Npr 4.2: Ballistic, Cruise Missile, and Missile Defense

Total Page:16

File Type:pdf, Size:1020Kb

Npr 4.2: Ballistic, Cruise Missile, and Missile Defense Missile Developments BALLISTIC, CRUISE MISSILE, AND MISSILE DEFENSE SYSTEMS: TRADE AND SIGNIFICANT DEVELOPMENTS, JULY-OCTOBER 1996 CONTENTS AFGHANISTAN CHINA Ukraine, 143 ISRAEL with: Internal Developments, 140 United States, 144 Internal Developments, 152 Pakistan, 138 with: with: GREECE India and Pakistan, 141 China, 141 AFRICA with: Iran, 141 India, 147 with: United States, 144 Israel, 141 Iran, Lebanon, and Syria, 149 Ukraine, 138 Pakistan, 141 HUNGARY Iraq, 152 AUSTRALIA Russia and Ukraine, 141 Internal Developments, 144 Syria, 153 with: United States, 142 Turkey, 153 INDIA Russia and Thailand, 138 United Kingdom, 153 CYPRUS Internal Developments, 144 United States, 138 United States, 153 with: with: BELARUS Russia, United Kingdom, and Canada, 140 ITALY with: United States, 142 China and Pakistan, 141 with: Russia, 138 Israel, 147 Germany, Netherlands, CZECH REPUBLIC Russia, 148 Turkey, and United BOSNIA Internal Developments, 142 Slovakia, 148 States, 143 Internal Developments, 139 EGYPT IRAN JAPAN BRAZIL with: Internal Developments, 148 with: Internal Developments, 139 Russia, 142 with: United States, 155 with: United States, 142 China, 141 Russia and United States, 139 KUWAIT FINLAND Israel, Lebanon, and United States, 140 with: with: Syria, 149 United States, 155 BULGARIA Russia, 143 North Korea, 149 with: North Korea and United LEBANON FRANCE Russia and United States, States, 149 with: with: 140 Russia, 149 Israel, Iran, and Syria, 149 Russia, 143 CANADA IRAQ MALAYSIA GERMANY with: Internal Developments, 150 with: with: India, 140 with: Turkey, 156 Italy, Netherlands, Turkey, and Israel, 152 United States, 143 134 The Nonproliferation Review/Winter 1997 Missile Developments MISSILE TECHNOLOGY Norway, Ukraine, and United UNITED ARAB EMIRATES CONTROL REGIME States, 157 with: (MTCR) Singapore, 160 Russia, 160 DEVELOPMENTS, 156 United Arab Emirates, 160 UNITED KINGDOM United States, 160 NETHERLANDS with: with: SINGAPORE Cyprus, Russia, and United Germany, Italy, Turkey, and with: States, 142 United States, 143 Russia, 160 Israel, 153 MTCR, 156 NORTH ATLANTIC SLOVAKIA TREATY ORGANIZATION with: UNITED STATES (NATO) India, 148 Internal Developments, 163 with: with: SOUTH KOREA Russia, 157 Australia, 138 Internal Developments, 161 Brazil, 140 NORTH KOREA SYRIA Brazil and Russia, 139 Internal Developments, 157 with: Bulgaria and Russia, 140 with: Israel, 153 China, 142 Iran, 149 Israel, Iran, and Cyprus, Russia, and United Iran and United States, 149 Lebanon, 149 Kingdom, 142 Pakistan and Taiwan, 157 North Korea, 157 Egypt, 142 Syria, 157 Germany, 144 TAIWAN NORWAY Germany, Italy, Netherlands, Internal Developments, 161 with: and Turkey, 143 with: Russia, Ukraine, and United Greece, 144 North Korea and States, 157 Iran and North Korea, 149 Pakistan, 157 Israel, 153 PAKISTAN United States, 161 Japan, 155 with: THAILAND Kuwait, 155 Afghanistan, 138 with: MTCR, 156 China, 141 Australia and Russia, 138 Norway, Russia, and India and China, 141 Ukraine, 157 North Korea and Taiwan, 157 TURKEY Russia, 160 with: RUSSIA Taiwan, 161 Germany, Italy, Netherlands, Internal Developments, 158 Turkey, 162 and United States, 143 with: Ukraine, 162 Israel, 153 Australia and Thailand, 138 Malaysia, 156 WASSENAAR ARRANGE- Belarus, 138-139 United States, 162 MENT, 163 Brazil and United States, 139 Bulgaria and United UKRAINE States, 140 Internal Developments, 162 China and Ukraine, 141 with: Cyprus, United Kingdom, Africa, 138 and United States, 142 China and Russia, 141 Egypt, 142 Germany, 143 Finland, 143 MTCR, 156 France, 143 Norway, Russia, and United India, 148 States, 157 Iran, 149 United States, 162 NATO, 157 The Nonproliferation Review/Winter 1997 135 