The Role of MDM2 and CDK4 in Well Differentiated Liposarcoma Dr

Total Page:16

File Type:pdf, Size:1020Kb

The Role of MDM2 and CDK4 in Well Differentiated Liposarcoma Dr The role of MDM2 and CDK4 in well differentiated liposarcoma Dr Rachel Katherine Conyers Submitted in total fulfillment of the requirements of the degree of Doctor of Philosophy April 2015 Department of Pathology The University of Melbourne i Abstract Transformation of normal cells to cancer cells is tightly linked to fundamental changes in cell cycle regulation. In addition, oncogenes can aberrantly enhance cell proliferation. Two genes; Cyclin dependent kinase-4 (CDK4) and Murine double minute 2 (MDM2) are amplified and overexpressed in over 90% of well differentiated liposarcomas. Their role in cell cycle control, and regulation of tumour suppressor p53 respectively, strongly suggesting that deregulation of these genes confers some selective advantage to this tumour. To elucidate the role of these genes in the development and progression of liposarcoma I have used transgenic mouse models and in vitro assays. Given the recent development of novel CDK4 inhibitors, I have tested several CDK4 inhibitors (sc-203873, sc-203874, NPCD, PD 0332991) on liposarcoma cell lines (449B, T1000, 778, GOT3) to determine sensitivity to inhibition, cell cycle arrest and downstream effects of inhibition. PD033991 was found to be the most selective and sensitive CDK4 inhibitor and, as such, was used in a siRNA screen of the genome to identify co-modifiers of CDK4 inhibition. A total of 13 genes were identified that produced a resistance phenotype in the context of CDK4 inhibition. Two of these genes; Arrestin, beta 2 (ARRB2) and Dysferlin (DYSF) demonstrated a reproducible resistance phenotype in a series of functional validation studies. ii Declaration This is to certify that: i the thesis comprises only my original work towards the PhD except where indicated in the Preface, ii due acknowledgement has been made in the text to all other material used, iii the thesis is fewer than 100 000 words in length, exclusive of tables, maps, bibliographies and appendices. __________________________________________________ _____________________ Dr Rachel Katherine Conyers Date iii Preface This is to confirm that all work carried out in this PhD candidature was performed during the time period of the PhD. No work was carried out prior to PhD candidature enrolment. No work has been submitted for other qualifications. The work carried out in this project was all performed by the PhD candidate except for the following: 1. Generation of original MDM2 and CDK4 transgenic mice performed by Ozgene Pty Ltd. 2. Bioinformatics analysis of silencing RNA screen of genome performed by Dr. Kate Gould as part of the Victorian Centre for Functional Genomics (VCFG) at Peter MacCallum Cancer Centre. Editorial assistance was provided by the supervisors of this PhD; Associate Professor David Thomas and Dr. Maya Kansara. Further editorial support was provided by Associate Professor Paul Ekert, Professor Richard Sullivan, Dr. Seong Khaw and Ms Judith Gregory. iv Acknowledgements When I started my PhD, my supervisor, Associate Professor David Thomas, told me thatlike acompleting marathon, aand PhD personally, was like running I think ita marathon.should have He come wasnt with wrong. a government It was much health warning! Having said this, completing my PhD has proven to be one of the most satisfying and fulfilling aspects of my medical career thus far. So the old adage, no pain, no gain, definitely holds true. IdCouncil like to for acknowledge my PhD scholarship. the support I am of grateful the National to both Health my supervisors, and Medical Associate Research Professor David Thomas and Dr Maya Kansara, whose vision created this project, for guiding me through the world of science and teaching me a skill set that I otherwise was not privy too. There are a number of special souls who helped me at various times throughout this journey. Associate Professor Paul Ekert, Dr Seong Khaw deserve special mentions for their help and inspiration at times when I needed it most. To Professor Richard Sullivan and Ms Judith Gregory for their help with the editing process. To my best friends Dr Romi Anaf and Dr Elise Harrison, who must have heard the phrase my PhDour many, at least many, a million years times of friendship. by