered that,undertheircurrentconfigurations,noneofthedevicescouldmeetthe missionprofile.However,ifproperlyreconfigured,alloftheUBAscouldmeet

1 themissionrequirements(Clarke2007).OneoftheseUBAs,theDivexShadow

Excursion(DSE),wasselectedforuseduringthisthesis.

Themissionprofilerequiresthat,duringalargeportionofthedive,the diverswillbepropelledbyaDiverPropulsionDevice(DPD).ADPDisavehicle whichcantransporttwodiversunderwaterand,asaresult,allowthemtotravel longerdistances,deliverincreasedpayloads,minimizefatigue,andmaximize endurance(McCarter2005).Therefore,becausethediverswillbeusingaDPD, theywillactuallybeperformingverylightwork.Thishighlightsthekey assumptionthatwouldpermittheextensionofthetotaldivetimeallowedbythe

DSE(inordertomeettheUSMCmissionrequirements).Thisassumptionisthat whilethediversarebeingtowedbyaDPD,theiroxygenconsumptionrateis similarinmagnitudetothepreviouslydocumentedrestingoxygenconsumption rate.Thisassumptionhadtobetestedandverified.Consequently,thisstudy wasdesignedinsuchawayastoprovideconfirmatorymeasurementsofoxygen consumptionratesduringthetowedportionofthemission.

1.1MotivationforThesis

TheUnitedStatesMilitaryutilizesrebreathersforunderwater reconnaissanceandraidmissions.Thereareadvantagestotheuseof rebreathersoverconventionalopen-circuitscubarigs.Theyofferbettergas efficiencyandnear-silentoperationwithfewtonobubbles(dependingonthe typeofrebreather).However,themissioncapabilitiesarelimitedbythedive

2 timeofferedbythedevice.Semiclosedrebreathers,liketheonesconventionally usedbythemilitary,haveaconstantfreshgasflowrate.Thisflowrateis generallysetat6.0L/min.Thishasbeenshowntomeettheoxygendemandsof ahardworkingdiverwithacommonnitroxgasmixture(60%oxygen,40% nitrogen).Therehavebeenseveralreportsthatshowthat3.0L/ministhe maximumoxygenconsumptionrate(Nuckols,Clarkeetal.1998).Unfortunately, amissionrequirementisunabletobemetduetothelimiteddivetimethatthis, all-encompassing,freshgasflowrateoffers.TheNavyExperimentalDivingUnit wastaskedtotesttothisproblem.

1.2Risks

Aswithallmannedexperiments,therewerehealthriskswhichhadtobe carefullyconsidered.Allnecessaryprecautionsweretakentominimizepotential healthrisks.MarineCombatantdiverswererequiredtouseanunderwater breathingapparatus(UBA)whichwasnewtotheUnitedStatesMilitary.Even thoughtheDivexShadowExcursionhadnotyetbeencertifiedforusebythe military,ithadbeenusedbytheBritishRoyalMarinesandthefollowing asaSpecialOperationsUBA:Britain(SAS),Norway,Australia,andGermany.

Therefore,theDSE’ssafetyhasbeenwelldocumented.

TheDSEwastestedinsemiclosedmodewithconstantnitroxgasflow.

Aswithallrebreathers,thereisalimittohowdeepthedivercansafelygo.This isduetoPO 2changeswhichwillbediscussedintheDivePhysiologysection

3 below.However,ifthedriverlostcontroloftheDPDandwentdeeperthanthe limitsoftherebreather,thiswouldhavejeopardizedthesafetyofbothdivers.

Forthisreason,allmannedtestingwasconductedabovea20to30footdeep hardbottom(alongtheprofileofabeachinPanamaCity,FL).Thiseliminated thepossibilitythatthediversmightexceedthemaximumdepthallowedbythe

U.S.NavyDivingManualbasedontheconfigurationsoftheDSE(NavyDiving

Manual2005).

Anotherriskwhichisinherenttoallsemiclosed-circuitUBAsisthe possibilityfor.Hypoxiaistheshortageofoxygeninthebody.

Unfortunately,thereisusuallynowarningtothediverthattheyarebecoming hypoxic.Thisisbecausecarbondioxideisusuallywhatcausesapersonto experiencethesensationof“oxygenhunger”.However,rebreathersfilterthe carbondioxidefromthebreathingcircuitwhichconsequently,eliminatesthe body’susualwarningofoxygendeprivation.Thehumanbodyisoptimizedto breathoxygenatapartialpressureof.21atmospheresabsolute(ATA).Ifthe inspiredPO 2dropstoavaluemuchlessthanthis,hypoxiaensuesandthebody beginstoshutdown(StraussandAksenov2004).Toalleviatethisrisk,thefresh gasflowratewassetto6.0L/min,whichhasalreadybeenshowntosupporta hardworkingdiver(Nuckols,Clarkeetal.1998).Becausetheexperimentcalled forthediverstobeusingadiverpropulsiondevice,theywouldactuallybe performingverylightwork.Tofurtherincreasethesafetyofthedivers,anO 2 monitorwasusedtomonitorthediver’soxygenpartialpressure.Thisisnota

4 standardfeatureontheDSE.Thismodificationwillbedescribedindetailinthe equipmentsection.Thediver’sPO 2willbedisplayedonaVR3divecomputer.

Asneeded,thedivercanmanuallyaddfreshnitroxusingthedemandvalveon therebreather.

Hyperoxiawasanotherpotentialriskthathadtobeconsidered. occurswhenthebodyreceivestoomuchoxygen.Oxygen,whenathighpartial ,istoxictothehumanbody.Thisisoftenreferredtoasoxygen toxicity.OneunfortunateincidentisdiscussedinacasereportbyaChristopher

Lawrence,aforensicpathologist.Anexperienceddiverused50%nitroxgas duringadiveof47meters.Thisresultedinapartialpressureofoxygenwhich reachedastaggering2.9atmospheresabsolute(Lawrence1996).Thisdiver died,mostlikely,fromseizuresassociatedwithoxygentoxicity.Acuteoxygen toxicitymainlyaffectsthecentralnervoussystem.Ifadiverbecomeshyperoxic, theycanexperiencevisualandaudibledisturbancesnausea,clumsiness,and finallyconvulsions(StraussandAksenov2004).Hyperoxiawasavoidedby usingnitroxgas(60%oxygen:40%nitrogen)andbylimitingthediverdepthin ordertocontrolthepartialpressureofoxygen.

Finally,thereisariskofhypercapneainclosed-circuitrebreathers.

Hypercapneaisanincreasedofcarbondioxideintheblood.

