Effects of Microrna Modulation of PLK1 in Breast Cancer in Combination with PLK1 Inhibitor NMS-P937

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Microrna Modulation of PLK1 in Breast Cancer in Combination with PLK1 Inhibitor NMS-P937 Effects of MicroRNA modulation of PLK1 in Breast Cancer in combination with PLK1 inhibitor NMS-P937 Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Nicole Zalles Graduate Program in Biomedical Sciences The Ohio State University 2019 Dissertation Committee Carlo M. Croce, M.D., Advisor Kay Huebner, Ph.D. William Carson, M.D. Larry Schlesinger, M.D. 1 Copyrighted by Nicole Zalles 2019 Abstract The elucidation of more universal therapeutic targets is key to effectively combat the heterogeneity of breast cancer (BrCa). MicroRNAs (miRNAs) are small noncoding RNAs that are an abundant class of endogenous regulatory molecules, which act by targeting mRNAs for cleavage and/or translational repression. Continuing studies into BrCa genetics show that the various subtypes of BrCa are also affected by miRNA activity, which can even influence drug response. This prompted our investigation into the nuances of how miRNAs may influence BrCa behavior and response to treatment with targeted therapies, focusing on the proto-oncogene Polo-like Kinase 1 (PLK1). PLK1 plays an important role in the cell cycle, and is considered to be a proto-oncogene. Inhibiting PLK1 in has shown promise in reducing tumor volume and promoting tumor cell death in various cancers. A member of the miRNA-183 cluster, miRNA-183-5p, was found to bind to the 3’ UTR of PLK1, with transiently-induced overexpression resulting in reduced expression levels of the active PLK1 protein. We also discovered that the miRNA-regulated reduction of PLK1 influenced the expression of other proteins in the PLK1 pathway, and affected cancer cell response to a PLK1-specific inhibitor, NMS-P937. The activity of miRNA-183-5p on PLK1 demonstrated an effect on cancer cell apoptosis following treatment with NMS- P937, suggesting a link with miRNA-183-5p expression and the efficacy of PLK1-specific inhibition in breast cancer cell lines. MiRNA-mediated regulation plays an important role ii in the initiation, progression and drug response of tumors. Understanding how miRNAs regulate PLK1 in breast cancer will improve our understanding of the PLK1 pathway, and whether this miRNA-directed regulation affects anti-PLK1 therapy. The work outlined here sets the stage for further inquiry into miRNA-governed pathways and their effects on drug response, something that should be considered carefully as putative targets are identified for breast cancer therapy. iii Dedication Dedicated to my family, my friends, and to the patients and families who bravely face the complications of this disease every day iv Acknowledgments I am very grateful to my advisor, Dr. Carlo M. Croce, for the opportunity to pursue this and other projects in his laboratory. Without his support, critique and guidance, none of this would be possible. The lessons and skills I have learned here over the past few years cannot be understated in terms of their value and impact. I should also like to thank both my advisory committee members, Dr. Kay Huebner, Dr. William Carson, and Dr. Larry Schlesinger for their help in every step of the way, from the candidacy exam all the way to this point. Your comments, critiques, and suggestions during committee meetings were positively invaluable as I worked to accomplish what I had set out to do. I also extend a special thank you to Dr. David Rimm for his support and mentorship so early on in my scientific career; without his help, direction and willingness to take a high school graduate into his laboratory, I would never have been exposed to research, nor would I have known about the prospect of becoming a physician-scientist, completely changing my life and career trajectory in the most profound way. I am also incredibly grateful to Dr. Charles Perou, who gave me the opportunity to further advance my scientific skills and training during my undergraduate studies, under the careful and patient tutelage of Dr. Charles Harrell. Your profound support and career advice cemented my research interests and goals. v I would like to thank the Biomedical Sciences Graduate Program (BSGP) for providing the resources and means to pursue my research interests. I would especially like to thank Mrs. Amy Lahmers for her constant patience and guidance with all questions and concerns I had throughout the PhD process. I am also inherently grateful to Dr. Pierluigi Gasparini for his time, patience and tutelage. He always motivated me to work diligently and think scientifically, and has always been there to provide guidance and focus. Thanks to Gianni, Dario and Rosario for their tremendous assistance in the analysis of the patient expression data for this