now, thankTo my you sisters for yourSara unwaveringand Katherine support for always and for enriching my life and being a source of fun and frivolity. To my partner Peter for being a wonderful partner and friend. Finally, I dedicate this PhD to my parents Mr Michael Conyers and Mrs Wendy Conyers. I was lucky enough to have parents who taught me to believe in myself and to strive for whatever I desired in life. My parents taught me that hard work never hurt anybody. They instilled in me both dedication and determination. They are wonderful human beings. Mum and Dad, I love you. v Figures and Tables Chapter 1: Background Figure 1 MDM2 Structure 6 Figure 2 TP 53 Structure 8 Figure 3 Schema of p53 downstream effects 9 Figure 4 Function of CDK4 13 Table 1 Published CDK4/6 inhibitors 25 Table 2 MDM2 inhibitors in clinical trials 27 Chapter 2: Materials and Methods Figure 1 Schematic representation of MDM2 transgene 33 Figure 2 PCR confirming transgene in embryonic stem cells 34 Figure 3 PCR confirming transgene in mice chimera 35 Figure 4 Primer design for mouse studies 37 Figure 5 Experimental design siRNA screen 59 Figure 6 Control setup for high through-put screen 62 Figure 7 Pipeline for determining siRNA screen hits 63 Table 1 DNA lysis mixture 36 Table 2 Primer sequences for mouse studies 37 Table 3 PCR master mix 38 Table 4 Lenti- 40 Table 5 Lenti- n 40 Table 6 PrimerX™ sequences HT Master for Mix RT-PCR Specifications mouse studies 47 Table 7 PrimaryX™ antibodies HT PEI transfectio for Western Blot 51 Table 8 SiRNA smartpool complexes 52 Table 9 Vectors used for MEFS transfections 53 Table 10 NanoJuice Transfection Master Mix 53 Table 11 Antibiotics used in Bacterial Culture 55 Table 12 Master mix for PEI Transfection 55 Table 13 Lenti- 55 Table 14 shRNA vectors 57 Table 15 CDK4 X™inhibitors HT PEI usedtransfection in experiments 58 Table 16 Quality control metrics 64 Chapter 3: Mouse Studies Figure 1 Primer design for Mdm2fl/+ mouse studies 71 vi Figure 2 Genotyping results for mouse studies 71 Figure 3 PCR analysis for Cre-mediated recombination 74 Figure 4 Transfection of Cre-ERT/MDM2fl/+ MEFS. 77 Figure 5 Western blot analysis for MDM2 in Cre-ERT/MDM2fl/+ MEFS 79 Figure 6 Characterisation of the conditional Cre-ERT2/MDM2fl/+ mice 82 Figure 7 GFP detection via immunofluorescence 83 Figure 8 Flow cytometry analyses of reporter GFP expression 85 Figure 9 RT-PCR analysis of Cre-ERT2/MDM2fl/+ mice 87 Figure 10 Western blot analysis for MDM2 in MDM2 mice 88 Figure 11 Stable MEF transfections with CDK4 and MDM2 91 Table 1 Summary of MEF and MDM2fl/+ mouse studies 89 Chapter 4: CDK4 and CDK4 inhibitors in Well differentiated liposarcoma Figure 1 The role of CDK4 in cell cycle progression 96 Figure 2 MTS assay using SC-203874 and SC-203873 on 449B cell line 102 Figure 3 MTS assay using SC-203874 and SC-203873 on 778 cell line 103 Figure 4 CFA using SC-203874 and SC-203873 on 449B cell line 105 Figure 5 MTS assay using NPCD and variety of CDK4 amplified cell lines 107 Figure 6 CFA using NPCD on 449B cell line 108 Figure 7 Western blot analysis of NPCD treated 449B cell line 109 Figure 8 Apoptotic response following NPCD treatment to 449B cell line 111 Figure 9 Western blot of RB1 knockdown in 449B cell line 113 Figure 10 CFA and MTS assay of 449B shRB1 cells treated with NPCD 114 Figure 11 MTS assay of PD03322991 treated melanoma cell lines 115 Figure 12 Western blot of RB1 knockdown in CDK4 amplified cell lines 117 Figure 13 MTS assay performed upon RB1 knockdown cell lines 117 Figure 14 MTS and CFA using PD0332991 on 449B cell lines 119 Figure 15 High dose PD0332991 on 449BshRB1 cell lines 120 Figure 16 Cell cycle profile of PD0332991 treated 449B cell line 121 Figure 17 Western blot analysis of PD0332991 treated 449B cell line 122 Table 1 MTS assay results 101 Chapter 5: Genome wide siRNA screen of the genome to identify co-modifiers of CDK4 inhibition in Well differentiated liposarcoma Figure 1 Optimisation workup for siRNA screen 134 Figure 2 Pipeline for siRNA screen 136 Figure 3 Optimisation and experimental design 138 Figure 4 Optimisation of transfection based on RB1 silencing 142 Figure 5 CTG signal stability over extended timeframe 143 Figure 6 Optimisation of transfection controls 146 Figure 7 Quality control measures for screen (Box plots) 150 vii Figure 8 Well scatter plots of optimisation plates 152 Figure 9 Repeat optimisation