Rebreathershavecarbondioxidescrubbersthatpreventcarbondioxidefrom accumulatingintherig.Tomitigatetheriskofhypercapnea,theCO 2scrubbing material,Sofnolime812absorbent,wasreplacedbetweeneachdiveonthe

5 UBA.Inaddition,theexperimentrequiredalowworkrateand,consequently,a lowCO 2productionrate.Theseprecautionsresultedinaverylowriskof hypercapneatothediver.

Eventhoughnumerousprecautionsweretakentoavoidanaccident, divingisinherentlyrisky.Equipmentfailureisusuallyunforeseen.However,the diverswereatrelativelyshallowdepths.Also,amedicalmonitor,standbydiver, divesupervisor,andprincipalinvestigatorwereonhandatalltimesincase somethingwastogowrong.Additionally,diversweretrainedontheDSEina testpoolatNEDUbeforeopenwatertesting.

1.3ContributionstotheField

Untilnow,noonehaddocumentedtheoxygenconsumptionrateofa diverusingadiverpropulsiondevice.Althoughthesefindingsmaynotbe directlyapplicabletothetypicalrecreationaldiver,theyareofgreatimportance totheUnitedStatesMilitary.Knowledgeoftheoxygenconsumptionrateofa

DPD-propelleddivercouldbeusefulforfuturedevicereconfigurationsand missionplanning.ThevalidityofthemethodsusedbytheNavyExperimental

DivingUnittomeasureadiver’soxygenconsumptionwithtime,although previouslydocumented,wasreaffirmedbythisstudy.Themajorbenefitofthis experimentistotheUnitedStatesNavyandMarineCorpswiththeextensionof combatmissioncapabilitiesthroughincreaseddivetimeoftheunderwater breathingapparatus.

6 1.4ThesisStructure

Thisthesisisintendedtofullyoutlinethedivingconcepts,experimental design,andstatisticalanalysesthatwereutilizedinordertobestestimatethe oxygenconsumptionofadiverwhileusingadiverpropulsiondevice.The followingchapterwillbeginwithphysiologicalconceptswhichhadtobelearned inordertosafelydesignthisexperimentandfullyunderstandtherawdatathat wascollected.Alsotobediscussedarethegoverningequationsemployedto findtheoxygenconsumptionandthestatisticalconceptswhichwerelaterused todrawaconclusion.

Theremainderofthisthesiswilldetailtheexperimentaldesignandthe equipmentthatwasused.Thetestresultswillbepresentedandtheiranalysis explained.Next,therewillbeadiscussionofsomeofthetrendswhichwere identifiedandpossiblesourcesoferror.Thelimitationsoftheresultswillalsobe disclosed.Finally,theconclusionwillbepresentedalongwiththenextstepsof thestudy.

7 Chapter2 TheoreticalFoundations

2.1DivingPhysiology

Scubadivingbeganinthe1940sand50s.Sincethen,wehavemade dramaticleapsinunderstandingthechallengesofgettingthehumanbody deeperunderwater,keepingittherelonger,andbringingitbackmoresafely.

Thesechallengeswouldbealmostnon-existentifitwerenotforthebehaviorof gasesunderpressure.Otherwise,breathingunderwaterwouldnotbemuch differentthanbreathingatthesurface.Itisofgreatnecessitythatanyonewho takesinterestindivingunderstandsthefundamentalgaslawsthatgovernthe physiologicalstressesexperiencedbydivers.

2.1.1GasLaws

Oneofthemostwell-knowngaslawsisalsothemostbasic.Boyle’slaw isessentialtounderstandingdivingphysiology.Thislawstatesthatatconstant ,theabsolutepressureandthevolumeofgasareinversely proportional(NavyDivingManual2005).Boyle’slawcanbeobservedasadiver descends.Alloftheair-filledregionsinthebodyshrink.Theoppositeistrueas thediverascends.Whenadiverbreathescompressedairatdepth,theymust

8 exhaleonthewayupasthegasintheirlungscontinuallyexpandsinvolumeas thepressureisreduced.

ThisisnottheonlywayinwhichBoyle’slawcanbeobservedindiving physiology.Anotherphenomenonwhichisgovernedbythisis.Any air-filled,rigidwalledcavitiesaresusceptibletothis.Twoofthemostcommonly afflictedregionsarethemiddleearsandthesinuses.Here,thesamevolume changesoccurasthepressureisvaried.Almosteveryonehasexperiencedthis phenomenonofswimmingtothebottomofapoolorflyinginanairplane.We mustequalize(popourears)inthesamemannerasadivermust.Whena diverdoesthis,airisforcedfromtheirlungsintotheirEustachiantubesand sinuscavitiestorelievethepressureandestablishequilibrium.Thisprevents barotraumatothemiddleearsandsinuses.

AnothergaslawthatisofgreatimportancetodivingisDalton’slawof partialpressures.Theconceptofpartialpressuresmustbeunderstoodtofully utilizethefindingspresentedinthisthesis.Dalton’slawstatesthatthe“total pressureexertedbyamixtureofgasesisequaltothesumofthepressuresthat wouldbeexertedbyeachofthegasesifitalonewerepresentandoccupiedthe totalvolume”(StraussandAksenov2004).Thepressureexertedbyeachgasis termedthepartialpressure.Dalton’slawisparticularlyusefultodivingbecause itallowsonetounderstandtheeffectthatdepthhasontheamountofgas deliveredtothebody.Asadiverdescends,thetotalpressureincreasesand, consequently,sodoesthepartialpressureofeachgas.Thisconceptcomes

9 intoplaywhendeterminingthesafedepththatadivercangowhilebreathing differentgasmixes.

DiversutilizeDalton’slawofpartialpressurestodeterminewhichgas mixtureismostsuitablefortheirdive.Oneofthemostimportantconsiderations isthepartialpressureofoxygen.TheUnitedStatesNavyDivingGasmanual suggeststhatthesaferangeofpartialpressureofoxygenforsemiclosed rebreathersisbetween0.2and1.2atmospheresabsolute(ATA)(Nuckols,

Clarkeetal.1999).Diversmustselectagasmixturethat,attheirtargetdepth anddiveduration,willkeepthepartialpressureofoxygenwellwithinthisrange.

Ifthediverisbreathingmixedgases,theymustalsoconsiderthepartial pressureoftheothergases.Inertgasessuchasheliumornitrogenareusually mixedwithoxygentobeusedfordeepwaterdivesordiveswithalongduration.

