32-3099: PRKAB1 Recombinant Protein Description

Total Page:16

File Type:pdf, Size:1020Kb

32-3099: PRKAB1 Recombinant Protein Description 9853 Pacific Heights Blvd. Suite D. San Diego, CA 92121, USA Tel: 858-263-4982 Email: [email protected] 32-3099: PRKAB1 Recombinant Protein Alternative Name : AMPK,HAMPKb,5'-AMP-activated protein kinase subunit beta-1,AMPK subunit beta-1,AMPKb,PRKAB1. Description Source : E.coli. PRKAB1 Human Recombinant produced in E.Coli is a single, non-glycosylated, polypeptide chain containing 293 amino acids (1-270 a.a.) and having a molecular mass of 32.8 kDa. The PRKAB1 is fused to a 23 amino acid His Tag at N- Terminus and purified by proprietary chromatographic techniques. 5'-AMP-activated protein kinase subunit beta-1 (PRKAB1) hinders protein, carbohydrate and lipid biosynthesis, in addition to cell growth and proliferation. AMPK is a heterotrimer comprised of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK acts via direct phosphorylation of metabolic enzymes, and longer-term effects by phosphorylation of transcription regulators. PRKAB1 is a regulator of cellular polarity by remodeling the actin cytoskeleton; most likely by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex compiles, through its C-terminus that joins alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3). Product Info Amount : 5 µg Purification : Greater than 85% as determined by SDS-PAGE. The PRKAB1 protein solution (0.5mg/ml) contains 20mM Tris-HCl buffer (pH 8.0), 0.15M NaCl, Content : 10% glycerol and 1mM DTT. Store at 4°C if entire vial will be used within 2-4 weeks. Store, frozen at -20°C for longer periods of Storage condition : time. For long term storage it is recommended to add a carrier protein (0.1% HSA or BSA).Avoid multiple freeze-thaw cycles. Amino Acid : MGSSHHHHHH SSGLVPRGSH MGSMGNTSSE RAALERHGGH KTPRRDSSGG TKDGDRPKIL MDSPEDADLF HSEEIKAPEK EEFLAWQHDL EVNDKAPAQA RPTVFRWTGG GKEVYLSGSF NNWSKLPLTR SHNNFVAILD LPEGEHQYKF FVDGQWTHDP SEPIVTSQLG TVNNIIQVKK TDFEVFDALM VDSQKCSDVS ELSSSPPGPY HQEPYVCKPE ERFRAPPILP PHLLQVILNK DTGISCDPAL LPEPNHVMLN HLYALSIKDG VMVLSATHRY KKKYVTTLLY KPI For Research Use Only. Not for use in diagnostic/therapeutics procedures..
Recommended publications
  • Gene Symbol Gene Description ACVR1B Activin a Receptor, Type IB
    Table S1. Kinase clones included in human kinase cDNA library for yeast two-hybrid screening Gene Symbol Gene Description ACVR1B activin A receptor, type IB ADCK2 aarF domain containing kinase 2 ADCK4 aarF domain containing kinase 4 AGK multiple substrate lipid kinase;MULK AK1 adenylate kinase 1 AK3 adenylate kinase 3 like 1 AK3L1 adenylate kinase 3 ALDH18A1 aldehyde dehydrogenase 18 family, member A1;ALDH18A1 ALK anaplastic lymphoma kinase (Ki-1) ALPK1 alpha-kinase 1 ALPK2 alpha-kinase 2 AMHR2 anti-Mullerian hormone receptor, type II ARAF v-raf murine sarcoma 3611 viral oncogene homolog 1 ARSG arylsulfatase G;ARSG AURKB aurora kinase B AURKC aurora kinase C BCKDK branched chain alpha-ketoacid dehydrogenase kinase BMPR1A bone morphogenetic protein receptor, type IA BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) BRAF v-raf murine sarcoma viral oncogene homolog B1 BRD3 bromodomain containing 3 BRD4 bromodomain containing 4 BTK Bruton agammaglobulinemia tyrosine kinase BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) C9orf98 chromosome 9 open reading frame 98;C9orf98 CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) CALM1 calmodulin 1 (phosphorylase kinase, delta) CALM2 calmodulin 2 (phosphorylase kinase, delta) CALM3 calmodulin 3 (phosphorylase kinase, delta) CAMK1 calcium/calmodulin-dependent protein kinase I CAMK2A calcium/calmodulin-dependent protein kinase (CaM kinase) II alpha CAMK2B calcium/calmodulin-dependent