project, and thank you to Nicola for his invaluable help in all thing mouse-related. Thanks also to Dr. Bruce Kimler, whose guidance and perspective has always been a welcome source of wisdom as I’ve developed and solidified my career goals. I would like to thank Dr. Dorothee Wernicke, Mrs. Sharon Palko and Mrs. Marika Arledge for their everyday support and assistance. I would like to give many thanks to all previous and current members of the laboratory and our neighbors, especially Dr. Francesca Lovat, Dr. Federica Calore, Dr. Marina Capece, Dr. Pooja Joshi, Dr. Douglas Cheung, Dr. Alessandra Drusco, Dr. Dario Veneziano, Dr. Anna Tesari, and Dr. Veronica Baletti. I would also like to thank all the staff at the University Laboratory Animal Resources (ULAR) for providing all the support on mouse experiments. I would like to thank the Genomics Shared Resource (GSR) and Dr. Paolo Fadda for the technical advice and support. I would like to give special thanks to the Medical Scientist Training Program (MSTP), who gave me the opportunity to pursue my dream of combining the medical profession with scientific inquiry. In particular, I am grateful to Ashley Bertran and Aaron vi Thomas for their administrative and personal support. I of course would be remiss to mention a few key classmates who have been with me since the first day of pursuing this long but rewarding training process- Eileen, Ellen, Lucy, Giancarlo and Kavin, who have all helped me get through some of the tougher times throughout medical and graduate school. I am also incredibly grateful to my other friends Alisha, Tiffany, Abbie, Gabrielle, Tony, Joyce, and the Malleske family. I couldn’t have made it through the day-to-day without all of you. Last, but most importantly, I would like to give special recognition to my family, first and foremost to Dr. Maria Carola Zalles, my mother and guiding light for all aspects of my life. She instilled in me the importance of hard work, and inspired me to pursue a career in service to others, shaping me into the person I am today. She sparked my love for the sciences and medicine as a whole, and is my constant source of love and support. I want to thank my brother Daniel, for his grounded and practical perspective in all things, and in sharing my excitement for the simple things that make life worthwhile. I would also like to dedicate this work to the memory of my uncle Alfredo Bouchon Jr., and my grandfather Alfredo Bouchon Sr. They always made me feel as if I could do anything from the time I was very young. My grandfather showed through example how excellence is not simply given; it is earned. I miss them both dearly, and hope I have been able to make them proud. vii Vita 2009 to 2013 .................................................. B.A. Biology (Cum Laude), B.A. Anthropology University of North Carolina at Chapel Hill 2013 to 2015 ................................................. Medical Student, The Ohio State University, Columbus, Ohio 2015 to present ..............................................Graduate Research Associate, The Ohio State University, Columbus, Ohio Publications 1. Zalles, C., Zalles, N., Mahooti, S., Zahid, F., Khan, S., and Rimm, D. (2009). Objective spectral-spatial analysis of Random Pariareolar Fine Needle Aspiration of Women at High Risk for Breast Cancer. Poster presented at San Antonio Breast Cancer Symposium 2. Harrell, JC., Pfefferle, AD., Zalles, N., Prat, A., Fan, C., Khramtsov, A., Olopade, OI., Troester, MA., Dudley, AC., and Perou, CM. (2013). Endothelial-like properties of claudin-low breast cancer cells promote tumor vascular permeability. Clin Exp Metastasis. 31(1): 33-45. 3. Zalles, N., Gasparini, P., and Croce, C.M (2018). The Effects of microRNA modulation of Polo-like Kinase 1 in Breast Cancer cell lines. Poster presented at San Antonio Breast Cancer symposium viii Fields of Study Major Field: Biomedical Sciences ix Table of Contents Abstract ............................................................................................................................... ii Dedication .......................................................................................................................... iv Acknowledgments............................................................................................................... v Vita ................................................................................................................................... viii List of Tables .................................................................................................................... xii List of Figures .................................................................................................................. xiii Chapter 1. Introduction ......................................................................................................