Thepurposeoftheseinertgasesistoavoidoxygentoxicitybykeepingthe partialpressureofoxygenwithinaphysiologicallysaferange.This,however, throwsanotherpotentialproblemintotheequation:inertgasnarcosis.Nitrogen isanarcoticathigherpartialpressures.Themostcommontothisisto useheliumastheinertgasdilutenttoeitherreplaceorreducetheamountof nitrogenusedinthemix(Elliott1976).AlreadymentionedinChapter1ofthis thesiswastheimportanceofmaintainingaphysiologicallysafepartialpressure ofoxygen.TheseareidealexamplesoftheimportanceofDalton’slawofpartial pressuresasitrelatestodiving.

10 AnothergaslawwhichisfundamentaltodivingphysiologyisHenry’slaw.

Thislawsaysthattheamountofagaswhichdissolvesintoaliquidatagiven temperatureisafunctionofitspartialpressure.Thishighlightsaphysiological truthtodiving.Thedeeperthatadivergoes,thehigherthepartialpressuresof thegasesand,consequently,thehighertheamountthatisabsorbedintothe bloodandtissues.Thisphenomenoniswell-knownanddocumented.Henry’s lawisapplicableindirections,ascendinganddescending.Gasesthatdiffuse intothebloodandtissuesatincreasedpressuresmustfallbackoutat decreasedpressures.Thisiswhyisnecessaryfordeepdivers.

Theymustallowtimeforoff-gassingortheycoulddevelopcomplicationssuchas decompressionsickness.

2.2Rebreathers

ConventionalSCUBAdivegearthatthemajorityofrecreationaldiversuse istermed“open-circuit”.Someofthegasinthetankisusedbythediverand therestisexhaleddirectlyintothewater.Formilitaryapplications,rebreathers aremuchmorecommonformanyreasons.Primarily,themilitaryusesthem becausetheyeliminatemostofthenoisethatopen-circuitSCUBA’smake(few tonobubblesreleasedintothewater)andtheyaremuchmoregasefficient.For example,aclosed-circuitrebreatherissaidtobe20timesmoreefficientin oxygenuseasitsopen-circuitcounterpart(StraussandAksenov2004).

11 Rebreatherscanhaveaclosed-circuitorasemiclosed-circuit.Closed- circuitrebreathersemitnogas.Thesimplesttypesofclosed-circuitrebreathers areoxygenrebreathers.TheseUBAsconsistonlyofpureoxygentanks.Gasis injectedintothedevicetofillupthebreathingbag.Theexhaledcarbondioxide fromthediverisabsorbedbyacarbondioxidescrubber.Whenthebreathing bagcollapses,moreoxygenisaddedtorefillthedevice.Thistypeofclosed- circuitrebreather,althoughrelativelysimple,constrainsthedivertoveryshallow depthstoavoidoxygentoxicity.ThecurrentrebreatherinusebytheUSMC,the

MK25,isoneexampleofanoxygenclosed-circuitrebreather.Toillustratethe limitationsofthistypeofrebreather,theMK25’snormalworkinglimitisin25fsw for240minutes(NavyDivingManual2005).

Onewaytogetaroundtheoxygenclosed-circuitrebreathers’limitationsis byutilizingaconstantPO 2closed-circuitrebreather.Theserebreathershave twogastanks:anoxygentankandadilutentgastanktokeepthePO 2withina physiologicallysaferange.Gasesareinjectedintoabreathingbagin whichvarywithdepthandthediver’smetabolicoxygen consumptionrate.Thecarbondioxidethatisexhaledbythediverisabsorbed byacarbondioxidescrubberwhiletherestofthegasiscirculatedand

“rebreathed”.Theoxygenisinjectedattherateatwhichitisconsumed,thus, achievingnearly100percentefficiency.Whilethismayseemliketheidealdive rig,therearemanydownsidestoconstantPO 2closed-circuitrebreathers.They haveamuchhighercostduetothetechnologicalcomponentsthatmeasure

12 oxygenlevelsandcontrolthereleaseoffreshgasintothebreathingloop.This complicatesthedevicesignificantly,requiringmanyhoursoftraining.These componentsalsomakeitmuchmoredifficultandexpensivetomaintainthe device.Accordingly,therearealsomanymoreopportunitiesforequipmentto failandcompromisethesafetyofthediver.Forthesereasons,manybelieve thatthesemiclosedrebreatherisamuchbetteralternative.

Asthenameimplies,thesemiclosedrebreatherhasfeaturesofbotha closedandanopen-circuitSCUBArig.Themostcommonlyusedsemiclosed

UBA’sinjectfreshgasataconstantratefromamixed-gastank,thecontentsof whichmustbedeterminedbeforethedivebasedonthediveprofile.During operation,thesemiclosedrebreatheremitssmallamountsofexcessgasintothe waterwhilethebreathingbagisconstantlybeingreplenishedwithfreshgas.

Similarlytotheclosed-circuitrebreathers,thecarbondioxideischemically absorbedusingacarbondioxidescrubber.PleaserefertoFigure1(below)fora schematicofastandardsemiclosedrebreather.

13

Figure1.SchematicofaSemiclosedRebreather.(Nuckols,Clarkeetal.1999)

Thesimpledesignofthesedeviceskeepsthemaintenancecostlowand reliabilityhigh.Thesequalitiesmakeitamoredesirablerebreatherformany militaryapplications.Unfortunately,itssimplicitydoesnotcomewithoutrisk.

Thepartialpressureofoxygeninthebreathingbagtendstohavemuchmore variancethanthatofafullyclosed-circuitrebreather.Hypoxiaandhyperoxiaare seriousconcernswithsemiclosedrebreathers.Sufficientplanningandstrict adherencetotheplanneddiveprofilecanminimizethisrisk.

14 2.3GoverningEquations

Thereisnoneedtopointouttheimportanceofestimatingtheoxygen consumptionrateofdivers.Thedevelopmentofanequationtodosohasbeen ongoingsinceNEDU’sE.T.Flynnderivedthesteadystatesolutionofthemass balanceequationforsemiclosed-circuitrebreathersin1974(Flynn1974).His equation,however,requiredtheknowledgeoffartoomanyvariablestobeeasily utilizedduringoperation.

J.R.ClarkeofNEDUderivedasteadystatesolutionforoxygenlevelsin semiclosedUBA’s.ThisledtoNEDU’sdevelopmentofamethodtomeasure theoxygenconsumptionrateofdivers.Thiswaspossibleduetotheadventof oxygensensorsanddivecomputers.Theequationsthatwereusedtoestimate thedivers’oxygenconsumptionratesaredescribedonthenextpage.