Missile Developments OVERVIEW During the July-October 1996 period, United Nations and equipment from China to build an M-11 missile factory Special Commission (UNSCOM) inspectors were yet again in Tarwanah, and there were conflicting reports as to whether prevented from examining sites suspected of containing in- the facility will be capable of producing complete missile formation and materials associated with Iraq’s prohibited systems or just their components. Construction of the facil- ballistic missile program. In July, it was feared that prohib- ity began in 1995. In a related development, the China Na- ited materials, including objects that looked like Scud bal- tional Precision Machinery Import and Export Corporation listic missiles were removed from a suspect location while may have supplied Pakistan with guidance technology as the Iraqis delayed the inspectors en route. According to well as chemicals to manufacture solid fuel. In response, UNSCOM Chief Rolf Ekeus, Iraq conceals banned weap- the Indian Ministry of Defence’s 1996 annual report stressed ons and materials by transporting them around on trucks the need for India to deploy the Prithvi ballistic missile and and railway cars prior to inspections. Iraq continued to ob- to develop the projected 2,500 km-range Agni IRBM in or- struct UNSCOM despite Prime Minister Tariq Aziz’s agree- der to counter missile threats in the region. According to the ment with Ekeus in June to provide unconditional access to report, advanced weapons in China and Pakistan and all sites the commission wants to inspect. In late August, Beijing’s missile sales to Islamabad compelled India to “re- Ekeus traveled to Baghdad with a U.N. Security Council main on guard.” The report said that New Delhi will pre- declaration demanding that Iraq provide his inspectors with serve its options to deploy missiles as warranted by national unrestricted access to military installations in their search security requirements. Abdul Kalam, director general of for banned materials. Ekeus departed from Iraq with assur- India’s Defence Research and Development Organisation ances that future searches would not be blocked. However, (DRDO), said operational testing of the Agni could begin as in its semi-annual report to the U.N. Security Council in soon as the government gave the go-ahead. DRDO officials October, UNSCOM accused Baghdad of “systematically said the next phase of the IRBM project will involve devel- concealing” prohibited weapons and stated that Iraq still oping facilities for missile production and an emphasis on had to account fully for all of its banned weapons, items, operations and extensive exercises. and capabilities in its ballistic missile program. During a Missile Technology Control Regime (MTCR) Also in the Middle East, the joint Israeli-U.S. Arrow-2 seminar held during the summer in Washington, D.C., for- anti-tactical ballistic missile (ATBM) program made signifi- eign policymakers and specialists from 12 member states cant headway in July when the Arrow-2 successfully inter- and seven non-MTCR countries exchanged ideas on how cepted a Scud-type missile armed with a dummy chemical to impede the transshipment of missile technology. This warhead over the Mediterranean Sea. Encouraged by the gathering was followed in October by the 1996 MTCR Ple- successful test, the Israeli government may exclude Arrow- nary Meeting in Edinburgh, United Kingdom, where mem- 2 funding from planned defense budget cuts. Future launches bers agreed on steps that could be taken to improve the of the Arrow-2 will test the missile’s interception capabili- regime’s effectiveness in restricting regional missile prolif- ties against different targets at various altitudes. The Israeli eration in South Asia and the Persian Gulf. The members Air Force is scheduled to receive at least 50 