Recommended publications
  • Age, DNA Methylation and the Malignant Potential of the Serrated Neoplasia Pathway Lochlan John Fennell B
    Age, DNA Methylation and the Malignant Potential of the Serrated Neoplasia Pathway Lochlan John Fennell B. Biomed Sci A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2020 Faculty of Medicine ORC ID: 0000-0003-3214-3527 1 Abstract Colorectal cancer is the third most common cancer in Australia and is responsible for the death of over four thousand Australians each year. There are two overarching molecular pathways leading to colorectal cancer. The conventional pathway, which is responsible for ~75% of colorectal cancer diagnoses, occurs in a step-wise manner and is the consequence of a series of genetic alterations including mutations of tumour suppressor genes and gross chromosomal abnormalities. This pathway has been extensively studied over the past three decades. The serrated neoplasia pathway is responsible for the remaining colorectal cancers. This pathway is triggered by oncogenic BRAF mutation and these cancers accumulate epigenetic alterations while progressing to invasive cancer. DNA methylation is important in serrated neoplasia, however the extent and role of DNA methylation on the initiation and progression of serrated lesions is not clear. DNA methylation accumulates in tissues with age, and advanced serrated lesions and cancers occur almost exclusively in elderly patients. How this methylation affects serrated lesions is unknown. In this thesis I set out to address three key research questions related to DNA methylation, age and serrated colorectal neoplasia. First, what is the extent of DNA methylation in colorectal cancers?; Second, Does age-related hypermethylation, and namely that occurring at the loci encoding tumour suppressor genes, increase the risk of serrated colorectal neoplasia?; and if true, how can we reconcile this with the existence of early onset serrated colorectal cancer? In the first chapter of this thesis, I examine the DNA methylation and transcriptional architecture of 216 colorectal cancer samples collected consecutively at the Royal Brisbane and Women’s hospital.
    [Show full text]
  • Resistance to Drugs and Cell Death in Cancer Stem Cells (Cscs)
    Journal of Translational Science Review Article ISSN: 2059-268X Resistance to drugs and cell death in cancer stem cells (CSCs) Ahmad R Safa* Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, USA Abstract Human cancers emerge from cancer stem cells (CSCs), which are resistant to cancer chemotherapeutic agents, radiation, and cell death. Moreover, autophagy provides the cytoprotective effect which contributes to drug resistance in these cells. Furthermore, much evidence shows that CSCs cause tumor initiation, progression, metastasis, and cancer recurrence. Various signaling pathways including the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), maternal embryonic leucine zipper kinase (MELK), NOTCH1, and Wnt/β-catenin as well as the CSC markers maintain CSC properties. Several mechanisms including overexpression of ABC multidrug resistance transporters, a deficiency in mitochondrial-mediated apoptosis, upregulation of c-FLIP, overexpression of anti- apoptotic Bcl-2 family members and inhibitors of apoptosis proteins (IAPs), and PI3K/AKT signaling contribute to enhancing resistance to chemotherapeutic drugs and cell death induction in CSCs in various cancers. Studying such pathways may help provide detailed understanding of CSC mechanisms of resistance to chemotherapeutic agents and apoptosis and may lead to the development of effective therapeutics to eradicate CSCs. Abbreviations: Apaf-1: Apoptotic Proteinase-Activating Factor-1; Tumor recurrence is the major cause of death in patients with AIC: Apoptosis Inhibitory Complex; BH3: Bcl-2 Homology Domain-3; incurable malignancies and is attributed to treatment-resistant CSCs CSCs: Cancer Stem Cells; c-FLIP: cellular FLICE (FADD-like IL- within the primary tumor (Figure 2). CSCs are a rare cell population 1β-converting enzyme)-Inhibitory Protein; DISC: Death-Inducing within a tumor, which express differing molecular markers in various Signaling Complex; DNA-PK: DNA-Dependent Protein Kinase; FADD: types of cancers [1,2,4].