15 PO FIO = 2 2 fsw 1( + ) 33

Equation1.InspiredFractionofOxygen

V&inj ⋅(FO −FIO ) V&O = 2 2 2 − 1( FIO 2 )

Equation2.EstimatedOxygenConsumptionRate

Where V&O2 istheestimatedoxygenconsumptionrate,Vinj isthefreshgas injectionrate,FO 2isthefractionofoxygenintheinjectedgas,FIO2isthe inspiredoxygenfraction,PO 2isthepartialpressureofoxygen,andfswis ambientpressureinunitsoffeetseawater.

Theaboveoxygenconsumptionformulaisasimplifiedversionofthefull time-dependentequationthatClarkeoriginallysolvedfor.Becausethesesteady stateformulasrequiresomevariablestobefixed(eventhoughtheymightvary slightly),mathematicalcorrectionswereappliedasnecessary.Also,additional measurementsweretakenandcalibratedinordertoensuretheaccuracyofthe datacollected.Theresultwasanequationthatcouldbeusedtoestimatethe oxygenconsumptionofadiverduringanoperationaldivebysimplymeasuring thepartialpressureofoxygenbeinginspiredbythediverandthediver’sdepth.

16 Chapter3 MaterialsandMethods

3.1General

Inordertobestsimulateatypicalmissionscenario,alltestswere performedinfullUSMarineCorpsCombatantDiversdress.Additionally,only trainedUSMCCombatantdiverswereusedforthisevaluation.Thisensured thattheexperimentwouldyieldresultswhichwereoptimizedforapplicationto theUSMCmissionprotocol.Becausehumansubjectswereusedforthisstudy, theprotocolwasreviewedextensivelyandapprovedbytheNEDUInstitutional

ReviewBoard(IRB).

3.1.1DivexShadowExcursion

TheDivexShadowExcursionwasselectedforthisexperimentformany reasons.Bydesign,theDSEiscapableofmountingthegastanksonthefront orbackofthediver.ByutilizingtheDSEinitsfront-mountedconfiguration,this enabledtheCombatantdiverstoweararucksackontheirback.Additionally,the

DivexShadowExcursioncanoperateinbothclosedandsemiclosed-circuit modes.TheNavyExperimentalDivingUnithasalreadyestablishedasafe methodformonitoringthePO 2ofadiverwhoisusingasemiclosedrebreather

(ClarkeandSoutherland1999).Semiclosedrebreathersalsocontributetothe

17 overallsafetyofthediver.Wheninsemiclosednitroxmode,aconstantmass floworificesuppliesnitroxgastothebreathingloop.Duringdescent,the automaticdemandvalveaddsgasinordertomaintainadequatelungvolume.

Thedivercanalsousethisdemandvalvetoaddfreshgasintheeventthatthe partialpressureofoxygendropstoolow.

3.2ExperimentalDesign

TheDivexShadowExcursionwassettosemiclosed-circuitnitroxmode.

PleaserefertoFigure1forageneralschematicofasemiclosedrebreather.

Thismodewaschosenforthisstudybecauseitcanmostaccurately characterizetheoxygenconsumptionratesincethemassflowrateisconstant

(assumingtheautomaticdemandvalveisnotactivated).Oxygenconsumption wasestimatedover24manneddiveswiththeDSE.Thediversrotatedbetween thepilotandpassengerpositionsonthediverpropulsiondevice.Thedata collectedwasusedtodeterminetheestimatedoxygenconsumptionrates throughouttheexperiment.

3.3RebreatherModifications

TheDivexShadowExcursionwasmodifiedinordertodeterminethe divers’oxygenconsumptionratesatten-secondintervalsduringtesting.The

DraegerC8aoxygenmonitor,usingaTeledyneR22Doxygensensorwasused tomeasurethepartialpressureofoxygen.ThisdevicewascoupledwithaDelta

18 PVR3divecomputerwhichwasusedasadatalogger.Thesemodifications madeitpossibletorecordthediverdepthandpartialpressureofoxygen, updatedeverytenseconds.Additionally,therecordingsweredisplayed continuouslyontheVR3displaymakingitpossibleforthediverstomake correctionstotheirdepthandensurethattheirPO2waswithinaphysiologically saferange.Figure2(below)isasimulationofadivecomputeranalogoustothe onethatwasusedinthisexperiment.

Figure2.DiveComputer

Aspreviouslymentioned,theDSEwasoperatinginsemiclosednitroxmode.

Therigwasequippedwitha300bar,twoliteroxygencylinderandanadditional

300bar,2liternitroxcylinder(60%O 2/40%NO 2).Thenitroxfreshgasflow ratewasfixedat6.0L/minthroughouttheexperiment.Theoxygencylinderwas

19 onlyusedasneeded.Typically,itonlybecamenecessarytowardtheendofthe runifthediver“wasted”toomuchofthenitroxbeforecommencementofthe experiment.

3.4TestProcedures

FourU.S.MarineReconnaissanceDiversstayedinPanamaCity,FLfor thedurationofthetesting.Overatwodayperiod,thediversweretrainedbythe

USMCandDivexpersonnelonthemaintenanceanduseoftheDivexShadow

Excursion,drysuits,andtheDiverPropulsionDevice.Theinitialtrainingtook placeintheNavyExperimentalDivingUnit(NEDU)testpool.Followingthe completionofthesetrainingsessions,threedaysofopenwatertraining commenced.ThisinitiallytookplaceatShellIsland,butwasmovedtoSt.

Andrew’sBayduetocomplicationsfromroughwaters.

Testingtookplaceoverthecourseofthreedays.Twotestdiveswere accomplishedeachday,oneintheA.M.andoneintheP.M.Datawasobtained fromboththedriverandpassengerforeachdive.

Thediverswereinstructedtomaintainatargetdepthof20feetseawater

(fsw).Theirmaximumdepthwaslimitedto30feetbytheseafloor.Thetotal divetimewasapproximately60minutes(30minutesout,30minutesback).The

DiverPropulsionDevicewithanattachedsafetybuoywasboardedwithone diverasapilotandtheother,apassenger.Eachdiveconsistedofarunparallel tothebeach.AftertheDPDtravelsfor30minutes,thediverswillreverse

20 positionsandtravelfor30minutesintheotherdirection.AUSMCSAFEboat wasusedtoseparatethediversfromopenwater.TheSAFEboatalso monitoredthebottomdepthtoensurethatthediverscouldnotexceedthe maximumdepthof30feetseawater(fsw).

TheDSE’scarbondioxidescrubberswererepacked,bottlesrecharged, diversdebriefed,anddiveloggerdatadownloadedfollowingthecompletionof eachrun.Thedownloadeddataincludedthedepthofthediverandthepartial pressureofoxygenupdatedatten-secondintervals.