Arrow-2 mis- also agreed to encourage key non-MTCR transshippers to siles by February 1998, according to Israeli sources. adhere to regime guidelines, and to give them “practical as- sistance” in implementing transshipment controls on mis- In East Asia, there were indications in October that North sile technology. Although the United States has judged Korea was preparing for a test flight of the 1,000 km-range Ukraine’s export control policies to be in line with the No-dong-1 ballistic missile and that Iranian officials would MTCR, Kiev’s inventory of Scud-B missiles prohibits a be present at the test-site. The United States reacted by send- needed American endorsement for Ukraine to join the re- ing reconnaissance aircraft to monitor the test area and de- gime. Ukraine is reportedly not prepared to accept the manding that North Korea cancel the test. American position that new members must give up their In South Asia, Pakistan reportedly received blueprints offensive missiles before joining the regime. Meanwhile, 136 The Nonproliferation Review/Winter 1997 Missile Developments U.S. Assistant Secretary of Defense Harold Smith said Wash- NOTE: ington does not favor a Ukrainian suggestion to convert A date marked with an “*” indicates that an event was SS-24 ICBMs into space launch vehicles. Smith said the reported on that date; a date without an “*” is the date ICBMs are “too expensive to maintain” and should be de- when an event actually occurred. stroyed. But Stanislav Konyukhov, chief designer at Ukraine’s Pivdenmash, said Ukraine is not considering The numbers listed in parentheses following the biblio- destroying its SS-24 ICBMs. graphic references refer to the identification number of the document in the CNS Missile Database from which the news Controversy continued to surround U.S. National Intelli- summaries are abstracted. Because of the rapidly changing gence Estimate 95-19 (NIE 95-19) after the General Account- nature of the subject matter, The Nonproliferation Review ing Office (GAO)
Recommended publications
  • Prepared by Textore, Inc. Peter Wood, David Yang, and Roger Cliff November 2020
    AIR-TO-AIR MISSILES CAPABILITIES AND DEVELOPMENT IN CHINA Prepared by TextOre, Inc. Peter Wood, David Yang, and Roger Cliff November 2020 Printed in the United States of America by the China Aerospace Studies Institute ISBN 9798574996270 To request additional copies, please direct inquiries to Director, China Aerospace Studies Institute, Air University, 55 Lemay Plaza, Montgomery, AL 36112 All photos licensed under the Creative Commons Attribution-Share Alike 4.0 International license, or under the Fair Use Doctrine under Section 107 of the Copyright Act for nonprofit educational and noncommercial use. All other graphics created by or for China Aerospace Studies Institute Cover art is "J-10 fighter jet takes off for patrol mission," China Military Online 9 October 2018. http://eng.chinamil.com.cn/view/2018-10/09/content_9305984_3.htm E-mail: [email protected] Web: http://www.airuniversity.af.mil/CASI https://twitter.com/CASI_Research @CASI_Research https://www.facebook.com/CASI.Research.Org https://www.linkedin.com/company/11049011 Disclaimer The views expressed in this academic research paper are those of the authors and do not necessarily reflect the official policy or position of the U.S. Government or the Department of Defense. In accordance with Air Force Instruction 51-303, Intellectual Property, Patents, Patent Related Matters, Trademarks and Copyrights; this work is the property of the U.S. Government. Limited Print and Electronic Distribution Rights Reproduction and printing is subject to the Copyright Act of 1976 and applicable treaties of the United States. This document and trademark(s) contained herein are protected by law. This publication is provided for noncommercial use only.