    [Show full text]
  • Adrenocortical Tumors Have a Distinct Long Non-Coding RNA Expression Profile and LINC00271 Is Downregulated in Malignancy
    Edinburgh Research Explorer Adrenocortical tumors have a distinct long non-coding RNA expression profile and LINC00271 is downregulated in malignancy Citation for published version: Buishand, F, Liu-Chittenden, Y, Fan, Y, Tirosh, A, Gara, S, Patel, D, Meerzaman, D & Kebebew, E 2019, 'Adrenocortical tumors have a distinct long non-coding RNA expression profile and LINC00271 is downregulated in malignancy', Surgery. https://doi.org/10.1016/j.surg.2019.04.067 Digital Object Identifier (DOI): 10.1016/j.surg.2019.04.067 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Surgery General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 07. Oct. 2021 Elsevier Editorial System(tm) for Surgery Manuscript Draft Manuscript Number: 19-AAES-22R2 Title: Adrenocortical tumors have a distinct long non-coding RNA expression profile and LINC00271 is downregulated in malignancy Article Type: AAES Society Paper Section/Category: Basic Research Keywords: LINC00271; adrenocortical; long noncoding RNA; microarray; prognostic marker; gene signaling pathway. Corresponding Author: Dr.
    [Show full text]
  • Genome Editing with CRISPR/Cas9 in Postnatal Mice Corrects PRKAG2 Cardiac Syndrome
    Cell Research (2016) 26:1099-1111. © 2016 IBCB, SIBS, CAS All rights reserved 1001-0602/16 $ 32.00 ORIGINAL ARTICLE www.nature.com/cr Genome editing with CRISPR/Cas9 in postnatal mice corrects PRKAG2 cardiac syndrome Chang Xie1, 2, *, Ya-Ping Zhang3, *, Lu Song2, *, Jie Luo1, Wei Qi2, Jialu Hu3, Danbo Lu3, Zhen Yang3, Jian Zhang2, Jian Xiao1, Bin Zhou4, Jiu-Lin Du5, Naihe Jing2, Yong Liu1, Yan Wang1, Bo-Liang Li2, Bao-Liang Song1, Yan Yan3 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; 2The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; 3Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; 4Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sci- ences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; 5Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Acade- my of Sciences, 320 Yue-Yang Road, Shanghai 200031, China PRKAG2 cardiac syndrome is an autosomal dominant inherited disease resulted from mutations in the PRK- AG2 gene that encodes γ2 regulatory subunit of AMP-activated protein kinase. Affected patients usually develop ventricular tachyarrhythmia and experience progressive heart failure that is refractory to medical treatment and requires cardiac transplantation. In this study, we identify a H530R mutation in PRKAG2 from patients with famil- ial Wolff-Parkinson-White syndrome. By generating H530R PRKAG2 transgenic and knock-in mice, we show that both models recapitulate human symptoms including cardiac hypertrophy and glycogen storage, confirming that the H530R mutation is causally related to PRKAG2 cardiac syndrome.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Human Kinome Profiling Identifies a Requirement for AMP-Activated
