Challenges of ERAU's First Suborbital Flight Aboard Blue Origin's New
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mitchell Thomas JOS Article
H-SC Journal of Sciences (2017) Vol. VI Thomas Mars: A prospect for settlement Mitchell H. Thomas’17 Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943 The exploration of Mars was once left to the imagination. However, in recent years, the topic of exploring Mars has become more realistic and increasingly popular in news articles and scientific communities. Technology developed in the previous half-century have already allowed humans to send rovers to Mars in order to retrieve some basic data about the planet. Current technological advancements are resulting in reusable rockets that could one day travel between Earth and Mars. Exploration and colonization of Mars are important for the development of research on the planet and the search for life. Current data is limited, but shows that the conditions on Mars could have supported life in the past. To further our knowledge of the red planet, The atmosphere surrounding Earth is nearly organizations like NASA and companies like SpaceX one-hundred times denser than that of Mars and its are developing plans to colonize Mars. Many composition is crucial to life. According to NASA, the obstacles stand in the way before humans can reach Earth’s atmosphere is comprised of 78% Nitrogen, and colonize the red planet. However, Mars is the 21% Oxygen, and 1% Other. On Mars, the sparse best option for interplanetary colonization and the atmosphere is comprised of nearly 96% Carbon most feasible way to research current and future life Dioxide, less than 2% Argon, less than 2% Nitrogen, on a planet other than Earth. -
Final EA for the Launch and Reentry of Spaceshiptwo Reusable Suborbital Rockets at the Mojave Air and Space Port
Final Environmental Assessment for the Launch and Reentry of SpaceShipTwo Reusable Suborbital Rockets at the Mojave Air and Space Port May 2012 HQ-121575 DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Office of Commercial Space Transportation; Finding of No Significant Impact AGENCY: Federal Aviation Administration (FAA) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: The FAA Office of Commercial Space Transportation (AST) prepared a Final Environmental Assessment (EA) in accordance with the National Environmental Policy Act of 1969, as amended (NEPA; 42 United States Code 4321 et seq.), Council on Environmental Quality NEPA implementing regulations (40 Code of Federal Regulations parts 1500 to 1508), and FAA Order 1050.1E, Change 1, Environmental Impacts: Policies and Procedures, to evaluate the potential environmental impacts of issuing experimental permits and/or launch licenses to operate SpaceShipTwo reusable suborbital rockets and WhiteKnightTwo carrier aircraft at the Mojave Air and Space Port in Mojave, California. After reviewing and analyzing currently available data and information on existing conditions and the potential impacts of the Proposed Action, the FAA has determined that issuing experimental permits and/or launch licenses to operate SpaceShipTwo and WhiteKnightTwo at the Mojave Air and Space Port would not significantly impact the quality of the human environment. Therefore, preparation of an Environmental Impact Statement is not required, and the FAA is issuing this FONSI. The FAA made this determination in accordance with all applicable environmental laws. The Final EA is incorporated by reference in this FONSI. FOR A COPY OF THE EA AND FONSI: Visit the following internet address: http://www.faa.gov/about/office_org/headquarters_offices/ast/environmental/review/permits/ or contact Daniel Czelusniak, Environmental Program Lead, Federal Aviation Administration, 800 Independence Ave., SW, Suite 325, Washington, DC 20591; email [email protected]; or phone (202) 267-5924. -
U.S. Human Space Flight Safety Record As of July 20, 2021
U.S. Human Space Flight Safety Record (As of 20 July 2021) Launch Type Total # of Total # People Total # of Total # of People on Died or Human Space Catastrophic Space Flight Seriously Flights Failures6 Injured3 Orbital (Total) 9271 17 1664 3 Suborbital 2332 3 2135 2 (Total) Total 1160 20 379 5 § 460.45(c) An operator must inform each space flight participant of the safety record of all launch or reentry vehicles that have carried one or more persons on board, including both U.S. government and private sector vehicles. This information must include— (1) The total number of people who have been on a suborbital or orbital space flight and the total number of people who have died or been seriously injured on these flights; and (2) The total number of launches and reentries conducted with people on board and the number of catastrophic failures of those launches and reentries. Federal Aviation Administration AST Commercial Space Transportation Footnotes 1. People on orbital space flights include Mercury (Atlas) (4), Gemini (20), Apollo (36), Skylab (9), Space Shuttle (852), and Crew Dragon (6) a. Occupants are counted even if they flew on only the launch or reentry portion. The Space Shuttle launched 817 humans and picked up 35 humans from MIR and the International Space Station. b. Occupants are counted once reentry is complete. 2. People on suborbital space flights include X-15 (169), M2 (24), Mercury (Redstone) (2), SpaceShipOne (5), SpaceShipTwo (29), and New Shepard System (4) a. Only occupants on the rocket-powered space bound vehicles are counted per safety record criterion #11. -