experiments: effects on quality control 153 Figure 10 Well scatter plots of repeat optimisation plates 154 Figure 11 Pipeline for determining screen resistance hits 156 Figure 12 Well scatter plots of primary screen 158 Figure 13 Quality control metrics of secondary screen 162 Figure 14 Suppression of RNA expression of siRNA targets 169 Figure 15 Tertiary screen results across CDK4 amplified cell lines 170 Figure 16 Validation studies of final screen hits 173 Table 1 Transfection reagents and efficiency 139 Table 2 Transfection reagent conditions using PLK1 and siGLO 140 Table 3 Efficiency of gene silencing by RT-PCR 141 Table 4 Quality control measures used in screen 148 Table 5 Primary screen quality control metrics 157 Table 6 Validated resistance hits for secondary screen 161 Table 7 GSEA analysis of secondary screen siRNA targets 165 Table 8 GeneGo analysis of secondary screen siRNA targets 166 Table 9 Gene list for tertiary
Recommended publications
  • Gene Symbol Gene Description ACVR1B Activin a Receptor, Type IB
    Table S1. Kinase clones included in human kinase cDNA library for yeast two-hybrid screening Gene Symbol Gene Description ACVR1B activin A receptor, type IB ADCK2 aarF domain containing kinase 2 ADCK4 aarF domain containing kinase 4 AGK multiple substrate lipid kinase;MULK AK1 adenylate kinase 1 AK3 adenylate kinase 3 like 1 AK3L1 adenylate kinase 3 ALDH18A1 aldehyde dehydrogenase 18 family, member A1;ALDH18A1 ALK anaplastic lymphoma kinase (Ki-1) ALPK1 alpha-kinase 1 ALPK2 alpha-kinase 2 AMHR2 anti-Mullerian hormone receptor, type II ARAF v-raf murine sarcoma 3611 viral oncogene homolog 1 ARSG arylsulfatase G;ARSG AURKB aurora kinase B AURKC aurora kinase C BCKDK branched chain alpha-ketoacid dehydrogenase kinase BMPR1A bone morphogenetic protein receptor, type IA BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) BRAF v-raf murine sarcoma viral oncogene homolog B1 BRD3 bromodomain containing 3 BRD4 bromodomain containing 4 BTK Bruton agammaglobulinemia tyrosine kinase BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) C9orf98 chromosome 9 open reading frame 98;C9orf98 CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) CALM1 calmodulin 1 (phosphorylase kinase, delta) CALM2 calmodulin 2 (phosphorylase kinase, delta) CALM3 calmodulin 3 (phosphorylase kinase, delta) CAMK1 calcium/calmodulin-dependent protein kinase I CAMK2A calcium/calmodulin-dependent protein kinase (CaM kinase) II alpha CAMK2B calcium/calmodulin-dependent
    [Show full text]
  • Computational Genome-Wide Identification of Heat Shock Protein Genes in the Bovine Genome [Version 1; Peer Review: 2 Approved, 1 Approved with Reservations]
    F1000Research 2018, 7:1504 Last updated: 08 AUG 2021 RESEARCH ARTICLE Computational genome-wide identification of heat shock protein genes in the bovine genome [version 1; peer review: 2 approved, 1 approved with reservations] Oyeyemi O. Ajayi1,2, Sunday O. Peters3, Marcos De Donato2,4, Sunday O. Sowande5, Fidalis D.N. Mujibi6, Olanrewaju B. Morenikeji2,7, Bolaji N. Thomas 8, Matthew A. Adeleke 9, Ikhide G. Imumorin2,10,11 1Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria 2International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA 3Department of Animal Science, Berry College, Mount Berry, GA, 30149, USA 4Departamento Regional de Bioingenierias, Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Queretaro, Mexico 5Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria 6Usomi Limited, Nairobi, Kenya 7Department of Animal Production and Health, Federal University of Technology, Akure, Nigeria 8Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA 9School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa 10School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30032, USA 11African Institute of Bioscience Research and Training, Ibadan, Nigeria v1 First published: 20 Sep 2018, 7:1504 Open Peer Review https://doi.org/10.12688/f1000research.16058.1 Latest published: 20 Sep 2018, 7:1504 https://doi.org/10.12688/f1000research.16058.1 Reviewer Status Invited Reviewers Abstract Background: Heat shock proteins (HSPs) are molecular chaperones 1 2 3 known to bind and sequester client proteins under stress. Methods: To identify and better understand some of these proteins, version 1 we carried out a computational genome-wide survey of the bovine 20 Sep 2018 report report report genome.