    Human kinome profiling identifies a requirement for AMP-activated protein kinase during human cytomegalovirus infection Laura J. Terrya, Livia Vastagb,1, Joshua D. Rabinowitzb, and Thomas Shenka,2 aDepartment of Molecular Biology and bDepartment of Chemistry and the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544 Contributed by Thomas Shenk, January 11, 2012 (sent for review December 29, 2011) Human cytomegalovirus (HCMV) modulates numerous cellular (7). Thus, the connections between AMPK activity and metabolic signaling pathways. Alterations in signaling are evident from the changes during HCMV infection have remained unclear. broad changes in cellular phosphorylation that occur during HCMV We confirmed the requirement for AMPK during infection, infection and from the altered activity of multiple kinases. Here we and we show that an AMPK antagonist, compound C, blocks report a comprehensive RNAi screen, which predicts that 106 cellular HCMV-induced changes to glycolysis and inhibits viral gene kinases influence growth of the virus, most of which were not expression. These studies argue that AMPK or a related, com- previously linked to HCMV replication. Multiple elements of the pound C-sensitive kinase is an essential contributor to metabolic AMP-activated protein kinase (AMPK) pathway scored in the screen. changes initiated by HCMV and provide unique insight into As a regulator of carbon and nucleotide metabolism, AMPK is poised potential antiviral strategies. to activate many of the metabolic pathways induced by HCMV infection. An AMPK inhibitor, compound C, blocked a substantial Results portion of HCMV-induced metabolic changes, inhibited the accumu- HumanKinomeScreenIdentifies Putative Effectors of HCMV Replication. lation of all HCMV proteins tested, and markedly reduced the We conducted an siRNA screen of the human kinome to perform an production of infectious progeny.
    [Show full text]
  • NFKBIZ Mutation Prevalence in the Arthur/Schmitz/Chapuy Cohorts
    Supplemental Tables/Figures: Table S1: NFKBIZ mutation prevalence in the Arthur/Schmitz/Chapuy cohorts. Subtype Cohort All ABC DLC Schmitz Chapuy # patients 1006 511 330 466 210 UTR 101 (10) 66 (13) 39 (12) 49 (11) 13 (6) Amplification 86 (8.5) 66 (12.9) 23 (7) 35 (8) 28 (13) NFKBIZ Mutation TOTAL 174 (17) 120 (23.5) 57 (17) 79 (17) 38 (18) Table S2: NFKBIZ 3′ UTR mutations in other WGS cohorts. Cohort # Patients NFKBIZ UTR mutations (%) Publication BL_Adult 81 1 (1.2) Grande_et_al,2019 BL_Pediatric 124 1 (0.8) unpublished DLBCL_cell_lines 15 2 (13.3) Morin_et_al,2013 DLBCL_BC 117 11 (9.4) Arthur_et_al,2018 DLBCL_ICGC 87 11 (12.6) Hübschmann_et_al,2021 FL_ICGC 100 4 (4) Hübschmann_et_al,2021 FL_Kridel 48 1 (2.1) Kridel_et_al,2016 Table S3: COO and LymphGen classifications of DLBCLs and FLs from other cohorts. NFKBIZ UTR mutations (%) DLBCL (%) FL (%) ABC 13 (41.9) 13 (54.2) 0 (0) GCB 4 (12.9) 4 (16.7) 0 (0) COO UNCLASS 2 (6.5) 2 (8.3) 0 (0) NA 12 (38.7) 5 (20.8) 5 (100) TOTAL 31 24 5 BN2 13 (41.9) 9 (37.5) 3 (60) EZB 4 (12.9) 2 (8.3) 2 (40) ST2 1 (3.2) 1 (4.2) 0 (0) LymphGen Other 9 (29) 8 (33.3) 0 (0) Composite 2 (6.5) 2 (8.3) 0 (0) NA 2 (6.5) 2 (8.3) 0 (0) TOTAL 31 24 5 Table S4: LymphGen classifications of all patients and those with NFKBIZ mutations in Arthur/Schmitz/Chapuy cohorts.