    [Show full text]
  • Winning the Salvo Competition Rebalancing America’S Air and Missile Defenses
    WINNING THE SALVO COMPETITION REBALANCING AMERICA’S AIR AND MISSILE DEFENSES MARK GUNZINGER BRYAN CLARK WINNING THE SALVO COMPETITION REBALANCING AMERICA’S AIR AND MISSILE DEFENSES MARK GUNZINGER BRYAN CLARK 2016 ABOUT THE CENTER FOR STRATEGIC AND BUDGETARY ASSESSMENTS (CSBA) The Center for Strategic and Budgetary Assessments is an independent, nonpartisan policy research institute established to promote innovative thinking and debate about national security strategy and investment options. CSBA’s analysis focuses on key questions related to existing and emerging threats to U.S. national security, and its goal is to enable policymakers to make informed decisions on matters of strategy, security policy, and resource allocation. ©2016 Center for Strategic and Budgetary Assessments. All rights reserved. ABOUT THE AUTHORS Mark Gunzinger is a Senior Fellow at the Center for Strategic and Budgetary Assessments. Mr. Gunzinger has served as the Deputy Assistant Secretary of Defense for Forces Transformation and Resources. A retired Air Force Colonel and Command Pilot, he joined the Office of the Secretary of Defense in 2004. Mark was appointed to the Senior Executive Service and served as Principal Director of the Department’s central staff for the 2005–2006 Quadrennial Defense Review. Following the QDR, he served as Director for Defense Transformation, Force Planning and Resources on the National Security Council staff. Mr. Gunzinger holds an M.S. in National Security Strategy from the National War College, a Master of Airpower Art and Science degree from the School of Advanced Air and Space Studies, a Master of Public Administration from Central Michigan University, and a B.S. in chemistry from the United States Air Force Academy.
    [Show full text]
  • Design Characteristics of Iran's Ballistic and Cruise Missiles
    Design Characteristics of Iran’s Ballistic and Cruise Missiles Last update: January 2013 Missile Nato or Type/ Length Diameter Payload Range (km) Accuracy ‐ Propellant Guidance Other Name System (m) (m) (kg)/warhead CEP (m) /Stages Artillery* Hasib/Fajr‐11* Rocket artillery (O) 0.83 0.107 6; HE 8.5 ‐ Solid Spin stabilized Falaq‐12* Rocket artillery (O) 1.29 0.244 50; HE 10 Solid Spin stabilized Falaq‐23* Rocket artillery (O) 1.82 0.333 120; HE 11 Solid Spin stabilized Arash‐14* Rocket artillery (O) 2.8 0.122 18.3; HE 21.5 Solid Spin stabilized Arash‐25* Rocket artillery (O) 3.2 0.122 18.3; HE 30 Solid Spin stabilized Arash‐36* Rocket artillery (O) 2 0.122 18.3; HE 18 Solid Spin stabilized Shahin‐17* Rocket artillery (O) 2.9 0.33 190; HE 13 Solid Spin stabilized Shahin‐28* Rocket artillery (O) 3.9 0.33 190; HE 20 Solid Spin stabilized Oghab9* Rocket artillery (O) 4.82 0.233 70; HE 40 Solid Spin stabilized Fajr‐310* Rocket artillery (O) 5.2 0.24 45; HE 45 Solid Spin stabilized Fajr‐511* Rocket artillery (O) 6.6 0.33 90; HE 75 Solid Spin stabilized Falaq‐112* Rocket artillery (O) 1.38 0.24 50; HE 10 Solid Spin stabilized Falaq‐213* Rocket artillery (O) 1.8 0.333 60; HE 11 Solid Spin stabilized Nazeat‐614* Rocket artillery (O) 6.3 0.355 150; HE 100 Solid Spin stabilized Nazeat15* Rocket artillery (O) 5.9 0.355 150; HE 120 Solid Spin stabilized Zelzal‐116* Iran‐130 Rocket artillery (O) 8.3 0.61 500‐600; HE 100‐125 Solid Spin stabilized Zelzal‐1A17* Mushak‐120 Rocket artillery (O) 8.3 0.61 500‐600; HE 160 Solid Spin stabilized Nazeat‐1018* Mushak‐160 Rocket artillery (O) 8.3 0.45 250; HE 150 Solid Spin stabilized Related content is available on the website for the Nuclear Threat Initiative, www.nti.org.