    [Show full text]
  • Supplementary Table 1. in Vitro Side Effect Profiling Study for LDN/OSU-0212320. Neurotransmitter Related Steroids
    Supplementary Table 1. In vitro side effect profiling study for LDN/OSU-0212320. Percent Inhibition Receptor 10 µM Neurotransmitter Related Adenosine, Non-selective 7.29% Adrenergic, Alpha 1, Non-selective 24.98% Adrenergic, Alpha 2, Non-selective 27.18% Adrenergic, Beta, Non-selective -20.94% Dopamine Transporter 8.69% Dopamine, D1 (h) 8.48% Dopamine, D2s (h) 4.06% GABA A, Agonist Site -16.15% GABA A, BDZ, alpha 1 site 12.73% GABA-B 13.60% Glutamate, AMPA Site (Ionotropic) 12.06% Glutamate, Kainate Site (Ionotropic) -1.03% Glutamate, NMDA Agonist Site (Ionotropic) 0.12% Glutamate, NMDA, Glycine (Stry-insens Site) 9.84% (Ionotropic) Glycine, Strychnine-sensitive 0.99% Histamine, H1 -5.54% Histamine, H2 16.54% Histamine, H3 4.80% Melatonin, Non-selective -5.54% Muscarinic, M1 (hr) -1.88% Muscarinic, M2 (h) 0.82% Muscarinic, Non-selective, Central 29.04% Muscarinic, Non-selective, Peripheral 0.29% Nicotinic, Neuronal (-BnTx insensitive) 7.85% Norepinephrine Transporter 2.87% Opioid, Non-selective -0.09% Opioid, Orphanin, ORL1 (h) 11.55% Serotonin Transporter -3.02% Serotonin, Non-selective 26.33% Sigma, Non-Selective 10.19% Steroids Estrogen 11.16% 1 Percent Inhibition Receptor 10 µM Testosterone (cytosolic) (h) 12.50% Ion Channels Calcium Channel, Type L (Dihydropyridine Site) 43.18% Calcium Channel, Type N 4.15% Potassium Channel, ATP-Sensitive -4.05% Potassium Channel, Ca2+ Act., VI 17.80% Potassium Channel, I(Kr) (hERG) (h) -6.44% Sodium, Site 2 -0.39% Second Messengers Nitric Oxide, NOS (Neuronal-Binding) -17.09% Prostaglandins Leukotriene,
    [Show full text]
  • The P90 RSK Family Members: Common Functions and Isoform Specificity
    Published OnlineFirst August 22, 2013; DOI: 10.1158/0008-5472.CAN-12-4448 Cancer Review Research The p90 RSK Family Members: Common Functions and Isoform Specificity Romain Lara, Michael J. Seckl, and Olivier E. Pardo Abstract The p90 ribosomal S6 kinases (RSK) are implicated in various cellular processes, including cell proliferation, survival, migration, and invasion. In cancer, RSKs modulate cell transformation, tumorigenesis, and metastasis. Indeed, changes in the expression of RSK isoforms have been reported in several malignancies, including breast, prostate, and lung cancers. Four RSK isoforms have been identified in humans on the basis of their high degree of sequence homology. Although this similarity suggests some functional redundancy between these proteins, an increasing body of evidence supports the existence of isoform-based specificity among RSKs in mediating particular cellular processes. This review briefly presents the similarities between RSK family members before focusing on the specific function of each of the isoforms and their involvement in cancer progression. Cancer Res; 73(17); 1–8. Ó2013 AACR. Introduction subsequently cloned throughout the Metazoan kingdom (2). The extracellular signal–regulated kinase (ERK)1/2 pathway The genomic analysis of several cancer types suggests that fi is involved in key cellular processes, including cell prolifera- these genes are not frequently ampli ed or mutated, with some tion, differentiation, survival, metabolism, and migration. notable exceptions (e.g., in the case of hepatocellular carcino- More than 30% of all human cancers harbor mutations within ma; ref. 6). Table 1 summarizes reported genetic changes in this pathway, mostly resulting in gain of function and conse- RSK genes.