    [Show full text]
  • Supplementary Table 1. Pain and PTSS Associated Genes (N = 604
    Supplementary Table 1. Pain and PTSS associated genes (n = 604) compiled from three established pain gene databases (PainNetworks,[61] Algynomics,[52] and PainGenes[42]) and one PTSS gene database (PTSDgene[88]). These genes were used in in silico analyses aimed at identifying miRNA that are predicted to preferentially target this list genes vs. a random set of genes (of the same length). ABCC4 ACE2 ACHE ACPP ACSL1 ADAM11 ADAMTS5 ADCY5 ADCYAP1 ADCYAP1R1 ADM ADORA2A ADORA2B ADRA1A ADRA1B ADRA1D ADRA2A ADRA2C ADRB1 ADRB2 ADRB3 ADRBK1 ADRBK2 AGTR2 ALOX12 ANO1 ANO3 APOE APP AQP1 AQP4 ARL5B ARRB1 ARRB2 ASIC1 ASIC2 ATF1 ATF3 ATF6B ATP1A1 ATP1B3 ATP2B1 ATP6V1A ATP6V1B2 ATP6V1G2 AVPR1A AVPR2 BACE1 BAMBI BDKRB2 BDNF BHLHE22 BTG2 CA8 CACNA1A CACNA1B CACNA1C CACNA1E CACNA1G CACNA1H CACNA2D1 CACNA2D2 CACNA2D3 CACNB3 CACNG2 CALB1 CALCRL CALM2 CAMK2A CAMK2B CAMK4 CAT CCK CCKAR CCKBR CCL2 CCL3 CCL4 CCR1 CCR7 CD274 CD38 CD4 CD40 CDH11 CDK5 CDK5R1 CDKN1A CHRM1 CHRM2 CHRM3 CHRM5 CHRNA5 CHRNA7 CHRNB2 CHRNB4 CHUK CLCN6 CLOCK CNGA3 CNR1 COL11A2 COL9A1 COMT COQ10A CPN1 CPS1 CREB1 CRH CRHBP CRHR1 CRHR2 CRIP2 CRYAA CSF2 CSF2RB CSK CSMD1 CSNK1A1 CSNK1E CTSB CTSS CX3CL1 CXCL5 CXCR3 CXCR4 CYBB CYP19A1 CYP2D6 CYP3A4 DAB1 DAO DBH DBI DICER1 DISC1 DLG2 DLG4 DPCR1 DPP4 DRD1 DRD2 DRD3 DRD4 DRGX DTNBP1 DUSP6 ECE2 EDN1 EDNRA EDNRB EFNB1 EFNB2 EGF EGFR EGR1 EGR3 ENPP2 EPB41L2 EPHB1 EPHB2 EPHB3 EPHB4 EPHB6 EPHX2 ERBB2 ERBB4 EREG ESR1 ESR2 ETV1 EZR F2R F2RL1 F2RL2 FAAH FAM19A4 FGF2 FKBP5 FLOT1 FMR1 FOS FOSB FOSL2 FOXN1 FRMPD4 FSTL1 FYN GABARAPL1 GABBR1 GABBR2 GABRA2 GABRA4
    [Show full text]
  • AMPK Beta 1 (PRKAB1) Mouse Monoclonal Antibody [Clone ID: OTI3D10] Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA813116S AMPK beta 1 (PRKAB1) Mouse Monoclonal Antibody [Clone ID: OTI3D10] Product data: Product Type: Primary Antibodies Clone Name: OTI3D10 Applications: WB Recommended Dilution: WB 1:500 Reactivity: Human, Mouse, Rat Host: Mouse Isotype: IgG1 Clonality: Monoclonal Immunogen: Human recombinant protein fragment corresponding to amino acids 2-270 of human PRKAB1 (NP_006244) produced in E.coli. Formulation: PBS (PH 7.3) containing 1% BSA, 50% glycerol and 0.02% sodium azide. Concentration: 1 mg/ml Purification: Purified from mouse ascites fluids or tissue culture supernatant by affinity chromatography (protein A/G) Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 30.2 kDa Gene Name: protein kinase AMP-activated non-catalytic subunit beta 1 Database Link: NP_006244 Entrez Gene 19079 MouseEntrez Gene 83803 RatEntrez Gene 5564 Human Q9Y478 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 AMPK beta 1 (PRKAB1) Mouse Monoclonal Antibody [Clone ID: OTI3D10] – TA813116S Background: Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy- consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation.
