Eponyms in Head and Neck Anatomy and Radiology

Total Page:16

File Type:pdf, Size:1020Kb

Eponyms in Head and Neck Anatomy and Radiology Pictorial Essay Eponyms in Head and Neck Anatomy and Radiology Fernando Martín Ferraro1*, Hernán Chaves2*, Federico Martín Olivera Plata3,4*, Luis Ariel Miquelini1,3*, Suresh K. Mukherji5 1 Imaging Service, Hospital Británico, Ciudad Autónoma de Buenos Aires, Argentina 2 Imaging Department, Dr. Raúl Carrea Institute for Neurological Research (FLENI), Ciudad Autónoma de Buenos Aires, Argentina 3Imaging Service, Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina 4 Magnetic Resonance and Computed Tomography Service, Centro Médico Deragopyan, Ciudad Autónoma de Buenos Aires, Argentina 5 Radiology Department, Michigan State University, East Lansing, USA Abstract The use of eponyms in medical language is frequent. While it is commonly thought that eponyms are on their way to extinction, this is not entirely true. There is dissent between those who believe that their use should be abandoned and those who advocate that eponyms make unmemorable terms memorable, convey complex concepts and promote an interest in the history of medicine. We feel part of this second group, and our intention is to make a review of eight eponyms linked to head and neck anatomy and radiology. We believe that this approach can be useful for the education of medical students, residents and diagnostic imaging specialists. Keywords Radiology; Eponyms; Anatomy; Head and neck; History of medicine Introduction for which they are known. Eponyms are illustrated by figures of dissections, radiological images and pictures. We believe When we look up the word eponym in Spanish (epónimo) that this approach can be useful for the education of medical in the dictionary of the Spanish Royal Academy, we find the students, residents and diagnostic imaging specialists. following definition: “A person or thing after whom or after 1 which a town, city, disease, etc. is named” Johann Christian Rosenmüller The use of eponyms in medical language is frequent. Histori- 7,8 cally, family names of recognized physicians have been used (1771-1820) to refer to anatomical structures, diseases and syndromes, usually as a tribute.2 Johann Christian Rosenmüller (Fig. 1) was born on May 25, Even if it is commonly thought that eponyms in medicine are 1771, in Hildburghausen, Germany. His father, Johann Georg on their way to extinction, this is not entirely true, and their Rosenmüller, was a known protestant theologian. His broth- use is present in 2% of titles in current publications.3 There is er, Ernst Friedrich Karl Rosenmüller, followed his father’s foot- dissent between those who believe that the use of eponyms steps and gained great recognition. All three were at Leipzig should be abandoned and those who advocate that eponyms University from 1794 until their deaths. There is no mention make unmemorable terms memorable, convey complex con- of Rosenmüller’s mother in the literature reviewed. cepts, and promote an interest in the history of medicine.4-7 In 1792, Rosenmüller began his studies in medicine at Erlan- We feel part of this latter group, and our intention is to make gen University, receiving his doctorate in 1797 at the Univer- a review of eight eponyms linked to head and neck anatomy sity of Leipzig, and being appointed associate professor of and radiology, putting greater emphasis on the original ar- anatomy and surgery at Leipzig in 1802. He was the Dean of ticles and circumstances that determined their appearance, Leipzig University between 1812 and 1820. He was the au- and less emphasis on the anatomical structures and diseases thor of various dissertations, articles and books. However, his 72 Rev. Argent. Radiol. 2018;82(2): 72-82 F. Ferraro et al. Fig. 1. Portrait of Johann Christian Rosenmüller. Fig. 2. Anatomic preparation with arteries stained red and veins stained blue. The right fossa of Rosenmüller is being indi- cated (arrow), located immediately over the longus colli muscle most important work was a handbook of anatomy published (arrowhead). Reprinted with permission from the editor. Copy- in 1808.9 This handbook was 700 pages in length, covering right© 2016 Fronteras de Medicina. All rights reserved. various parts of the human body. This is where Rosenmüller first described the pharyngeal recess or fossa of Rosenmüller (Figs. 2 and 3). It was in this handbook that he also described the palpebral portion of the lacrimal gland or Rosenmüller gland and the organ of Rosenmüller, a structure of the me- sosalpinx. Rosenmüller also specialized in speleology, the scientific study of caves, including their make-up, structure, and life forms. In 1796, he published a book describing remarkable caves in the Muggendorf area, including one that is currently known as Rosenmüller’s cave, and which can be visited nowadays. His collection of fossil bones resides in the Museum of Natu- ral Sciences in Berlin. He