Virgin Galactic Th E First Ten Years Other Springer-Praxis Books of Related Interest by Erik Seedhouse
Virgin Galactic Th e First Ten Years Other Springer-Praxis books of related interest by Erik Seedhouse Tourists in Space: A Practical Guide 2008 ISBN: 978-0-387-74643-2 Lunar Outpost: The Challenges of Establishing a Human Settlement on the Moon 2008 ISBN: 978-0-387-09746-6 Martian Outpost: The Challenges of Establishing a Human Settlement on Mars 2009 ISBN: 978-0-387-98190-1 The New Space Race: China vs. the United States 2009 ISBN: 978-1-4419-0879-7 Prepare for Launch: The Astronaut Training Process 2010 ISBN: 978-1-4419-1349-4 Ocean Outpost: The Future of Humans Living Underwater 2010 ISBN: 978-1-4419-6356-7 Trailblazing Medicine: Sustaining Explorers During Interplanetary Missions 2011 ISBN: 978-1-4419-7828-8 Interplanetary Outpost: The Human and Technological Challenges of Exploring the Outer Planets 2012 ISBN: 978-1-4419-9747-0 Astronauts for Hire: The Emergence of a Commercial Astronaut Corps 2012 ISBN: 978-1-4614-0519-1 Pulling G: Human Responses to High and Low Gravity 2013 ISBN: 978-1-4614-3029-2 SpaceX: Making Commercial Spacefl ight a Reality 2013 ISBN: 978-1-4614-5513-4 Suborbital: Industry at the Edge of Space 2014 ISBN: 978-3-319-03484-3 Tourists in Space: A Practical Guide, Second Edition 2014 ISBN: 978-3-319-05037-9 Erik Seedhouse Virgin Galactic The First Ten Years Erik Seedhouse Astronaut Instructor Sandefjord , Vestfold , Norway SPRINGER-PRAXIS BOOKS IN SPACE EXPLORATION ISBN 978-3-319-09261-4 ISBN 978-3-319-09262-1 (eBook) DOI 10.1007/978-3-319-09262-1 Springer Cham Heidelberg New York Dordrecht London Library of Congress Control Number: 2014957708 © Springer International Publishing Switzerland 2015 This work is subject to copyright. -
Space Planes and Space Tourism: the Industry and the Regulation of Its Safety
Space Planes and Space Tourism: The Industry and the Regulation of its Safety A Research Study Prepared by Dr. Joseph N. Pelton Director, Space & Advanced Communications Research Institute George Washington University George Washington University SACRI Research Study 1 Table of Contents Executive Summary…………………………………………………… p 4-14 1.0 Introduction…………………………………………………………………….. p 16-26 2.0 Methodology…………………………………………………………………….. p 26-28 3.0 Background and History……………………………………………………….. p 28-34 4.0 US Regulations and Government Programs………………………………….. p 34-35 4.1 NASA’s Legislative Mandate and the New Space Vision………….……. p 35-36 4.2 NASA Safety Practices in Comparison to the FAA……….…………….. p 36-37 4.3 New US Legislation to Regulate and Control Private Space Ventures… p 37 4.3.1 Status of Legislation and Pending FAA Draft Regulations……….. p 37-38 4.3.2 The New Role of Prizes in Space Development…………………….. p 38-40 4.3.3 Implications of Private Space Ventures…………………………….. p 41-42 4.4 International Efforts to Regulate Private Space Systems………………… p 42 4.4.1 International Association for the Advancement of Space Safety… p 42-43 4.4.2 The International Telecommunications Union (ITU)…………….. p 43-44 4.4.3 The Committee on the Peaceful Uses of Outer Space (COPUOS).. p 44 4.4.4 The European Aviation Safety Agency…………………………….. p 44-45 4.4.5 Review of International Treaties Involving Space………………… p 45 4.4.6 The ICAO -The Best Way Forward for International Regulation.. p 45-47 5.0 Key Efforts to Estimate the Size of a Private Space Tourism Business……… p 47 5.1. -
The Annual Compendium of Commercial Space Transportation: 2017
Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY . -
Virgin Galactic Holdings, Inc. (SPCE) Putting the Zero in Zero-G
June 2021 Virgin Galactic Holdings, Inc. (SPCE) Putting the Zero in Zero-G We are short shares of Virgin Galactic Holdings, Inc., often described as the only publicly traded space-tourism company. After going public in October 2019 by way of a merger with a “blank check” company, Virgin Galactic has seen its share price and trading volume soar. It’s become a retail darling, with day traders captivated by images of billionaires donning space suits, blasting off from launchpads, and looking down on the blue marble of Earth. But Virgin Galactic’s $250,000+ commercial “spaceflights” – if they ever actually happen, after some 17 years of delays and disasters – will offer only the palest imitations of these experiences. In lieu of pressurized space suits with helmets – unnecessary since so little time will be spent in the upper atmosphere – the company commissioned Under Armour to provide “high-tech pajamas.” In lieu of vertical takeoff, Virgin’s “spaceship” must cling to the underside of a specialized airplane for the first 45,000 feet up, because its rocket motor is too weak to push through the lower atmosphere on its own. In lieu of the blue-marble vista and life in zero-g, Virgin’s so-called astronauts will at best be able to catch a glimpse of the curvature of Earth and a few minutes of weightlessness before plunging back to ground. This isn’t “tourism,” let alone Virgin’s more grandiose term, “exploration”; it’s closer to a souped- up roller coaster, like the “Drop of Doom” ride at Six Flags. -