    [Show full text]
  • Cardiogenetics Testing Reference Guide December 2018
    Cardiogenetics Testing reference guide December 2018 Why Choose Ambry More than 1 in 200 people have an inherited cardiovascular condition. Ambry’s mission is to provide the most advanced genetic testing information available to help you identity those at-risk and determine the best treatment options. If we know a patient has a disease-causing genetic change, not only does it mean better disease management, it also indicates that we can test others in the family and provide them with potentially life-saving information. Diseases and Testing Options cardiomyopathies arrhythmias Hypertrophic Cardiomyopathy (HCMNext) Catecholaminergic Polymorphic Ventricular Dilated Cardiomyopathy (DCMNext) Tachycardia (CPVTNext) Arrhythmogenic Right Ventricular Long QT Syndrome, Short QT Syndrome, Cardiomyopathy (ARVCNext) Brugada Syndrome (LongQTNext, RhythmNext) Cardiomyopathies (CMNext, CardioNext) Arrhythmias (RhythmNext, CardioNext) other cardio conditions Transthyretin Amyloidosis (TTR) familial hypercholesterolemia Noonan Syndrome (NoonanNext) and lipid disorders Hereditary Hemorrhagic Telangiectasia Familial Hypercholesterolemia (FHNext) (HHTNext) Sitosterolemia (Sitosterolemia Panel) Comprehensive Lipid Menu thoracic aortic aneurysms (CustomNext-Cardio) and dissections Familial Chylomicronemia Syndrome (FCSNext) Thoracic Aneurysms and Dissections, aortopathies (TAADNext) Marfan Syndrome (TAADNext) Ehlers-Danlos Syndrome (TAADNext) Targeted Panels Gene Comparison ALL PANELS HAVE A TURNAROUND TIME OF 2-3 WEEKS arrhythmias CPVTNext CPVTNext CASQ2,
    [Show full text]
  • Phosphoproteomics of Retinoblastoma: a Pilot Study Identifies Aberrant Kinases
    molecules Article Phosphoproteomics of Retinoblastoma: A Pilot Study Identifies Aberrant Kinases Lakshmi Dhevi Nagarajha Selvan 1,†, Ravikanth Danda 1,2,†, Anil K. Madugundu 3 ID , Vinuth N. Puttamallesh 3, Gajanan J. Sathe 3,4, Uma Maheswari Krishnan 2, Vikas Khetan 5, Pukhraj Rishi 5, Thottethodi Subrahmanya Keshava Prasad 3,6 ID , Akhilesh Pandey 3,7,8, Subramanian Krishnakumar 1, Harsha Gowda 3,* and Sailaja V. Elchuri 9,* 1 L&T Opthalmic Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu 600 006, India; [email protected] (L.D.N.S.); [email protected] (R.D.); [email protected] (S.K.) 2 Centre for Nanotechnology and Advanced Biomaterials, Shanmugha Arts, Science, Technology and Research Academy University, Tanjore, Tamil Nadu 613 401, India; [email protected] 3 Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka 560 066, India; [email protected] (A.K.M.); [email protected] (V.N.P.); [email protected] (G.J.S.); [email protected] (T.S.K.P.); [email protected] (A.P.) 4 Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576 104, India 5 Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, Tamil Nadu 600 006, India; [email protected] (V.K.); [email protected] (P.R.) 6 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575 108, India 7 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA 8 Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA 9 Department of Nanotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu 600 006, India * Correspondence: [email protected] (H.G.); [email protected] (S.V.E.); Tel.: +91-80-28416140 (H.G.); +91-44-28271616 (S.V.E.) † These authors contributed equally to this work.