never married, and he died of a heart attack at the age of 49. Charles Bell (1774-1842)10 Charles Bell (Fig. 4) is remembered as a neurophysiologist. However, he was a man of many talents: anatomist, draught- sman, writer, lecturer, surgeon and museum-builder. He was Fig. 3. Axial T2-weighted magnetic resonance (MR) image. born in 1774, the fourth son of an Edinburgh clergyman who The patient presented with a plugged right ear sensation and died when Charles was only 5 years old. His mother not only hearing loss. A lesion was occupying and obstructing the took charge of his upbringing but also stimulated his other right fossa of Rosenmüller (arrow) associated with ipsilateral serous otitis (arrowhead). The lesion was diagnosed as squa- talents, such as drawing. mous nasopharyngeal carcinoma. Rev. Argent. Radiol. 2018;82(2): 72-82 73 Eponyms in Head and Neck Anatomy and Radiology Charles attended philosophy lectures while assisting his 5 and 6).11 This concept differs from the modern definition of brother John in his school of anatomy. He contributed text Bell’s palsy, which is reversible and idiopathic (Fig. 7). Bell died and drawings to his brother’s work “The Anatomy of the Hu- suddenly on April 29, 1842. man Body” and published the work “A System of Dissec- tions” under his own name in 1814. Bell had a special inter- 7,12 est in the Vth and VIIth cranial nerves, as he could not clearly Primo Dorello (1872-1963) differentiate their functions. Such differentiation was clarified by his colleague Herbert Mayo. Bell’s original description of Primo Dorello (Fig. 8) was born in Narni, Italy, in 1872. He facial palsy, in a letter to a colleague could not have been studied medicine at Rome University and obtained his degree more accurate: “…The face is twisted to the right side. The in 1897, remaining there as an Assistant Professor in the De- left nostril does not move in respiration. The eye-lids of the partment of Normal Human Anatomy. In 1903, he published left side are not closed when he attempts to wink, although his most well-known paper, entitled “Considerations on the the eye-ball is turned up, his left cheek is relaxed, and the cause of transient paralysis of the abducent in middle ear forehead on the left side unruffled…” inflammation” (Fig. 9).13 The paper describes Dorello’s canal, The original description of Charles Bell’s palsy was based on a depression bounded laterally by the petrous apex and me- two patients with irreversible facial nerve dysfunction: a se- dially by the superolateral portion of the clivus. The superior vere infection and a postoperative sequel of a skull base tu- margin of the canal is formed by the petrosphenoidal liga- mor resected by Bell himself. This description is included in ment (Figs. 10 and 11). Although he was credited with the the publication entitled: “On the nerves: giving an account discovery of this canal, the canal had been first described in of some experiments on their structure and functions, which 1859 by Wenzel Gruber, who is remembered by the eponym lead to a new arrangement of the system”, a classic of neu- Gruber’s ligament or petrosphenoidal ligament.14 rology, published in Philosophical Transactions in 1821 (Figs. In recent decades, various microsurgical anatomy studies have Fig. 4. Portrait of Charles Bell. Reprinted with permission Fig. 5. Drawing from the original article published by Charles from the editor. Copyright© 2016 Fronteras de Medicina. All Bell in 1821, where there is a description of the nerves of the rights reserved. face, and in particular, of the facial nerve. 74 Rev. Argent. Radiol. 2018;82(2): 72-82 F. Ferraro et al. allowed a more accurate description of the boundaries and contents of that topography known as the petroclival venous confluence, which includes Dorello’s canal.15 Dorello was nom- inated for the Nobel Prize in Physiology or Medicine in 1939. He was also interested in anthropology and photography. He produced stereoscopic negatives on glass of Italian architecture and city landscapes. He died in Bologna at the age of 90. Fig. 8. Portrait of Primo Dorello. Fig. 6. Anatomical preparation of a left hemiface showing the extracranial segment of the facial nerve (arrow) crossing the superficial temporal artery (arrowhead). Fig. 7. Axial T1-weighted MR image after contrast administra- tion. The patient presented with left labial commissure drop and impaired hearing on the right side. Post-contrast enhance- ment of the canalicular, labyrinthine, geniculate ganglion and left tympanic segments of the facial nerve was identified, be- ing pathognomonic of idiopathic facial palsy (or Bell’s palsy). The scan showed a hyperintense rounded focal lesion in the right internal auditory canal, consistent with vestibular nerve schwannoma, the main differential diagnosis of Bell’s palsy. Fig. 9. Primo Dorello’s original article. Rev. Argent. Radiol. 2018;82(2): 72-82 75 Eponyms in Head and Neck Anatomy and Radiology Fig.