Espinsights the Global Space Activity Monitor
ESPInsights The Global Space Activity Monitor Issue 6 April-June 2020 CONTENTS FOCUS ..................................................................................................................... 6 The Crew Dragon mission to the ISS and the Commercial Crew Program ..................................... 6 SPACE POLICY AND PROGRAMMES .................................................................................... 7 EUROPE ................................................................................................................. 7 COVID-19 and the European space sector ....................................................................... 7 Space technologies for European defence ...................................................................... 7 ESA Earth Observation Missions ................................................................................... 8 Thales Alenia Space among HLS competitors ................................................................... 8 Advancements for the European Service Module ............................................................... 9 Airbus for the Martian Sample Fetch Rover ..................................................................... 9 New appointments in ESA, GSA and Eurospace ................................................................ 10 Italy introduces Platino, regions launch Mirror Copernicus .................................................. 10 DLR new research observatory .................................................................................. -
Suborbital Payload Spaceflight Aboard Blue Origin's New Shepard
Suborbital Payload Spaceflight Aboard Blue Origin’s New Shepard Vehicle Benjamin Lewis Blue Origin, Kent, Washington, USA; [email protected] Abstract payload. This dedicated controller can be Blue Origin’s New Shepard spacecraft offers a programmed to meet the specific needs of the large-format crew capsule, capable of carrying a payload and provides power, payload data logging, wide variety of high-altitude and microgravity high frequency flight telemetry logging and relay, payloads above the Karman Line (100 km). The digital and analog I/O, and camera control. The IPC spacecraft supports unique payload configurations allows researchers to connect via an Ethernet cable ranging from externally mounted hardware to large, to program the IPC and run benchtop mission custom structures inside a shirt-sleeve environment. simulations for payload development and testing. New Shepard also features a standardized payload locker architecture. This enables low cost access to NanoLabs and Custom Payloads flight, streamlined integration and approval, and fast New Shepard offers payload capabilities beyond the reflight for experiment or technology iteration. This standard locker system. The NanoLab form factor is poster will present the payload system architecture, ideal for payloads with lower volume and power interfaces, integration process, and operations for requirements, or customers who are budget payloads aboard New Shepard. constrained. NanoLabs range from elementary school-designed hardware to cutting-edge scientific New Shepard Payload Mission Overview research. Large custom payloads can be mounted Payloads are typically installed four days ahead of in place of payload stacks. The crew capsule is launch, though time sensitive payloads can be easily reconfigurable and able to accommodate any integrated 6-8 hours prior to liftoff with load combination of crew members, payload stacks, and timelines just minutes prior to launch planned for custom payloads. -
A New British Space Age