    [Show full text]
  • Iran's Ballistic Missile Programs: an Overview
    Order Code RS22758 Updated July 21, 2008 Iran’s Ballistic Missile Programs: An Overview Steven A. Hildreth Specialist in Missile Defense and Non-Proliferation Foreign Affairs, Defense, and Trade Division Summary Iran has an active interest in developing, acquiring, and deploying a broad range of ballistic missiles. This was spotlighted in mid-July 2008 when Iran launched a number of ballistic missiles during military exercises, reportedly including the medium- range Shahab-3. On July 18, 2008, a Pentagon spokesman said Iran was “not testing new technologies or capabilities, but rather firing off old equipment in an attempt to intimidate their neighbors and escalate tension in the region.” Subsequent analysis of the July 2008 missile launches also shows Iran apparently digitally altered images of those launches. This short report1 seeks to provide an overview of the reported or suspected variety of Iranian ballistic missile programs. Because there remains widespread public divergence over particulars, however, this report does not provide specificity to what Iran may or may not have, or is in the process of developing. This report may be updated. Iran’s ballistic missile program dates to the late 1970s after the Shah was overthrown and the Islamic Republic of Iran established. The new Iranian government embarked on a ballistic missile program marked by considerable secrecy. Many consider that Iran’s effort was in full force by the mid-1980s during its protracted war against Iraq, during which Iran reportedly launched more than 600 ballistic missiles. Today, there is little disagreement among most experts that Iran has acquired some number of ballistic missiles from other countries and has developed other ballistic missiles indigenously or in cooperation with others.
    [Show full text]
  • A History of Ballistic Missile Development in the DPRK
    Occasional Paper No. 2 A History of Ballistic Missile Development in the DPRK Joseph S. Bermudez Jr. Monitoring Proliferation Threats Project MONTEREY INSTITUTE CENTER FOR NONPROLIFERATION STUDIES OF INTERNATIONAL STUDIES THE CENTER FOR NONPROLIFERATION STUDIES The Center for Nonproliferation Studies (CNS) at the Monterey Institute of International Studies (MIIS) is the largest non-governmental organization in the United States devoted exclusively to research and training on nonproliferation issues. Dr. William C. Potter is the director of CNS, which has a staff of more than 50 full- time personnel and 65 student research assistants, with offices in Monterey, CA; Washington, DC; and Almaty, Kazakhstan. The mission of CNS is to combat the spread of weapons of mass destruction by training the next generation of nonproliferation specialists and disseminating timely information and analysis. For more information on the projects and publications of CNS, contact: Center for Nonproliferation Studies Monterey Institute of International Studies 425 Van Buren Street Monterey, California 93940 USA Tel: 831.647.4154 Fax: 831.647.3519 E-mail: [email protected] Internet Web Site: http://cns.miis.edu CNS Publications Staff Editor Jeffrey W. Knopf Managing Editor Sarah J. Diehl Copyright © Joseph S. Bermudez Jr., 1999. OCCASIONAL PAPERS AVAILABLE FROM CNS: No. 1 Former Soviet Biological Weapons Facilities in Kazakhstan: Past, Present, and Future, by Gulbarshyn Bozheyeva, Yerlan Kunakbayev, and Dastan Yeleukenov, June 1999 No. 2 A History of Ballistic Missile Development in the DPRK, by Joseph S. Bermudez Jr., November 1999 No. 3 Nonproliferation Regimes at Risk, Michael Barletta and Amy Sands, eds., November 1999 Please contact: Managing Editor Center for Nonproliferation Studies Monterey Institute of International Studies 425 Van Buren Street Monterey, California 93940 USA Tel: 831.647.3596 Fax: 831.647.6534 A History of Ballistic Missile Development in the DPRK [Note: Page numbers given do not correctly match pages in this PDF version.] Contents Foreword ii by Timothy V.
    [Show full text]
  • Israeli Arms Transfers to India: Ad Hoc Defence Cooperation Or the Beginnings of a Strategic Partnership?