3.5DataAnalysis

Therawdata,includingdiverdepthandPO 2,wasusedtocalculatethe

fractionofinspiredoxygen(FIO 2)andestimatedoxygenconsumptionrate(V&O2 ) foreachdiverattensecondintervals.Thiswasaccomplishedbyemploying

Clarke’sequations(Equations1and2)inChapter2ofthisreport.Next,thedata wasorganizedsothatitcouldbecompiledforstatisticalanalysis.

Twomethodswereusedtoanalyzethedata.First,curvefittingwas performedtoidentifyacurvethathadthebestfittotheplotteddatafora maximumFvalueandthelowestnumberoffitparameters(Systat2000).Next, itwaspredictedthattherewouldbesomeerrorintheresults.Itwasnecessary toperformapropagationoferroranalysisinordertomostaccurately characterizetheerrorthatresultedfromtheuseoftheoxygenconsumption

21 formula(Equation2).Thesestatisticalanalyseswillbediscussedfurtherinthe followingchapter.

22 Chapter4 Results

4.1CurveFits

Curvefittingwasusedtoidentifytrendsinthedataandtoachieve95% confidenceandpredictionintervals.Thesoftwarepackage,TableCurve2D v5.01(SystatSoftware),wasusedtoperformthevariouscurvefits.

The95%confidenceandpredictionintervalsarerepresentedineachof thegraphsinthisthesis.Theouter,bluelinesrepresentthe95%prediction interval.Thepredictionlimitsindicatehowaccuratelythecurveisdeterminedin relationtothenextexperiment’sexpectedvalues.Thismeansthatifthe

experimentwererepeated,95%ofthe V&O2 valueswouldfallinbetweenthose twolimits.Theinner,purplelinesrepresentthe95%confidenceinterval.The confidenceintervalisameasureofhowaccuratelytheaveragecurvefor repeatedexperimentsisdetermined.Morespecifically,itmeansthatthereisa

95%probabilitythattherangecontainsthetruemeanvalueofoxygen consumption.

TableCurvecolorcodesthedatapointsbasedonthenumberofstandard errorsrepresentedbytheresidual.Datapointsthatarelessthanonestandard errorfromthecurveareblue.Greenpointsarebetween1and2standarderrors andyellowisbetween2and3standarderrors.Reddotsindicateadeviationof 23 morethanthreestandarderrors.Anyreddotswereconsideredforremovalif determinedtobeoutliers.

Specificgroupsofdatawerecompiledforanalysis.Thesegroups includedallofthedrivers,allofthepassengers,andatotalcompilation(both driversandpassengers).Thepurposeofthiswastoidentifypossibletrendsin thedata,establishameanand95%predictionintervals,anddeterminetowhat extentthegasflowrateoftherebreatherscanbereduced.

4.1.1InitialCurveFit

Initially,thefulldatasetswereplotted.However,itwasquicklydiscovered thatthefulldatasetwasnotrepresentativeoftheoxygenconsumptionrateofa diverusingaDPD.Theresultofacurvefitperformedonthetotalcompilationof completedataispresentedinFigure3:

24 Figure3.CurveFitofTotalCompilationofDataFiles Thisinitialtrialrevealedaninteresting,butundesirableoutcome.Ittook approximately10minutesfortheoxygenconsumptionrateto“leveloff”.Initially,

thiscouldbecausedbyacoupleofthings.Thenegative V&O2 valuescouldbe

duetothebreathingbagoftherebreatherfillingupwithgas.Thehigher V&O2 valuescanbecausedbythediversstrugglingtogetintopositionontheDPD.

Thiswouldcauseanelevatedoxygenconsumptionrate.Additionally,thiswould explainwhythevaluesseemtoapproachasteadystateafter10minutesfrom thestartoftheexperiment.

Anotherobservationisthatthedatapointsneartheendseemtogointhe negativedirection.Additionally,somedatawasincludedbeyondtheendofthe experiment(beyond30minutes).Theseinconsistenciesdonotlikelyrepresent

25 thetrueoxygenconsumptionratesofthediverswhileridingthediverpropulsion device.

Itwasdeterminedthatallofthedatashouldbetruncatedtoeliminate thesefalsereadings.Onlydatapointscollectedbetween10minutesand25

minuteswereusedtocharacterizethedivers’ V&O2 .

4.1.2DriverCompilation

Toidentifyanypossibletrendsinthedata,thefilesweregroupedinto driverandpassengercompilations.Itwasdecidedthatonlysimpleequations shouldbeselectedforthecurvefits.Thisisbecausethereisnoreasonto suspectthattheestimatedoxygenconsumptionrateshouldhaveacomplex relationshipwithtime.Asindicatedintheprevioussection,ifthedatacollected hadreachedasteadystate,alinearregressionmodelwouldbeappropriate.

However,initialtrialsindicatedthatthiswasnotthecase.Potentialexplanations forthiswillbepresentedinthediscussionofthisthesis.Nonetheless,inorderto ensurethatthetruetrendofthedatawasmodeled,nonlinearequationswere consideredandchoseniftheywerestatisticallybetterfits.Theresultingcurveof thetruncateddriverfiles(n=1092)isdepictedinFigure4.

26 Figure4.EstimatedDriverOxygenConsumptionRatevs.Time

Figure4indicatesthatthemean V&O2 ofthedriversiscloseto0.4L/min.

Thisisapproximatelytheoutcomethatwasexpected.Inapreviousstudybythe

NavyExperimentalDivingUnit,themeanrestingoxygenconsumptionratewas measuredas0.37L/min(Knafelc2007).Therefore,theseresultsappearto agreewiththehypothesisthatthemeanoxygenconsumptionrateofthedivers whileusingaDPDisneartherestingoxygenconsumptionrate.Alsoimportant inthisfigureisthatthe95%predictionintervalindicatesthat95%ofthedata pointsofarepeatexperimentarelikelytobewithin1.0literperminuteorless.

Thatbeingsaid,itisimportanttorealizethatthisgraphonlyincludesdatafrom thedriversoftheDPD.

ThenumericsummaryofthechosenmodelfromTableCurvecanbe foundinAppendixAofthisthesis.Thisoutputincludesallofthestatisticsofthe 27 curvefit.OneofthemostimportantquantitiesistheP-value.Forthechosen drivercurvefitinFigure4,thisvalueis0.0022.Generally,a95%confidence levelisusedasthecriterionindeterminingthesignificanceofthemodel.

