Bounding 2D Functions by Products of 1D Functions 3
BOUNDING 2D FUNCTIONS BY PRODUCTS OF 1D FUNCTIONS FRANC¸OIS DORAIS AND DAN HATHAWAY Abstract. Given sets X, Y and a regular cardinal µ, let Φ(X,Y,µ) be the statement that for any function f : X × Y → µ, there are functions g1 : X → µ and g2 : Y → µ such that for all (x, y) ∈ X × Y , f(x, y) ≤ max{g1(x),g2(y)}. In ZFC, the statement Φ(ω1,ω1,ω) is false. However, we show the theory ZF + “the club filter on ω1 is normal” + Φ(ω1,ω1,ω) is equiconsistent with ZFC + “there exists a measurable cardinal”. 1. Introduction The Axiom of Choice allows us to define objects of size ω1 that do not behave like objects of size ω. For infinite cardinals λ1 and λ2, we introduce a statement Φ(λ1,λ2,ω) which implies in some sense that functions from λ1 × λ2 to ω behave like functions from ω × ω to ω. In Section 2 we show in ZFC that Φ(λ,ω,ω) is true iff λ < b, where b is the bounding number. We also show that in ZF that Φ(R,ω,ω) is false. In Section 3 we show that Φ(ω1,ω1,ω) is false in ZF assuming ω1 is regular and there is an injection of ω1 into R. Thus, if ZF + “ω1 is regular” + Φ(ω1,ω1,ω) holds, then ω1 is inaccessible in every inner model that satisfies the Axiom of Choice. On the other hand consider AD, the Axiom of Determinacy. This is arXiv:1601.05454v3 [math.LO] 23 Jan 2020 an axiom which contradicts the Axiom of Choice.
[Show full text]