Recommended publications
  • Te2, Part Iii
    TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS
    [Show full text]
  • The Surgical Plane for Lingual Tonsillectomy: an Anatomic Study Eugene L
    Son et al. Journal of Otolaryngology - Head and Neck Surgery (2016) 45:22 DOI 10.1186/s40463-016-0137-3 ORIGINAL RESEARCH ARTICLE Open Access The surgical plane for lingual tonsillectomy: an anatomic study Eugene L. Son1*, Michael P. Underbrink1, Suimin Qiu2 and Vicente A. Resto1 Abstract Background: The presence of a plane between the lingual tonsils and the underlying soft tissue has not been confirmed. The objective of this study is to ascertain the presence and the characteristics about this plane for surgical use. Methods: Five cadaver heads were obtained for dissection of the lingual tonsils. Six permanent sections of previous tongue base biopsies were reviewed. Robot assisted lingual tonsillectomy was performed using the dissection technique from the cadaver dissection. Results: In each of the 5 cadavers, an avascular plane was revealed deep to the lingual tonsils. Microscopic review of the tongue base biopsies revealed a clear demarcation between the lingual tonsils and the underlying minor salivary glands and muscle tissue. This area was relatively avascular. Using the technique described above, a lingual tonsillectomy using TORS was performed with similar findings from the cadaver dissections. Conclusions: A surgical plane for lingual tonsillectomy exists and may prove to have a role with lingual tonsillectomy with TORS. Keywords: Lingual tonsil, Surgical plane, Transoral robotic surgery, Lingual tonsillectomy Background There has been an increase in the incidence of human The base of tongue had once been a difficult area for papilloma virus (HPV) related oropharyngeal squamous surgery to perform on because of problems with expos- cell carcinoma [3]. A large of number of SCCUP with ure.
    [Show full text]
  • Vascular Supply to the Head and Neck
    Vascular supply to the head and neck Sumamry This lesson covers the head and neck vascular supply. ReviseDental would like to thank @KIKISDENTALSERVICE for the wonderful drawings in this lesson. Arterial supply to the head Facial artery: Origin: External carotid Branches: submental a. superior and inferior labial a. lateral nasal a. angular a. Note: passes superiorly over the body of there mandible at the masseter Superficial temporal artery: Origin: External carotid Branches: It is a continuation of the ex carotid a. Note: terminal branch of the ex carotid a. and is in close relation to the auricular temporal nerve Transverse facial artery: Origin: Superficial temporal a. Note: exits the parotid gland Maxillary branch: supplies the areas missed from the above vasculature Origin: External carotid a. Branches: (to the face) infraorbital, buccal and inferior alveolar a.- mental a. Note: Terminal branch of the ex carotid a. The ophthalmic branches Origin: Internal carotid a. Branches: Supratrochlear, supraorbital, lacrimal, anterior ethmoid, dorsal nasal Note:ReviseDental.com enters orbit via the optic foramen Note: The face arterial supply anastomose freely. ReviseDental.com ReviseDental.com Venous drainage of the head Note: follow a similar pathway to the arteries Superficial vessels can communicate with deep structures e.g. cavernous sinus and the pterygoid plexus. (note: relevant for spread of infection) Head venous vessels don't have valves Supratrochlear vein Origin: forehead and communicates with the superficial temporal v. Connects: joins with supra-orbital v. Note: from the angular vein Supra-orbital vein Origin: forehead and communicates with the superficial temporal v. Connects: joins with supratrochlear v.