    Policy Brief: Israeli Arms Transfers to India: Ad Hoc Defence Cooperation or the Beginnings of a Strategic Partnership? Richard A. Bitzinger April 2013 Policy Brief: Israeli Arms Transfers to India: Ad Hoc Defence Cooperation or the Beginnings of a Strategic Partnership? RICHARD A. BITZINGER 2 Executive Summary Israeli arms exports to India are at the core of Indo-Israeli defence cooperation. Israel has been selling weapons to the Indian military for over 20 years. These transfers are mutually benefi cial: Israel has become one of India’s most important arms suppliers, as well as a critical provider of military technologies and know-how, while India has become Israel’s single largest arms market. This arms relationship has subsequently expanded into other areas of defence cooperation, such as combating terrorism, and joint naval and space activities. However, any expectations that such cooperation will result in a broader and deeper “strategic partnership” – particularly one that could help Tel Aviv enlist New Delhi’s help in hindering Iran’s anti- Israeli activities – are overly optimistic. India and Israel do not share enough of a common worldview or common goals to form the basis of such a partnership. Consequently, Indo-Israel defence cooperation will likely remain a tactical, ad hoc arms- for-cash relationship for some time to come. Defence cooperation has always been a low-key but essential Recent Israeli transfers to India include: element in relations between Israel and India.1 While most of • Searcher and Heron surveillance UAVs this cooperation has taken place at the rather discreet level • Harpy and Harop loitering anti-radiation drones of Israeli arms sales to India, these deals have nonetheless • The Popeye air-to-ground missile been critical to the expansion of military ties between these • The Python-4 air-to-air missile two countries since the establishment of bilateral diplomatic • The Spike anti-tank missile relations in 1992.
    [Show full text]
  • Hezbollah's Missiles and Rockets
    JULY 2017 CSIS BRIEFS CSIS Hezbollah’s Missiles and Rockets An Overview By Shaan Shaikh and Ian Williams JULY 2018 THE ISSUE Hezbollah is the world’s most heavily armed non-state actor, with a large and diverse stockpile of unguided artillery rockets, as well as ballistic, antiair, antitank, and antiship missiles. Hezbollah views its rocket and missile arsenal as its primary deterrent against Israeli military action, while also useful for quick retaliatory strikes and longer military engagements. Hezbollah’s unguided rocket arsenal has increased significantly since the 2006 Lebanon War, and the party’s increased role in the Syrian conflict raises concerns about its acquisition of more sophisticated standoff and precision-guided missiles, whether from Syria, Iran, or Russia. This brief provides a summary of the acquisition history, capabilities, and use of these forces. CENTER FOR STRATEGIC & middle east INTERNATIONAL STUDIES program CSIS BRIEFS | WWW.CSIS.ORG | 1 ezbollah is a Lebanese political party public source information and does not cover certain topics and militant group with close ties to such as rocket strategies, evolution, or storage locations. Iran and Syria’s Assad regime. It is the This brief instead focuses on the acquisition history, world’s most heavily armed non-state capabilities, and use of these forces. actor—aptly described as “a militia trained like an army and equipped LAND ATTACK MISSILES AND ROCKETS like a state.”1 This is especially true Hwith regard to its missile and rocket forces, which Hezbollah 107 AND 122 MM KATYUSHA ROCKETS has arrayed against Israel in vast quantities. The party’s arsenal is comprised primarily of small, man- portable, unguided artillery rockets.