Because0.0022islessthan α=0.05,itcanbeconcludedthatthefindings presentedinFigure4arestatisticallysignificant.

4.1.3PassengerCompilation

Thenextcompilationofdataincludedonlythepassengerfiles.The resultinggraphfor1092datapairsisdepictedinFigure5:

Figure5.EstimatedPassengerOxygenConsumptionRatevs.Time

Thisgraphalsohas95%predictionandconfidencelimits.Noticethatthereare fourpointswhichfellmorethan3standarderrorsfromthecurve.Althoughit

28 couldbearguedthattheseareoutliers,theywerekeptintheanalysisbecause theydidnothaveasignificanteffectonthecurvefitcalculations.

Figure5indicatesthattheaveragepassengeroxygenconsumptionrate appearstobejustover0.5L/min.Thisisasignificantincreaseoverthatofthe drivers.Possibleexplanationsforthiswillbediscussedinthenextchapter.

ThenumericalsummaryforFigure5canbefoundinAppendixBofthis thesis.TheP-valuewasforthismodelwasfoundtobelessthanorequalto

0.0001.Thisisindicativeofaprobabilitythatismuchlowerthanrequiredfor statisticalsignificanceatthe95%confidencelevel( α=0.05).

4.1.4TotalCompilation

Finally,thetruncatedcompilationofdriverandpassengerdatasetswere importedintoTableCurve2D.Theresultsfor2184datapointsarepresentedin

Figure6.

29 Figure6.EstimatedTotalOxygenConsumptionRatevs.Time

Figure6depictsamodelthatisasexpectedafterseeingtheseparate compilations.Theaverageoxygenconsumptionrateappearstobebelow0.5

L/minwitha95%predictionintervaljustabove1.0literperminute.

ThenumericalsummaryinAppendixCshowsthattheP-valueofthe chosenmodelislessthanorequalto0.0001.Thishighlightsthestatistical significanceofthefindingsinFigure6.Thisfigureisparamountindetermining howfarthefreshgasflowratecanbereducedfortheUSMCCombatantDivers duringmissionswheretheDPDwillbeutilized.Furtherdiscussionofthiswill takeplaceintheconclusionofthisthesis.

30 4.2PropagationofError

Propagationoferrorwasemployedtoestimatetheuncertaintyofthe calculatedestimatedoxygenconsumptionrate.Itwasimportanttouse

propagationoferrorandnotjustfindtheuncertaintyinour V&O2 calculation

becausethe V&O2 wasnotmeasured.Thus,theuncertaintyofeach measurementpropagatedthroughoutClarke’soxygenconsumptionrateformula.

Thefirststeptofindingthepropagationoferrorwastocompileallofthe dataandcalculatethemeananduncertaintyofeachmeasurement.Next,the

partialdifferentialofeachvariableinthe V&O2 formulathathaderrorhadtobe solvedforsymbolically.Inthiscase,allthreeofthevariableshaderror.Figure

8isascreenshotfromMathCADProfessional(Mathsoft,2001)thatshowsthe symbolicevaluationofthepartialdifferentials.

31 Figure7.SymbolicEvaluationofPartialDerivatives

32 Next,themeanvaluesforeachvariablehadtobepluggedintothese symbolicevaluations.ThisisshowninFigure8:

Figure8.NumericalEvaluationofPartialDerivatives

Eachpartialdifferentialrepresentsasensitivityfactorinthepropagationof errorformula.Fromthesevalues,itcanbeconcludedthattheinjectionvelocity istheleastsensitivevariable.Thismeansthattheerrorinthemeasured

injectionvelocitieswillcontributetheleasttotheoveralluncertaintyofthe V&O2 calculation.Thisisbecausetheabsolutevalueofthesolvedpartialdifferential yieldsthelowestnumber.

33 ThegeneralformulaforpropagationoferrorislistedbelowinFigure9.

Thisformulaassumesthatthereisnocovariancebetweenthevariables(Taylor

1982).

Figure9.PropagationofError

ThefirststepinFigure9indicateshowtheuncertaintyinthemeanofN measurementswasfound(Taylor1982).Eventhoughtheinjectionvelocityhas arelativelyhighuncertainty,thesensitivityfactor(partialderivative)issolowthat itkeepsthatvariable’scontributiontothetotaluncertaintyminimal.The propagationoferroris0.034fortheestimatedoxygenconsumptionrate.Thisis averyreasonablelevelofuncertaintyandservestovalidateClarke’smethod.

34 Chapter5 Discussion

5.1CurveTrends

5.1.1Drivervs.Passenger

Afterstudyingthecurves,itwasclearthatthereweresomeinteresting trends.First,thedriverandpassengergraphswerecompared.Inorderto ensurethattheresultsfromeachdatasetcouldbecomparedaccurately,anF testwasperformedtocomparethevariationsforeachcompilation(driverand passenger).TheresultsofthistestcanbeviewedinAppendixDofthisthesis.

TheFratioof1.03indicatesthatthevariancesseenineachcompilationarenot statisticallydifferent.Thisisveryimportantbecauseitallowsforaccurate conclusionstobedrawnfromthecomparisonofthetwodatasets.

PleaserefertoFigure10inorderviewthetwographstogether.Also, noticethatinthisfigure,thegraphsarescaledidenticallytofacilitatesimple visualcomparison.Onemightassumethatthedriverwilllikelyhaveahigher oxygenconsumptionratebecausetheyhavetomanuallycontroltheDiver

PropulsionDevice(DPD).However,theresultsindicatethatthisisnotthecase.

Itisclearthatthepassengerhasanaverageoxygenconsumptionratethatis morethan0.1L/minhigherthanthatofthedriver.Uponfurtherexaminationof therawdata,itwasfoundthatthemeanestimatedoxygenconsumptionrateof

35 thedriverdatawas0.3908L/min.Themean V&O2 ofthepassengerdatawas

0.5410L/min.Therefore,themeanpassenger V&O2 wasfoundtobe38.4%

higherthanthemeandriver V&O2 .Onepossibleexplanationforthisisthatthe passengerexperiencesmoredragresistancefromthewater.Ifthisisthecase, thepassengermighthavetoworkhardertoholdontotheDPDwhichcould

increasetheir V&O2 .