    [Show full text]
  • Viewed Under 23 (B) Or 203 (C) fi M M Male Cko Mice, and Largely Unaffected Magni Cation; Scale Bars, 500 M (B) and 50 M (C)
    BRIEF COMMUNICATION www.jasn.org Renal Fanconi Syndrome and Hypophosphatemic Rickets in the Absence of Xenotropic and Polytropic Retroviral Receptor in the Nephron Camille Ansermet,* Matthias B. Moor,* Gabriel Centeno,* Muriel Auberson,* † † ‡ Dorothy Zhang Hu, Roland Baron, Svetlana Nikolaeva,* Barbara Haenzi,* | Natalya Katanaeva,* Ivan Gautschi,* Vladimir Katanaev,*§ Samuel Rotman, Robert Koesters,¶ †† Laurent Schild,* Sylvain Pradervand,** Olivier Bonny,* and Dmitri Firsov* BRIEF COMMUNICATION *Department of Pharmacology and Toxicology and **Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland; †Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts; ‡Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia; §School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; |Services of Pathology and ††Nephrology, Department of Medicine, University Hospital of Lausanne, Lausanne, Switzerland; and ¶Université Pierre et Marie Curie, Paris, France ABSTRACT Tight control of extracellular and intracellular inorganic phosphate (Pi) levels is crit- leaves.4 Most recently, Legati et al. have ical to most biochemical and physiologic processes. Urinary Pi is freely filtered at the shown an association between genetic kidney glomerulus and is reabsorbed in the renal tubule by the action of the apical polymorphisms in Xpr1 and primary fa- sodium-dependent phosphate transporters, NaPi-IIa/NaPi-IIc/Pit2. However, the milial brain calcification disorder.5 How- molecular identity of the protein(s) participating in the basolateral Pi efflux remains ever, the role of XPR1 in the maintenance unknown. Evidence has suggested that xenotropic and polytropic retroviral recep- of Pi homeostasis remains unknown. Here, tor 1 (XPR1) might be involved in this process. Here, we show that conditional in- we addressed this issue in mice deficient for activation of Xpr1 in the renal tubule in mice resulted in impaired renal Pi Xpr1 in the nephron.
    [Show full text]
  • Two Locus Inheritance of Non-Syndromic Midline Craniosynostosis Via Rare SMAD6 and 4 Common BMP2 Alleles 5 6 Andrew T
    1 2 3 Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and 4 common BMP2 alleles 5 6 Andrew T. Timberlake1-3, Jungmin Choi1,2, Samir Zaidi1,2, Qiongshi Lu4, Carol Nelson- 7 Williams1,2, Eric D. Brooks3, Kaya Bilguvar1,5, Irina Tikhonova5, Shrikant Mane1,5, Jenny F. 8 Yang3, Rajendra Sawh-Martinez3, Sarah Persing3, Elizabeth G. Zellner3, Erin Loring1,2,5, Carolyn 9 Chuang3, Amy Galm6, Peter W. Hashim3, Derek M. Steinbacher3, Michael L. DiLuna7, Charles 10 C. Duncan7, Kevin A. Pelphrey8, Hongyu Zhao4, John A. Persing3, Richard P. Lifton1,2,5,9 11 12 1Department of Genetics, Yale University School of Medicine, New Haven, CT, USA 13 2Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA 14 3Section of Plastic and Reconstructive Surgery, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA 15 4Department of Biostatistics, Yale University School of Medicine, New Haven, CT, USA 16 5Yale Center for Genome Analysis, New Haven, CT, USA 17 6Craniosynostosis and Positional Plagiocephaly Support, New York, NY, USA 18 7Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA 19 8Child Study Center, Yale University School of Medicine, New Haven, CT, USA 20 9The Rockefeller University, New York, NY, USA 21 22 ABSTRACT 23 Premature fusion of the cranial sutures (craniosynostosis), affecting 1 in 2,000 24 newborns, is treated surgically in infancy to prevent adverse neurologic outcomes. To 25 identify mutations contributing to common non-syndromic midline (sagittal and metopic) 26 craniosynostosis, we performed exome sequencing of 132 parent-offspring trios and 59 27 additional probands.