    [Show full text]
  • Oral Cavity Histology Histology > Digestive System > Digestive System
    Oral Cavity Histology Histology > Digestive System > Digestive System Oral Cavity LINGUAL PAPILLAE OF THE TONGUE Lingual papillae cover 2/3rds of its anterior surface; lingual tonsils cover its posterior surface. There are three types of lingual papillae: - Filiform, fungiform, and circumvallate; a 4th type, called foliate papillae, are rudimentary in humans. - Surface comprises stratified squamous epithelia - Core comprises lamina propria (connective tissue and vasculature) - Skeletal muscle lies deep to submucosa; skeletal muscle fibers run in multiple directions, allowing the tongue to move freely. - Taste buds lie within furrows or clefts between papillae; each taste bud comprises precursor, immature, and mature taste receptor cells and opens to the furrow via a taste pore. Distinguishing Features: Filiform papillae • Most numerous papillae • Their role is to provide a rough surface that aids in chewing via their keratinized, stratified squamous epithelia, which forms characteristic spikes. • They do not have taste buds. Fungiform papillae • "Fungi" refers to its rounded, mushroom-like surface, which is covered by stratified squamous epithelium. Circumvallate papillae • Are also rounded, but much larger and more bulbous. • On either side of the circumvallate papillae are wide clefts, aka, furrows or trenches; though not visible in our sample, serous Ebner's glands open into these spaces. DENTITION Comprise layers of calcified tissues surrounding a cavity that houses neurovascular structures. Key Features Regions 1 / 3 • The crown, which lies above the gums • The neck, the constricted area • The root, which lies within the alveoli (aka, sockets) of the jaw bones. • Pulp cavity lies in the center of the tooth, and extends into the root as the root canal.
    [Show full text]
  • Comparing the Organs and Vasculature of the Head and Neck
    in vivo 31 : 861-871 (2017) doi:10.21873/invivo.11140 Comparing the Organs and Vasculature of the Head and Neck in Five Murine Species MIN JAE KIM 1* , YOO YEON KIM 2* , JANET REN CHAO 3, HAE SANG PARK 1,4 , JIWON CHANG 1,4 , DAWOON OH 5, JAE JUN LEE 4,6 , TAE CHUN KANG 7, JUN-GYO SUH 2 and JUN HO LEE 1,4 1Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Hallym University, Chuncheon, Republic of Korea; 2Department of Medical Genetics, College of Medicine, Hallym University, Chuncheon, Republic of Korea; 3School of Medicine, George Washington University, Washington, DC, U.S.A.; 4Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea; 5Department of Anesthesiology and Pain Medicine, Dongtan Sacred Heart Hospital, Hallym University, Dongtan, Republic of Korea; 6Department of Anesthesiology and Pain Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea; 7Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea Abstract. Background/Aim: The purpose of the present Unique morphological characteristics were demonstrated by study was to delineate the cervical and facial vascular and comparing the five species, including symmetry of the associated anatomy in five murine species, and compare common carotid origin bilaterally in the Mongolian Gerbil, them for optimal use in research studies focused on a large submandibular gland in the hamster and an enlarged understanding the pathology and treatment of diseases in buccal branch in the Guinea Pig. In reviewing the humans. Materials and Methods: The specific adult male anatomical details, this staining technique proves superior animals examined were mice (C57BL/6J), rats (F344), for direct surgical visualization and identification.