    [Show full text]
  • Polymorphisms in AKT3, FIGF, PRKAG3, and TGF-Beta Genes Are
    Research Note Polymorphisms in AKT3, FIGF, PRKAG3, and TGF-β genes are associated with myofiber characteristics in chickens Sirui Chen ,1 Jianyong An ,1 Ling Lian , Lujiang Qu , Jiangxia Zheng , Guiyun Xu , and Ning Yang 2 National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China ABSTRACT Muscle characteristics such as myofiber for each bird. Six SNP with a very low minor allele fre- diameter, density, and total number are important quency (<1%) were excluded for further analysis. The traits in broiler breeding and production. In the pres- remaining 13 SNP were used for the association study ent study, 19 SNP of 13 major genes, which are located with muscle characteristics. The results showed that in the vicinity of quantitative trait loci affecting breast SNP in TGF-β1/2/3 had significant effects on myofiber muscle weight, including INS, IGF2, PIK3C2A, AKT3, diameter. A SNP in PRKAG3 had a significant effect PRKAB2, PRKAG3, VEGFA, RPS6KA2/3, FIGF, and on myofiber density (P < 0.05). A C > G mutation in TGF-β1/2/3, were chosen to be genotyped by high- FIGF was strongly associated with total fiber number throughput matrix-assisted laser desorption/ionization (P < 0.05). Additionally, birds with the GG genotype time-of-flight mass spectrometry in a broiler popula- of the C > G mutation in AKT3 had significantly larger tion. One hundred twenty birds were slaughtered at 6 myofiber numbers (P < 0.05) than birds with the CC or wk of age.
    [Show full text]
  • Active AMPK (A1/B2/G3)
    Catalog # Aliquot Size P83-10G-05 5 µg P83-10G-10 10 µg AMPK (A1/B2/G3), Active Full-length recombinant protein expressed in Sf9 cells Catalog # P83-10G Lot # Y1103 -1 Product Description Specific Activity Recombinant full-length human AMPK (combination of A1/B2/G3 subunits) was expressed by baculovirus in Sf9 480,000 insect cells using the N-terminal GST and C-terminal His tags. The gene accession numbers for the three subunits 360,000 (A1/B2/G3) are NM_006251 , NM_005399 , and NM_017431 . 240,000 Gene Aliases 120,000 Activity (cpm) Activity Subunit A1: PRKAA1, MGC33776, MGC57364 0 Subunit B2: PRKAB2, MGC61468 0 50 100 150 200 Subunit G3: PRKAG3 Protein (ng) Formulation The specific activity of AMPK was determined to be 400 nmol /min/mg as per activity assay protocol. Recombinant protein stored in 50mM Tris-HCl, pH 7.5, 150mM NaCl, 10mM glutathione, 0.1mM EDTA, 0.25mM Purity DTT, 0.1mM PMSF, 25% glycerol. Storage and Stability Store product at –70 oC. For optimal storage, aliquot target into smaller quantities after centrifugation and The purity of AMPK was determined store at recommended temperature. For most favorable to be >80% by densitometry, performance, avoid repeated handling and multiple approx. MW ~92kDa (A1), ~62kDa (B2), and ~108kDa (G3). freeze/thaw cycles. Scientific Background AMP-activated protein kinase (AMPK) exhibits a key role as a master regulator of cellular energy homeostasis (1). AMPK exists as a heterotrimeric complex composed of a AMPK (A1/B2/G3), Active catalytic α subunit and regulatory β and γ subunits. Full-length recombinant protein expressed in Sf9 cells Binding of AMP to the γ subunit allosterically activates the complex.
    [Show full text]