    [Show full text]
  • STRIPAK Complexes in Cell Signaling and Cancer
    Oncogene (2016), 1–9 © 2016 Macmillan Publishers Limited All rights reserved 0950-9232/16 www.nature.com/onc REVIEW STRIPAK complexes in cell signaling and cancer Z Shi1,2, S Jiao1 and Z Zhou1,3 Striatin-interacting phosphatase and kinase (STRIPAK) complexes are striatin-centered multicomponent supramolecular structures containing both kinases and phosphatases. STRIPAK complexes are evolutionarily conserved and have critical roles in protein (de) phosphorylation. Recent studies indicate that STRIPAK complexes are emerging mediators and regulators of multiple vital signaling pathways including Hippo, MAPK (mitogen-activated protein kinase), nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are extensively involved in a variety of fundamental biological processes ranging from cell growth, differentiation, proliferation and apoptosis to metabolism, immune regulation and tumorigenesis. Growing evidence correlates dysregulation of STRIPAK complexes with human diseases including cancer. In this review, we summarize the current understanding of the assembly and functions of STRIPAK complexes, with a special focus on cell signaling and cancer. Oncogene advance online publication, 15 February 2016; doi:10.1038/onc.2016.9 INTRODUCTION in the central nervous system and STRN4 is mostly abundant in Recent proteomic studies identified a group of novel multi- the brain and lung, whereas STRN3 is ubiquitously expressed in 5–9 component complexes named striatin (STRN)-interacting phos- almost all tissues. STRNs share a
    [Show full text]
  • Cancer Stem Cells
    CANCER STEM CELLS MELK-Dependent FOXM1 Phosphorylation is Essential for Proliferation of Glioma Stem Cells a a b a a KAUSHAL JOSHI, YESHAVANTH BANASAVADI-SIDDEGOWDA, XIAOKUI MO, SUNG-HAK KIM, PING MAO, i e,f g,h e,f c,d CENK KIG, DIANA NARDINI, ROBERT W. SOBOL, LIONEL M.L. CHOW, HARLEY I. KORNBLUM, e,f i a RONALD WACLAW, MONIQUE BEULLENS, ICHIRO NAKANO aDepartment of Neurological Surgery, The James Comprehensive Cancer Center and bCenter for Biostatistics, The Ohio State University, Columbus, Ohio, USA; cDepartment of Psychiatry and dDepartment of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, USA; eCancer and Blood Diseases Institute at Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA; fDivision of Experimental Hematology and Cancer Biology at Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA; gDepartment of Pharmacology & Chemical Biology and hDepartment of Human Genetics, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA; iLaboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium Key Words. Neural stem cell • Cancer stem cell • Glioblastoma • Glioblastoma stem cell • PLK1 ABSTRACT Glioblastoma multiforme (GBM) is a life-threatening tion, suggesting that FOXM1 is required for NPC brain tumor. Accumulating evidence suggests that eradi- growth. During tumorigenesis, FOXM1 expression cation of glioma stem-like cells (GSCs) in GBM is essen- sequentially increases as cells progress from NPCs, to tial to achieve cure. The transcription factor FOXM1 has pretumorigenic progenitors and GSCs. The antibiotic Sio- recently gained attention as a master regulator of mitotic mycin A disrupts MELK-mediated FOXM1 signaling progression of cancer cells in various organs.
    [Show full text]
  • Differential and Overlapping Immune Programs Regulated by IRF3 and IRF5 in Plasmacytoid Dendritic Cells
    Differential and Overlapping Immune Programs Regulated by IRF3 and IRF5 in Plasmacytoid Dendritic Cells This information is current as Kwan T. Chow, Courtney Wilkins, Miwako Narita, Richard of September 28, 2021. Green, Megan Knoll, Yueh-Ming Loo and Michael Gale, Jr. J Immunol published online 8 October 2018 http://www.jimmunol.org/content/early/2018/10/05/jimmun ol.1800221 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2018/10/05/jimmunol.180022 Material 1.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2018 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published October 8, 2018, doi:10.4049/jimmunol.1800221 The Journal of Immunology Differential and Overlapping Immune Programs Regulated by IRF3 and IRF5 in Plasmacytoid Dendritic Cells Kwan T. Chow,*,† Courtney Wilkins,* Miwako Narita,‡ Richard Green,* Megan Knoll,* Yueh-Ming Loo,* and Michael Gale, Jr.* We examined the signaling pathways and cell type–specific responses of IFN regulatory factor (IRF) 5, an immune-regulatory transcription factor.