36

Figure10.Drivervs.PassengerComparison

37 5.1.2NegativeSlope

Anothertrendthatcouldbeidentifiedinallofthecurvefitsisthatthey haveslightlynegativeslopes.InFigures4and6,thisdownwardtrendseemed toappearmoretowardtheendoftheexperiment.Thiscouldbecausedbya numberofthings.Itmightbeanindicationthataninsufficientnumberofdata pointsweretruncatedinthetailendofthedataset,leavingsomeofthefalse readsfromthediverspreparingtosurface.Althoughthisisapossibility,itisnot alikelyone.Itwasexpectedthattherewouldbeaneedfortruncatingthefirst

10minutesofthedatasothattherebreathercouldequilibrate.However,itis unlikelythatthediversdidanythingthatwouldaffecttheestimatedoxygen consumptionratefurtherthan5minutespriortotheendoftheexperiment.They wereinstructedtomaintaintheirpositionsfortheentireduration(30minutes)of eachleg.Thedecisionwasmadetotruncatethelast5minutesinordertobe

certainthatwewereusingdatawhichaccuratelyportrayedtheir V&O2 whileusing theDPD.Thatbeingsaid,thereisnotenoughjustificationtotruncatethedata setanyfurther.Furthermore,thepassengerdatasetappearedtoshowa consistentdeclineintheestimatedoxygenconsumptionratethroughoutthe entiredurationoftheexperiment.Thisseemstoindicatethatitmighttakea

longerperiodoftimeforthedivers’ V&O2 toreachasteadystate.

38 5.2PropagationofError

Thepropagationoferroranalysisyieldedpositiveresults.Themean V&O2 wascalculatedtobe0.482L/min(Figure8).Theuncertaintyofthisestimated oxygenconsumptionrateisonly0.034L/min.ThisvalidatestheuseofClarke’s equations(Equations1and2)forthisapplication.However,itwasconcluded

thatforthe V&O2 formula,theFO 2andFIO 2arebyfarthemostsensitive variables.Alargeuncertaintyineitherofthesetwomeasurementswouldcause thepropagationoferrortoincreasedrastically.Thiscanbeclearlyobservedin

Figure8.Thepartialderivativesofthesevariablesarequitehigh.Forthis reason,greatcareshouldbetakeninthemeasurementofthesetwovariables.

5.3Limitations

Asmentionedintheintroduction,thisstudywasdesignedspecificallyfor theapplicationtotheMarineCorpsCombatantDivers.Thesediversmaintaina highlevelofphysicalfitnessandtheirmetabolicrateshavebeendocumented.

Thus,themeanoxygenconsumptionrateofthissubjectgroupmightvary considerablyfromthatoftheaveragediver.

Oneaspectthatcouldnotbeaccountedforwastheaffectthatstress

mighthaveonthedivers’ V&O2 .Itisprobablethatduringareal-lifemission,the diversmightexperiencesignificantlymorestressthantheydidinthisexperiment.

Onestudyreportedthathormoneswhicharereleasedwhenapersonisunder

39 stresscancauseanincreaseintheoxygenconsumptionrate(Weissman,

Askanazietal.1986).

Additionally,thenegativeslopeindicatesthattheexperimentaltrialswere notlongenoughfortheestimatedoxygenconsumptiontoreachasteadystate.

Fortunately,themostlikelyresultofthisisthatthe V&O2 isoverestimated.Itis unlikelythatthesteadystatevaluewillbesignificantlylower.Furthermore,a slightoverestimationwillcontributetotheoverallsafetyofthenewfreshgasflow ratethatwillbediscussedintheconclusionofthisthesis.

40 Chapter6 Conclusion 6.1Recommendation

ThisstudyrevealedthatthemeanoxygenconsumptionrateofMarine

CombatantDiversusingaDiverPropulsionDeviceissimilartothatofthe documentedrestingoxygenconsumptionrate.However,wehaveaddednew informationconcerningthevarianceofthatdataduringDPDoperations.These preliminaryresultsindicatethattheamountofoxygenmadeavailabletothe

divershouldnotfallbelow1.0L/min.Eventhoughthemean V&O2 wasjust0.482

L/min,therewereasignificantnumberofdatapointsthatwereclosertothe1.0

L/minmark.Withallofthistakenintoconsideration,thepreliminary recommendationistoreducethefreshgasflowrateintheDSE(semiclosed nitroxmodewith60%oxygenmix)to2.0L/minofa60%O 2(40%N 2)mixturefor anetO 2injectionrateof1.2L/min.Thiswilltriplethedivetimeofferedbythe

DivexShadowExcursionwhilethediversareutilizingthediverpropulsion device.

Inordertounderstandthesignificanceofthisadjustment,onecould assumeasetofdefaultDSEsettings:(2)twoliternitroxtanks(60%oxygen/

40%nitrogen)filledto300Bar.Assumingtheseconditions,thestandardgas flowrateof6.0L/minwouldprovideamaximumtheoreticaldivetimeof3hours. 41 Iftheflowratewerereducedto2.0L/min,themaximumdivetimewould theoreticallyincreaseto9hours.Itisimportanttonotethatthesedivetimesare onlytheoretical.Realistically,theadjustedfreshgasflowratemightsustaina diverfor7-8hoursonadiverpropulsiondevice.Nonetheless,thiswould significantlyincreasethemissioncapabilitiesoftheUnitedStatesMarineCorps.

6.2NextSteps

Thesepreliminaryresultswillnowneedtobetestedandverifiedwith reducedfreshgasflowrates.Additionally,thedurationofthetestingshouldbe increasedinordertomostaccuratelycharacterizethelongtermoxygen demandsofthediversusingaDPD.Thiswouldoffermoretimeforthedivers’ bodiestoreachasteadystatemetabolicrate.Asstatedinthelimitations,itis

possiblethatthetrueresting V&O2 islowerthanthisthesisindicated.Ifthiswere determinedtobethecase,itispossiblethatthefreshgasflowratecouldbe reducedfurther,enablingtheUnitedStatesMarineCorpstoachieveevenlonger dives.Onlyoncesubstantialtestingiscompletedandtheflowrateof2.0L/min of60%O 2nitroxisproventobesafeshouldthisbeattemptedinarealmission scenario.