    [Show full text]
  • Stress-Responsive Regulation of Mitochondria Through the ER
    TEM-969; No. of Pages 10 Review Stress-responsive regulation of mitochondria through the ER unfolded protein response T. Kelly Rainbolt, Jaclyn M. Saunders, and R. Luke Wiseman Department of Molecular and Experimental Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA The endoplasmic reticulum (ER) and mitochondria form function is sensitive to pathologic insults that induce ER physical interactions involved in the regulation of bio- stress (defined by the increased accumulation of misfolded logic functions including mitochondrial bioenergetics proteins within the ER lumen). ER stress can be transmit- and apoptotic signaling. To coordinate these functions ted to mitochondria by alterations in the transfer of me- 2+ during stress, cells must coregulate ER and mitochon- tabolites such as Ca or by stress-responsive signaling dria through stress-responsive signaling pathways such pathways, directly influencing mitochondrial functions. as the ER unfolded protein response (UPR). Although the Depending on the extent of cellular stress, the stress UPR is traditionally viewed as a signaling pathway re- signaling from the ER to mitochondria can result in pro- sponsible for regulating ER proteostasis, it is becoming survival or proapoptotic adaptations in mitochondrial increasingly clear that the protein kinase RNA (PKR)-like function. endoplasmic reticulum kinase (PERK) signaling pathway During the early adaptive phase of ER stress, ER– 2+ within the UPR can also regulate mitochondria proteos- mitochondrial contacts increase, promoting Ca transfer 2+ tasis and function in response to pathologic insults that between these organelles [4]. This increase in Ca flux into induce ER stress. Here, we discuss the contributions of mitochondria stimulates mitochondrial metabolism 2+ PERK in coordinating ER–mitochondrial activities and through the activity of Ca -regulated dehydrogenases describe the mechanisms by which PERK adapts mito- involved in the tricarboxylic acid (TCA) cycle.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 32-3099: PRKAB1 Recombinant Protein Description
    9853 Pacific Heights Blvd. Suite D. San Diego, CA 92121, USA Tel: 858-263-4982 Email: [email protected] 32-3099: PRKAB1 Recombinant Protein Alternative Name : AMPK,HAMPKb,5'-AMP-activated protein kinase subunit beta-1,AMPK subunit beta-1,AMPKb,PRKAB1. Description Source : E.coli. PRKAB1 Human Recombinant produced in E.Coli is a single, non-glycosylated, polypeptide chain containing 293 amino acids (1-270 a.a.) and having a molecular mass of 32.8 kDa. The PRKAB1 is fused to a 23 amino acid His Tag at N- Terminus and purified by proprietary chromatographic techniques. 5'-AMP-activated protein kinase subunit beta-1 (PRKAB1) hinders protein, carbohydrate and lipid biosynthesis, in addition to cell growth and proliferation. AMPK is a heterotrimer comprised of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK acts via direct phosphorylation of metabolic enzymes, and longer-term effects by phosphorylation of transcription regulators. PRKAB1 is a regulator of cellular polarity by remodeling the actin cytoskeleton; most likely by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex compiles, through its C-terminus that joins alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3). Product Info Amount : 5 µg Purification : Greater than 85% as determined by SDS-PAGE. The PRKAB1 protein solution (0.5mg/ml) contains 20mM Tris-HCl buffer (pH 8.0), 0.15M NaCl, Content : 10% glycerol and 1mM DTT. Store at 4°C if entire vial will be used within 2-4 weeks. Store, frozen at -20°C for longer periods of Storage condition : time.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Age, DNA Methylation and the Malignant Potential of the Serrated Neoplasia Pathway Lochlan John Fennell B