    [Show full text]
  • Activation of Diverse Signalling Pathways by Oncogenic PIK3CA Mutations
    ARTICLE Received 14 Feb 2014 | Accepted 12 Aug 2014 | Published 23 Sep 2014 DOI: 10.1038/ncomms5961 Activation of diverse signalling pathways by oncogenic PIK3CA mutations Xinyan Wu1, Santosh Renuse2,3, Nandini A. Sahasrabuddhe2,4, Muhammad Saddiq Zahari1, Raghothama Chaerkady1, Min-Sik Kim1, Raja S. Nirujogi2, Morassa Mohseni1, Praveen Kumar2,4, Rajesh Raju2, Jun Zhong1, Jian Yang5, Johnathan Neiswinger6, Jun-Seop Jeong6, Robert Newman6, Maureen A. Powers7, Babu Lal Somani2, Edward Gabrielson8, Saraswati Sukumar9, Vered Stearns9, Jiang Qian10, Heng Zhu6, Bert Vogelstein5, Ben Ho Park9 & Akhilesh Pandey1,8,9 The PIK3CA gene is frequently mutated in human cancers. Here we carry out a SILAC-based quantitative phosphoproteomic analysis using isogenic knockin cell lines containing ‘driver’ oncogenic mutations of PIK3CA to dissect the signalling mechanisms responsible for oncogenic phenotypes induced by mutant PIK3CA. From 8,075 unique phosphopeptides identified, we observe that aberrant activation of PI3K pathway leads to increased phosphorylation of a surprisingly wide variety of kinases and downstream signalling networks. Here, by integrating phosphoproteomic data with human protein microarray-based AKT1 kinase assays, we discover and validate six novel AKT1 substrates, including cortactin. Through mutagenesis studies, we demonstrate that phosphorylation of cortactin by AKT1 is important for mutant PI3K-enhanced cell migration and invasion. Our study describes a quantitative and global approach for identifying mutation-specific signalling events and for discovering novel signalling molecules as readouts of pathway activation or potential therapeutic targets. 1 McKusick-Nathans Institute of Genetic Medicine and Department of Biological Chemistry, Johns Hopkins University School of Medicine, 733 North Broadway, BRB 527, Baltimore, Maryland 21205, USA.
    [Show full text]
  • The Role of MDM2 and CDK4 in Well Differentiated Liposarcoma Dr
    The role of MDM2 and CDK4 in well differentiated liposarcoma Dr Rachel Katherine Conyers Submitted in total fulfillment of the requirements of the degree of Doctor of Philosophy April 2015 Department of Pathology The University of Melbourne i Abstract Transformation of normal cells to cancer cells is tightly linked to fundamental changes in cell cycle regulation. In addition, oncogenes can aberrantly enhance cell proliferation. Two genes; Cyclin dependent kinase-4 (CDK4) and Murine double minute 2 (MDM2) are amplified and overexpressed in over 90% of well differentiated liposarcomas. Their role in cell cycle control, and regulation of tumour suppressor p53 respectively, strongly suggesting that deregulation of these genes confers some selective advantage to this tumour. To elucidate the role of these genes in the development and progression of liposarcoma I have used transgenic mouse models and in vitro assays. Given the recent development of novel CDK4 inhibitors, I have tested several CDK4 inhibitors (sc-203873, sc-203874, NPCD, PD 0332991) on liposarcoma cell lines (449B, T1000, 778, GOT3) to determine sensitivity to inhibition, cell cycle arrest and downstream effects of inhibition. PD033991 was found to be the most selective and sensitive CDK4 inhibitor and, as such, was used in a siRNA screen of the genome to identify co-modifiers of CDK4 inhibition. A total of 13 genes were identified that produced a resistance phenotype in the context of CDK4 inhibition. Two of these genes; Arrestin, beta 2 (ARRB2) and Dysferlin (DYSF) demonstrated a reproducible resistance phenotype in a series of functional validation studies. ii Declaration This is to certify that: i the thesis comprises only my original work towards the PhD except where indicated in the Preface, ii due acknowledgement has been made in the text to all other material used, iii the thesis is fewer than 100 000 words in length, exclusive of tables, maps, bibliographies and appendices.
    [Show full text]
  • Characterization of a Protein Kinase B Inhibitor in Vitro and in Insulin-Treated Liver Cells Lisa Logie,1 Antonio J
    Original Article Characterization of a Protein Kinase B Inhibitor In Vitro and in Insulin-Treated Liver Cells Lisa Logie,1 Antonio J. Ruiz-Alcaraz,1 Michael Keane,2,3 Yvonne L. Woods,2 Jennifer Bain,2 Rudolfo Marquez,3 Dario R. Alessi,1 and Calum Sutherland1 OBJECTIVE—Abnormal expression of the hepatic gluconeo- genic genes (glucose-6-phosphatase [G6Pase] and PEPCK) con- tributes to hyperglycemia. These genes are repressed by insulin, rotein kinase B (PKB) is a member of the AGC but this process is defective in diabetic subjects. Protein kinase family of protein kinases (1–3). In mammals, B (PKB) is implicated in this action of insulin. An inhibitor of there are three isoforms (PKB␣, PKB␤, and PKB, Akt inhibitor (Akti)-1/2, was recently reported; however, PPKB␥) (1). PKB is activated following induction the specificity and efficacy against insulin-induced PKB was not of phosphatidylinositol 3 (PI3) kinase activity and the reported. Our aim was to characterize the specificity and efficacy resultant generation of the lipid second messengers PI of Akti-1/2 in cells exposed to insulin and then establish whether 3,4,5 trisphosphate and PI 3,4 bisphosphate (4). These inhibition of PKB is sufficient to prevent regulation of hepatic lipids bind to the PH domain of PKB, altering its confor- gene expression by insulin. mation and permitting access to upstream protein kinases RESEARCH DESIGN AND METHODS—Akti-1/2 was assayed (5). Phosphoinositide-dependent protein kinase-1 phos- against 70 kinases in vitro and its ability to block PKB activation phorylates PKB at Thr308 (6), and a second phosphoryla- in cells exposed to insulin fully characterized.