A New British Space Age A Response to the Royal Astronomical Society Report on Human Spaceflight Dr J. Duncan Law-Green Department of Physics & Astronomy University of Leicester T: 0116 252 2589 [email protected] 3 Jan 2007 Artist’s impression of the Virgin Galactic SpaceShipTwo suborbital spaceplane and WhiteKnightTwo carrier aircraft in flight. Image © Virgin Galactic. Summary: The recent Royal Astronomical Society report on human spaceflight (“Report of the Commission on the Scientific Case for Human Space Exploration”, Close et al. 2005) highlighted the scientific and cultural value of human spaceflight, and noted that this is a field of endeavour that has historically been neglected in the United Kingdom. It recommended that the UK Government invest sufficient additional funds in the European Space Agency to allow the training of a small number of UK astronauts. Total additional expenditures in the range of £50 million to £120 million over five years have been quoted. This author agrees with the positive assessment of Close et al. of the value of human spaceflight to the United Kingdom, but disagrees with the emphasis of the policy recommendations made so far. A number of relatively modest investments in UK commercial spaceflight would potentially deliver the same or greater scientific, cultural and economic returns, more promptly and at less overall expense than the proposed ESA funding. This document outlines a number of potential projects to: enhance the UK's space technology base, improve cooperation with allied nations on commercial spaceflight, increase outreach and public involvement with UK space projects, preserve and protect the UK's space history, benefit UK science education and enhance the UK's international reputation in innovation and engineering excellence. -
Architectural Options and Optimization of Suborbital Space Tourism Vehicles
Chair of Astronautics Architectural Options and Optimization of Suborbital Space Tourism Vehicles Author: Markus Guerster Master Thesis, RT-MA 2017/2 Supervisors Prof. Edward F. Crawley Prof. Ulrich Walter Department of Aeronautics and Astronautics Institute of Astronautics Massachusetts Institute of Technology Technical University of Munich Dr. Christian Hock Christian Bühler CEO Institute of Astronautics in -tech industry GmbH Technical University of Munich Chair of Astronautics “I wanted to be involved in something that has an outside chance of doing some good. If there is not something meaningful in what you are doing above and beyond any commercial returns, then I think life is a bit hollow.” Elon Musk, 2013 II Chair of Astronautics Erklärung Ich erkläre, dass ich alle Einrichtungen, Anlagen, Geräte und Programme, die mir im Rahmen meiner Masterarbeit von der TU München bzw. vom Lehrstuhl für Raumfahrttechnik zur Verfügung gestellt werden, entsprechend dem vorgesehenen Zweck, den gültigen Richtlinien, Benutzerordnungen oder Gebrauchsanleitungen und soweit nötig erst nach erfolgter Einweisung und mit aller Sorgfalt benutze. Insbesondere werde ich Programme ohne besondere Anweisung durch den Betreuer weder kopieren noch für andere als für meine Tätigkeit am Lehrstuhl vorgesehene Zwecke verwenden. Mir als vertraulich genannte Informationen, Unterlagen und Erkenntnisse werde ich weder während noch nach meiner Tätigkeit am Lehrstuhl an Dritte weitergeben. Ich erkläre mich außerdem damit einverstanden, dass meine Masterarbeit vom Lehrstuhl auf Anfrage fachlich interessierten Personen, auch über eine Bibliothek, zugänglich gemacht wird. Ich erkläre außerdem, dass ich diese Arbeit ohne fremde Hilfe angefertigt und nur die in dem Literaturverzeichnis angeführten Quellen und Hilfsmittel benutzt habe. Garching, den 28. April 2017 Name: Markus Guerster Matrikelnummer: 03628540 III Chair of Astronautics Zusammenfassung Der Ansari X-Prize legte den Grundstein für den suborbitalen Weltraumtourismus. -
Commercial Space Transportation State of the Industry UNOOSA ICAO Symposium August 2017 Highlights
Commercial Space Transportation State of the Industry UNOOSA ICAO Symposium August 2017 Highlights • U.S. Regulatory Approach • International Perspective • Economics of Commercial Space Transportation • Research and Development • Air and Space Traffic Management • Collaborations Federal Aviation Administration AST Commercial Space Transportation August 2017 | 2 Department of Transportation, Federal Aviation Administration- Statutory Authority 51 U. S. C. Chapter 509 (formerly the Commercial Space Launch Act of 1984, as amended) • Authorizes the FAA* to license commercial launch and reentry activities and the operation of launch and reentry sites as carried out by U.S. citizens or within the United States. • Directs the FAA to: • Exercise this responsibility consistent with public health and safety, safety of property, and the national security and foreign policy interests of the United States, and • Encourage, facilitate, and promote commercial space launches and reentries by the private sector. * The Secretary of Transportation’s licensing authority has been delegated to the Administrator of the FAA and further assigned to the Associate Administrator for Commercial Space Transportation (AST) Federal Aviation Administration AST Commercial Space Transportation August 2017 | 3 AST Organization Associate Administrator Chief of Staff Deputy Associate Administrator Communications Legislative Affairs Director of Director of Special Projects Strategic Operations Space Integration Policy International Outreach Space Traffic Management Interagency