    Age, DNA Methylation and the Malignant Potential of the Serrated Neoplasia Pathway Lochlan John Fennell B. Biomed Sci A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2020 Faculty of Medicine ORC ID: 0000-0003-3214-3527 1 Abstract Colorectal cancer is the third most common cancer in Australia and is responsible for the death of over four thousand Australians each year. There are two overarching molecular pathways leading to colorectal cancer. The conventional pathway, which is responsible for ~75% of colorectal cancer diagnoses, occurs in a step-wise manner and is the consequence of a series of genetic alterations including mutations of tumour suppressor genes and gross chromosomal abnormalities. This pathway has been extensively studied over the past three decades. The serrated neoplasia pathway is responsible for the remaining colorectal cancers. This pathway is triggered by oncogenic BRAF mutation and these cancers accumulate epigenetic alterations while progressing to invasive cancer. DNA methylation is important in serrated neoplasia, however the extent and role of DNA methylation on the initiation and progression of serrated lesions is not clear. DNA methylation accumulates in tissues with age, and advanced serrated lesions and cancers occur almost exclusively in elderly patients. How this methylation affects serrated lesions is unknown. In this thesis I set out to address three key research questions related to DNA methylation, age and serrated colorectal neoplasia. First, what is the extent of DNA methylation in colorectal cancers?; Second, Does age-related hypermethylation, and namely that occurring at the loci encoding tumour suppressor genes, increase the risk of serrated colorectal neoplasia?; and if true, how can we reconcile this with the existence of early onset serrated colorectal cancer? In the first chapter of this thesis, I examine the DNA methylation and transcriptional architecture of 216 colorectal cancer samples collected consecutively at the Royal Brisbane and Women’s hospital.
    [Show full text]
  • NFKBIZ Mutation Prevalence in the Arthur/Schmitz/Chapuy Cohorts
    Supplemental Tables/Figures: Table S1: NFKBIZ mutation prevalence in the Arthur/Schmitz/Chapuy cohorts. Subtype Cohort All ABC DLC Schmitz Chapuy # patients 1006 511 330 466 210 UTR 101 (10) 66 (13) 39 (12) 49 (11) 13 (6) Amplification 86 (8.5) 66 (12.9) 23 (7) 35 (8) 28 (13) NFKBIZ Mutation TOTAL 174 (17) 120 (23.5) 57 (17) 79 (17) 38 (18) Table S2: NFKBIZ 3′ UTR mutations in other WGS cohorts. Cohort # Patients NFKBIZ UTR mutations (%) Publication BL_Adult 81 1 (1.2) Grande_et_al,2019 BL_Pediatric 124 1 (0.8) unpublished DLBCL_cell_lines 15 2 (13.3) Morin_et_al,2013 DLBCL_BC 117 11 (9.4) Arthur_et_al,2018 DLBCL_ICGC 87 11 (12.6) Hübschmann_et_al,2021 FL_ICGC 100 4 (4) Hübschmann_et_al,2021 FL_Kridel 48 1 (2.1) Kridel_et_al,2016 Table S3: COO and LymphGen classifications of DLBCLs and FLs from other cohorts. NFKBIZ UTR mutations (%) DLBCL (%) FL (%) ABC 13 (41.9) 13 (54.2) 0 (0) GCB 4 (12.9) 4 (16.7) 0 (0) COO UNCLASS 2 (6.5) 2 (8.3) 0 (0) NA 12 (38.7) 5 (20.8) 5 (100) TOTAL 31 24 5 BN2 13 (41.9) 9 (37.5) 3 (60) EZB 4 (12.9) 2 (8.3) 2 (40) ST2 1 (3.2) 1 (4.2) 0 (0) LymphGen Other 9 (29) 8 (33.3) 0 (0) Composite 2 (6.5) 2 (8.3) 0 (0) NA 2 (6.5) 2 (8.3) 0 (0) TOTAL 31 24 5 Table S4: LymphGen classifications of all patients and those with NFKBIZ mutations in Arthur/Schmitz/Chapuy cohorts.
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]