    [Show full text]
  • DHE121 Lesson Objectives
    Instructional Objectives for DHE121 Identify the following anatomical structures and terms: Parotid Papilla Canine Eminence Parotid Duct or Stenson’s Duct Primary Teeth Maxilla Permanent Teeth Mandible Anterior Teeth Maxillary Sinuses or Paranasal Sinuses Posterior Teeth Alveolar Process or Bone Incisors Maxillary or Mandibular Vestibule Canines Buccal, Labial, and Alveolar Mucosa Premolars Vestibular Fornix Molars Mucobuccal Fold Exostoses Labial Frenum Pulp Cavity Alveolus Torus or Tori Periodontal Ligament (PDL) Gingiva Crown of a Tooth Attached Gingiva Root of a Tooth Alveolar Mucosa Enamel Mucogingival Junction Dentin Marginal Gingiva Cementum Gingival Sulcu Maxillary or Mandibular Tuberosity Interdental Gingiva or Papilla Fordyce Spots Fauces Linea Alba Anterior and Posterior Tonsillar Pillar Retromolar Pad Palatine Tonsils Palate Hard and Soft Median Palatine Raphe Incisive Papilla Palatine Rugae Uvula of the Palate Pterygomandibular Fold or Raphe Base of the Tongue Body of the Tongue Apex of the Tongue Lingual Papillae Dorsal Surface of the Tongue Median Lingual Sulcus of the Tongue Filiform Lingual Papillae Fungiform Lingual Papillae Sulcus Terminalis of the Tongue Foramen Cecum Circumvallate Lingual Papillae Lingual Tonsil Lateral Surface of the Tongue Foliate Lingual Papillae Ventral Surface of the Tongue Plicae Fimbriata Lingual Frenum Sublingual Fold Sublingual Salivary Gland Sublingual Caruncle Submandibular Duct (Wharton’s Duct) Sublingual Duct (Bartholin’s Duct) Laryngopharynx Nasopharynx Oropharynx Facial or Labial Anterior Buccal Posterior Palatal Frenum Lingual Dorsal Vestibules Oral Mucosa or Mucous Membrane Mastication DHE121 ORAL CAVITY 1. Describe the boundaries of the oral cavity. 2. Cite the two parts of the oral cavity. 3. Define: vestibule oral cavity proper mucobuccal fold frenum alveolar mucosa gingiva exotoses palatine tori (torus palatinis) mandibular tori (torus mandibularis) 4.
    [Show full text]
  • DENT-1431: Head and Neck Anatomy 1
    DENT-1431: Head and Neck Anatomy 1 DENT-1431: HEAD AND NECK ANATOMY Cuyahoga Community College Viewing: DENT-1431 : Head and Neck Anatomy Board of Trustees: 2018-01-25 Academic Term: 2018-01-16 Subject Code DENT - Dental Hygiene Course Number: 1431 Title: Head and Neck Anatomy Catalog Description: Study of structure and function of head and neck. General anatomy of the skull, related muscles, vascular and nerve supply and lymphatics of the region considered. Focus on muscles of mastication and their relationship to the temporomandibular joint; facial and trigeminal nerves and their relationship with dental injections. Discussion on spread of infection and its clinical manifestations. Credit Hour(s): 2 Lecture Hour(s): 2 Lab Hour(s): 0 Other Hour(s): 0 Requisites Prerequisite and Corequisite DENT-1300 Preventive Oral Health Services I Outcomes Course Outcome(s): Apply the foundational knowledge of anatomical landmarks and nerve innervation toward successful mastery of local anesthesia and pain management concepts and skills. Objective(s): 1. Identify on a skull, diagram, and by narrative description the bones, sutures, foramina, soft tissue and muscles of the head that are associated with dental injections. 2. Name the divisions of the Trigeminal Nerve, its exit from the cranium, branches and areas of supply. 3. Indicate the tissues anesthetized by each type of dental injection and indicate the target area and possible complications of those injections. 4. List the armamentarium necessary for dental injections and assemble/disassemble a syringe. Course Outcome(s): Utilize knowledge of head and neck examination techniques in clinical practice to differentiate between healthy conditions and possible pathologies.