    [Show full text]
  • PRODUCTS and SERVICES Target List
    PRODUCTS AND SERVICES Target list Kinase Products P.1-11 Kinase Products Biochemical Assays P.12 "QuickScout Screening Assist™ Kits" Kinase Protein Assay Kits P.13 "QuickScout Custom Profiling & Panel Profiling Series" Targets P.14 "QuickScout Custom Profiling Series" Preincubation Targets Cell-Based Assays P.15 NanoBRET™ TE Intracellular Kinase Cell-Based Assay Service Targets P.16 Tyrosine Kinase Ba/F3 Cell-Based Assay Service Targets P.17 Kinase HEK293 Cell-Based Assay Service ~ClariCELL™ ~ Targets P.18 Detection of Protein-Protein Interactions ~ProbeX™~ Stable Cell Lines Crystallization Services P.19 FastLane™ Structures ~Premium~ P.20-21 FastLane™ Structures ~Standard~ Kinase Products For details of products, please see "PRODUCTS AND SERVICES" on page 1~3. Tyrosine Kinases Note: Please contact us for availability or further information. Information may be changed without notice. Expression Protein Kinase Tag Carna Product Name Catalog No. Construct Sequence Accession Number Tag Location System HIS ABL(ABL1) 08-001 Full-length 2-1130 NP_005148.2 N-terminal His Insect (sf21) ABL(ABL1) BTN BTN-ABL(ABL1) 08-401-20N Full-length 2-1130 NP_005148.2 N-terminal DYKDDDDK Insect (sf21) ABL(ABL1) [E255K] HIS ABL(ABL1)[E255K] 08-094 Full-length 2-1130 NP_005148.2 N-terminal His Insect (sf21) HIS ABL(ABL1)[T315I] 08-093 Full-length 2-1130 NP_005148.2 N-terminal His Insect (sf21) ABL(ABL1) [T315I] BTN BTN-ABL(ABL1)[T315I] 08-493-20N Full-length 2-1130 NP_005148.2 N-terminal DYKDDDDK Insect (sf21) ACK(TNK2) GST ACK(TNK2) 08-196 Catalytic domain
    [Show full text]
  • The Role of Autophagy in Regulatory T Cell Function and Homoeostasis
    The Role of Autophagy in Regulatory T Cell Function and Homoeostasis The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Algassim, Abdul. 2016. The Role of Autophagy in Regulatory T Cell Function and Homoeostasis. Doctoral dissertation, Harvard Medical School. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33797192 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Role of Autophagy in Regulatory T Cell Function and Homoeostasis Abdul Algassim A Thesis Submitted to the Faculty of The Harvard Medical School in Partial Fulfillment of the Requirements for the Degree of Master of Medical Sciences in Immunology Harvard University Boston, Massachusetts. Nov, 2016 i Thesis Advisor: Talal Chatila Abdul Algassim Abstract: T regulatory cell are very crucial for the induction of tolerance. Autophagy is a dynamic process for witch cells resort to in case of stress and starvation. Here, we elucidated some of phenotypic changes in autophagy among LRBA deficient subject suffering from regulatory T cell pathology. From there we decided to study role of Autophagy in physiological conditions and we deleted three key enzymes in the Autophagy pathway, namely Vps34, Stk3 and Stk4. This deletion was specific in T regulatory cell utilizing Foxp3YFPcre system and crossing them with flexed genes above. Our result shows that regulatory T cell in particular are more dependent on Autophagy and loss of Autophagy result in severe Autoimmunity.
    [Show full text]