    [Show full text]
  • The Washington Institute for Near East Policy August
    THE WASHINGTON INSTITUTE FOR NEAR EAST POLICY n AUGUST 2020 n PN84 PHOTO CREDIT: REUTERS © 2020 THE WASHINGTON INSTITUTE FOR NEAR EAST POLICY. ALL RIGHTS RESERVED. FARZIN NADIMI n April 22, 2020, Iran’s Islamic Revolutionary Guard Corps Aerospace Force (IRGC-ASF) Olaunched its first-ever satellite, the Nour-1, into orbit. The launch, conducted from a desert platform near Shahrud, about 210 miles northeast of Tehran, employed Iran’s new Qased (“messenger”) space- launch vehicle (SLV). In broad terms, the launch showed the risks of lifting arms restrictions on Iran, a pursuit in which the Islamic Republic enjoys support from potential arms-trade partners Russia and China. Practically, lifting the embargo could facilitate Iran’s unhindered access to dual-use materials and other components used to produce small satellites with military or even terrorist applications. Beyond this, the IRGC’s emerging military space program proves its ambition to field larger solid-propellant missiles. Britain, France, and Germany—the EU-3 signatories of the Joint Comprehensive Plan of Action, as the 2015 Iran nuclear deal is known—support upholding the arms embargo until 2023. The United States, which has withdrawn from the deal, started a process on August 20, 2020, that could lead to a snapback of all UN sanctions enacted since 2006.1 The IRGC’s Qased space-launch vehicle, shown at the Shahrud site The Qased-1, for its part, succeeded over its three in April. stages in placing the very small Nour-1 satellite in a near circular low earth orbit (LEO) of about 425 km. The first stage involved an off-the-shelf Shahab-3/ Ghadr liquid-fuel missile, although without the warhead section, produced by the Iranian Ministry of Defense.2 According to ASF commander Gen.
    [Show full text]
  • Safe Havens in Syria: Missions and Requirements for an Air Campaign
    SSP Working Paper July 2012 Safe Havens in Syria: Missions and Requirements for an Air Campaign Brian T. Haggerty Security Studies Program Department of Political Science Massachusetts Institute of Technology [email protected] Copyright © July 15, 2012 by Brian T. Haggerty. This working paper is in draft form and intended for the purposes of discussion and comment. It may not be reproduced without permission of the copyright holder. Copies are available from the author at [email protected]. Thanks to Noel Anderson, Mark Bell, Christopher Clary, Owen Cote, Col. Phil Haun, USAF, Col. Lance A. Kildron, USAF, Barry Posen, Lt. Col. Karl Schloer, USAF, Sidharth Shah, Josh Itzkowitz Shifrinson, Alec Worsnop and members of MIT’s Strategic Use of Force Working Group for their comments and suggestions. All errors are my own. This is a working draft: comments and suggestions are welcome. Introduction Air power remains the arm of choice for Western policymakers contemplating humanitarian military intervention. Although the early 1990s witnessed ground forces deployed to northern Iraq, Somalia, and Haiti to protect civilians and ensure the provision of humanitarian aid, interveners soon embraced air power for humanitarian contingencies. In Bosnia, the North Atlantic Treaty Organization’s (NATO’s) success in combining air power with local ground forces to coerce the Serbs to the negotiating table at Dayton in 1995 suggested air power could help provide an effective response to humanitarian crises that minimized the risks of armed intervention.1 And though NATO’s
    [Show full text]
  • Ballistic, Cruise Missile, and Missile Defense Systems: Trade and Significant Developments, June 1994-September 1994
    Missile Developments BALLISTIC, CRUISE MISSILE, AND MISSILE DEFENSE SYSTEMS: TRADE AND SIGNIFICANT DEVELOPMENTS, JUNE 1994-SEPTEMBER 1994 RUSSIA WITH AFGHANISTAN AND AFGHANISTAN TAJIKISTAN AUSTRALIA 8/10/94 According to Russian military forces in Dushanbe, the 12th post of the Moscow INTERNAL DEVELOPMENTS border troops headquarters in Tajikistan is INTERNAL DEVELOPMENTS attacked by missiles fired from Afghan ter- 9/27/94 ritory. The Russians respond with suppres- 7/94 Rocket and mortar attacks leave 58 people sive fire on the missile launcher emplace- It is reported that Australia’s University of dead and 224 wounded in Kabul. Kabul ment; no casualties are reported. Queensland can produce a scramjet air- radio attributes this attack to factions op- Itar-Tass (Moscow), 8/11/94; in FBIS-SOV-94-155, breathing engine, which may offer payload posing President Burhanuddin Rabbani. 8/11/94, p. 36 (4564). and cost advantages over conventional SLVs. More than 100 rockets and mortar shells Chris Schacht, Australian (Sydney), 7/20/94, p. 6; are fired on residential areas of Kabul by 8/27/94 in FBIS-EAS-94-152, 8/8/94, pp. 89-90 (4405). anti-Rabbani militia under the control of During the early morning hours, Tajik Prime Minister Gulbuddin Hekmatyar and Mujaheedin launch several missiles at the 7/94 northern warlord General Abdul Rashid Russian Frontier Guard observation posi- It is reported that the Australian government Dostam. tion and post on the Turk Heights in awarded Australia’s AWA Defence Industries Wall Street Journal, 9/28/94, p. 1 (4333). Tajikistan. The missiles are launched from (AWADI) a $17 million contract to produce the area of the Afghan-Tajik border and from the Active Missile Decoy (AMD) system, a Afghan territory, according to the second “hovering rocket-propelled anti-ship missile commander of Russian border guards in decoy system” providing for ship defense against sea-skimming missiles.