    [Show full text]
  • Adult Tonsillectomy and / Or Sleep Apnea Surgery
    2201 Glenwood Ave., Joliet, IL 60435 ENT SURGICAL CONSULTANTS (815) 725-1191, (815) 725-1248 fax (815) 929-2262 Answer Service Thomas K. Kron, MD, FACS 1890 Silver Cross Blvd, Pavilion A, Suite 435, New Lenox, IL 60451 Michael G. Gartlan, MD, FAAP, FACS (815) 717-8768 Rajeev H. Mehta, MD, FACS 900 W. Route 6, Suite 960, Morris, IL 60450 Scott W. DiVenere, MD Sung J. Chung, MD (815) 941-1972 Ankit M. Patel, MD www.entsurgicalillinois.com ADULT TONSILLECTOMY AND/OR SLEEP APNEA SURGERY (1/16) There is a large ring of lymphoid tissue throughout the throat that provides an immune function in the upper respiratory tract during childhood. The largest components of this ring include a pair of palatine tonsils that can be seen through the mouth on each side and the pharyngeal tonsil, commonly referred to as the adenoid, which is located in the upper throat behind the nose. All these tonsil tissues and the lymph nodes in the neck work together to “catch” and trap incoming infections. Unfortunately, the tonsil and adenoid may become the source of infection itself like a plugged filter Ear, Nose & Throat Diseases or they can become so Otolaryngologylarge as to obstruct-Head the airway. & Neck Surgery Facial Plastic & Reconstructive Surgery Usually tonsils and adenoidsThyroid peak inand size P arathyroidby 8 years of Surgery age, then begin to gradually shrink and atrophy by 12 years of age. By this age near complete facial and dental growth has occurred.Pediatric Adolescents Otolaryngology and adults with persistently enlarged tonsils are considered abnormal and usually result from chronic bacteria colonization of the tonsil crypts.
    [Show full text]
  • Bacteria Slides
    BACTERIA SLIDES Cocci Bacillus BACTERIA SLIDES _______________ __ BACTERIA SLIDES Spirilla BACTERIA SLIDES ___________________ _____ BACTERIA SLIDES Bacillus BACTERIA SLIDES ________________ _ LUNG SLIDE Bronchiole Lumen Alveolar Sac Alveoli Alveolar Duct LUNG SLIDE SAGITTAL SECTION OF HUMAN HEAD MODEL Superior Concha Auditory Tube Middle Concha Opening Inferior Concha Nasal Cavity Internal Nare External Nare Hard Palate Pharyngeal Oral Cavity Tonsils Tongue Nasopharynx Soft Palate Oropharynx Uvula Laryngopharynx Palatine Tonsils Lingual Tonsils Epiglottis False Vocal Cords True Vocal Cords Esophagus Thyroid Cartilage Trachea Cricoid Cartilage SAGITTAL SECTION OF HUMAN HEAD MODEL LARYNX MODEL Side View Anterior View Hyoid Bone Superior Horn Thyroid Cartilage Inferior Horn Thyroid Gland Cricoid Cartilage Trachea Tracheal Rings LARYNX MODEL Posterior View Epiglottis Hyoid Bone Vocal Cords Epiglottis Corniculate Cartilage Arytenoid Cartilage Cricoid Cartilage Thyroid Gland Parathyroid Glands LARYNX MODEL Side View Anterior View ____________ _ ____________ _______ ______________ _____ _____________ ____________________ _____ ______________ _____ _________ _________ ____________ _______ LARYNX MODEL Posterior View HUMAN HEART & LUNGS MODEL Larynx Tracheal Rings Found on the Trachea Left Superior Lobe Left Inferior Lobe Heart Right Superior Lobe Right Middle Lobe Right Inferior Lobe Diaphragm HUMAN HEART & LUNGS MODEL Hilum (curvature where blood vessels enter lungs) Carina Pulmonary Arteries (Blue) Pulmonary Veins (Red) Bronchioles Apex (points
    [Show full text]
  • Some Observations on Tonsils
    SOME OBSERVATIONS ON TONSILS By T. A. MACGIBBON, B.A. B. Sc. N.Z. M.B. Ch. B. Edin. F.R.C.S. Edin. Christchurch, N.Z. June 1st, 1918. 1 SOME OBSERVATIONS ON TONSILS I have chosen this subject for many reasons: (1): Enlarged and diseased tonsils are common in this district: The causes are, probably, the flat and low-lying country, the underlying surface and artesian water, the constancy and variability of the winds, and the proximity to the sea. Our climate is not unlike that of the British Isles on the whole, though we are ten degrees nearer to the equator. We have a heavy vapour density and fogs are common. Hot winds from the N.W. will be followed by cold S.W. winds and rain, or the biting East winds with or without a drizzle. (2) Because so many operations are done upon the tonsils in this country, and particularly in this town. For my paper I have had to rely on the "British Journal of Laryngology," the "American Laryngoscope," the "British Medical Journal," about half a dozen standard works on Ear, Nose and Throat, and some excerpts from Continental works sent to me by the Librarian of the Royal Medical Society. Brieger's and other Continental works I have been unable to procure. My work as throat surgeon at the Christchurch Hospital has afforded me a fairly large experience, but I regret that I have been unable to get any pathological research work done on the tonsils I have removed. However, I would like to draw certain conclusions from my experience, and from my reading, which, may offer something interesting and profitable to the profession.