42 References Clarke,J.(2007)."ReviewofMARCORSYSCOMOperationalRequirementsfor EnhancedUnderwaterBreathingApparatus(EUBA)UsingSimulation Software."NavyExperimentalDivingUnitTechnicalReport07-11. Clarke,J.R.andD.Southerland(1999)."AnOxygenMonitorforSemi-closed Rebreathers--DesignandUseforEstimatingMetabolicOxygen Consumption."ProceedingsofSPIE,theInternationalSocietyforOptical Engineering3711:123-129. Elliott,D.H.(1976)."Someoccupationalofdiving."ProcRSocMed 69(8):589-93. Flynn,E.T.(1974)."OperationalMonitoringofOxygenConsumptioninSemi- Closed-circuitUnderwaterBreathingApparatus."NEDUTR22-74. Knafelc,M.E.(2007).OxygenConsumptionRateforDifferentDiverDress,Navy ExperimentalDivingUnit.TM07-04. Lawrence,C.H.(1996)."Adivingfatalityduetooxygentoxicityduringa "technical"dive."MedJAust165(5):262-3. McCarter,M.(2005)."DiversGoDeepwithPropulsionDevices."from http://www.special-operations-technology.com/article.cfm?DocID=873. NavyDivingManual(2005).U.S.NavyDivingManual.[Washington,D.C.],Naval SeaSystemsCommand Nuckols,M.L.,J.Clarke,etal.(1998)."Maintainingsafeoxygenlevelsin semiclosedunderwaterbreathingapparatus."LifeSupportBiosphSci 5(1):87-95. Nuckols,M.L.,J.R.Clarke,etal.(1999)."Assessmentofoxygenlevelsin alternativedesignsofsemiclosedunderwaterbreathingapparatus."Life SupportBiosphSci6(3):239-49. Strauss,M.B.andI.V.Aksenov(2004).Divingscience.Champaign,IL,Human Kinetics.

43 Systat(2000).TableCurve2DTutorials,TableCurve2D. Taylor,J.R.(1982).AnIntroductiontoErrorAnalysis,OxfordUniverstiyPress. Weissman,C.,J.Askanazi,etal.(1986)."Themetabolicandventilatory responsetotheinfusionofstresshormones."AnnSurg203(4):408-12.

44 Appendices

45 AppendixA:DriverCurveFit–NumericSummary

Rank 1 Eqn 7y=a+bx 3 r2CoefDet DFAdjr 2 FitStdErr F-value 0.0085568870 0.0067360549 0.2945470853 9.4075058440 Parm Value StdError t-value 95%ConfidenceLimits P>|t| a 0.431589399 0.016001414 26.97195360 0.400192340 0.462986458 0.00000 b -6.4031e-06 2.08762e-06 -3.06716577 -1.0499e-05 -2.3069e-06 0.00221 AreaXmin-Xmax AreaPrecision 5.8645483747 0.0000000000 Functionmin X-Value Functionmax X-Value 0.3315413517 25.000000000 0.4251862873 10.000018938 1stDerivmin X-Value 1stDerivmax X-Value -0.012005766 25.000000000 -0.001920930 10.000018938 2ndDerivmin X-Value 2ndDerivmax X-Value -0.000960461 25.000000000 -0.000384185 10.000018938 SolnVector CovarMatrix Direct LUDecomp r2CoefDet DFAdjr 2 FitStdErr MaxAbsErr 0.0085568870 0.0067360549 0.2945470853 0.7270770390 r2Attainable 0.0273181822 Source SumofSquares DF MeanSquare FStatistic P>F Regr 0.81617626 1 0.81617626 9.40751 0.00221 Error 94.566204 1090 0.086757985 Total 95.38238 1091 LackFit 1.789497 89 0.020106708 0.216938 1.00000 PureErr 92.776707 1001 0.092684023 Date Time FileSource Oct26,2008 1:39:41PM c:\users\adamsmith\documents\finalth

46 AppendixB:PassengerCurveFit–NumericSummary

Rank 1 Eqn 13y=a+blnx r2CoefDet DFAdjr 2 FitStdErr F-value 0.0363884625 0.0346187443 0.2865126668 41.161217521 Parm Value StdError t-value 95%ConfidenceLimits P>|t| a 1.141087729 0.093937594 12.14729567 0.956768759 1.325406699 0.00000 b-0.21212774 0.033063846 -6.41570086 -0.27700373 -0.14725176 0.00000 AreaXmin-Xmax AreaPrecision 8.1123322574 1.552475e-12 Functionmin X-Value Functionmax X-Value 0.4582748639 25.000000000 0.6526451475 10.000018938 1stDerivmin X-Value 1stDerivmax X-Value -0.021212734 10.000018938 -0.008485110 25.000000000 2ndDerivmin X-Value 2ndDerivmax X-Value 0.0003394044 25.000000000 0.0021212694 10.000018938 SolnVector CovarMatrix Direct LUDecomp r2CoefDet DFAdjr 2 FitStdErr MaxAbsErr 0.0363884625 0.0346187443 0.2865126668 1.0998009883 r2Attainable 0.0584570732 Source SumofSquares DF MeanSquare FStatistic P>F Regr 3.3789041 1 3.3789041 41.1612 0.00000 Error 89.477564 1090 0.082089508 Total 92.856468 1091 LackFit 2.0492132 89 0.023024868 0.26362 1.00000 PureErr 87.428351 1001 0.08734101 Date Time FileSource Oct26,2008 1:37:15PM c:\users\adamsmith\documents\finalth

47 AppendixC:TotalCurveFit–NumericSummary

Rank 1Eqn 5y=a+bx 2lnx r2CoefDet DFAdjr 2 FitStdErr F-value 0.0175016006 0.0166006392 0.3005031636 38.868757991 Parm Value StdError t-value 95%ConfidenceLimits P>|t| a 0.539429808 0.013432012 40.16001461 0.513088937 0.565770680 0.00000 b -7.6588e-05 1.22846e-05 -6.23448137 -0.00010068 -5.2497e-05 0.00000 AreaXmin-Xmax AreaPrecision 6.9906876383 2.420723e-09 Functionmin X-Value Functionmax X-Value 0.3853499484 25.000000000 0.5217946517 10.000018938 1stDerivmin X-Value 1stDerivmax X-Value -0.014241093 25.000000000 -0.004292908 10.000018938 2ndDerivmin X-Value 2ndDerivmax X-Value -0.000722820 25.000000000 -0.000582466 10.000018938 SolnVector CovarMatrix Direct LUDecomp r2CoefDet DFAdjr 2 FitStdErr MaxAbsErr 0.0175016006 0.0166006392 0.3005031636 1.0415069878 r2Attainable 0.0270350712 Source SumofSquares DF MeanSquare FStatistic P>F Regr 3.5099325 1 3.5099325 38.8688 0.00000 Error 197.03929 2182 0.090302151 Total 200.54923 2183 LackFit 1.9119302 89 0.021482361 0.230427 1.00000 PureErr 195.12736 2093 0.093228554 Date Time FileSource Oct26,2008 1:41:14PM c:\users\adamsmith\documents\finalth

48 AppendixD:ComparisonofVariances

Thisisascreenshotfromafreely-availableexecutablepostedinthepublic domain.OnlytheF-ratiowasusedforthisthesis.

49