    [Show full text]
  • Iran and the Gulf Military Balance - I
    IRAN AND THE GULF MILITARY BALANCE - I The Conventional and Asymmetric Dimensions FIFTH WORKING DRAFT By Anthony H. Cordesman and Alexander Wilner Revised July 11, 2012 Anthony H. Cordesman Arleigh A. Burke Chair in Strategy [email protected] Cordesman/Wilner: Iran & The Gulf Military Balance, Rev 5 7/11/12 2 Acknowledgements This analysis was made possible by a grant from the Smith Richardson Foundation. It draws on the work of Dr. Abdullah Toukan and a series of reports on Iran by Adam Seitz, a Senior Research Associate and Instructor, Middle East Studies, Marine Corps University. 2 Cordesman/Wilner: Iran & The Gulf Military Balance, Rev 5 7/11/12 3 INTRODUCTION ............................................................................................................................................. 5 THE HISTORICAL BACKGROUND ....................................................................................................................... 6 Figure III.1: Summary Chronology of US-Iranian Military Competition: 2000-2011 ............................... 8 CURRENT PATTERNS IN THE STRUCTURE OF US AND IRANIAN MILITARY COMPETITION ........................................... 13 DIFFERING NATIONAL PERSPECTIVES .............................................................................................................. 17 US Perceptions .................................................................................................................................... 17 Iranian Perceptions............................................................................................................................
    [Show full text]
  • Iran's Foreign and Defense Policies
    Iran’s Foreign and Defense Policies Updated May 8, 2019 Congressional Research Service https://crsreports.congress.gov R44017 SUMMARY R44017 Iran’s Foreign and Defense Policies May 8, 2019 Iran’s national security policy is the product of many overlapping and sometimes competing factors such as the ideology of Iran’s Islamic revolution, perception of threats Kenneth Katzman to the regime and to the country, long-standing national interests, and the interaction of Specialist in Middle the Iranian regime’s factions and constituencies. Iran’s leadership: Eastern Affairs x Seeks to deter or thwart U.S. or other efforts to invade or intimidate Iran or to bring about a change of regime. x Has sought to take advantage of opportunities of regional conflicts to overturn a power structure in the Middle East that it asserts favors the United States, Israel, Saudi Arabia, and other Sunni Muslim Arab regimes. x Seeks to enhance its international prestige and restore a sense of “greatness” reminiscent of ancient Persian empires. x Advances its foreign policy goals, in part by providing material support to regional allied governments and armed factions. Iranian officials characterize the support as helping the region’s “oppressed” and assert that Saudi Arabia, in particular, is instigating sectarian tensions and trying to exclude Iran from regional affairs. x Sometimes disagrees on tactics and strategies. Supreme Leader Ali Khamene’i and key hardline institutions, such as the Islamic Revolutionary Guard Corps (IRGC), oppose any compromises of Iran’s national security core goals. Iran’s elected president, Hassan Rouhani, and Foreign Minister Mohammad Javad Zarif support Iran’s integration into regional and international diplomacy.
    [Show full text]