    [Show full text]
  • Chapter 1 Oral Structures and Tissues Arthur R
    Chapter 1 Oral Structures and Tissues Arthur R. Hand1 and Marion E. Frank2 1 Department of Craniofacial Sciences and Cell Biology , School of Dental Medicine, University of Connecticut 2 Department of Oral Health and Diagnostic Sciences , University of Connecticut The oral cavity and its component cells, tissues, and structures the lips and the mucosa lining the inside of the lips, and extends constitute a unique and complex organ system and environment. posteriorly to the palatoglossal folds or arch . Beyond the palato- Of necessity, we study its various parts individually, but the glossal folds are the palatopharyngeal folds and the beginning health and function of the components of the oral cavity depend of the oropharynx , where the digestive and respiratory tracts upon and influence one another. Importantly, the oral cavity come together. The palatine tonsils are located in the tonsillar relies on as well as influences the health and function of the fauces between the palatoglossal and palatopharyngeal folds. entire body. The lymphoid tissue of the palatine tonsils, along with that of the The oral cavity is the gateway to the body, and most of the pharyngeal tonsil ( adenoids ) and the lingual tonsils , guards the substances that enter our bodies do so through the oral cavity. It entrance to the oropharynx. Anteriorly, the respiratory tract is exposed to the physical insults of mastication, hard objects and (nasal cavity) is separated from the oral cavity by the hard palate , various food substances, and extremes of temperature. A variety and posteriorly by the soft palate . The hard palate has an arch-like of chemicals, including those present in foods and drinks and shape that varies in width and height among individuals.
    [Show full text]
  • Histology/Head and Neck Anatomy (3 Cr.)
    Revised 5/2010 NOVA COLLEGE-WIDE COURSE CONTENT SUMMARY DNH 115 - HISTOLOGY/HEAD AND NECK ANATOMY (3 CR.) Course Description This course presents a study of the microscopic and macroscopic anatomy and physiology of the head, neck, and oral tissues. This includes embryologic development and histologic components of the head, neck, teeth, and periodontium. Lecture 3 hours per week. General Course Purpose The general course purpose is to provide first year dental hygiene students in the first semester with an understanding of the basic structure, development, and functions of the oral tissues along with an overall view of body tissues in addition to a study of the anatomy and physiology of the structures of the head and neck. Course Prerequisites/Co-Requisites None Course Objectives Upon completing the course, the student will be able to: Identify basic cell structure and tissue organization. Describe the structure, location, and function of the basic tissue types of the oral cavity. Describe the structure and development of the hard and pulpal tissues of the oral cavity. Describe the structure and development of the periodontium. Describe tooth eruption and succession. Describe the histological components of the oral mucous membranes and gingival tissues. Discuss the embryology of the major structures of the tongue, pharynx, and salivary glands. Identify and describe the osseous structures of the head and neck region. Identify and describe the paranasal sinuses of the head and neck region. Identify and describe the muscles responsible of the head and neck region. Identify the major nerve supply of the head and neck region and discuss their function.
    [Show full text]