Download (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Download (PDF) ANALYTICAL SCIENCES NOVEMBER 2020, VOL. 36 1 2020 © The Japan Society for Analytical Chemistry Supporting Information Fig. S1 Detailed MS/MS data of myoglobin. 17 2 ANALYTICAL SCIENCES NOVEMBER 2020, VOL. 36 Table S1 : The protein names (antigens) identified by pH 2.0 solution in the eluted-fraction. These proteins were identified one or more out of six analyses. Accession Description P08908 5-hydroxytryptamine receptor 1A OS=Homo sapiens GN=HTR1A PE=1 SV=3 - [5HT1A_HUMAN] Q9NRR6 72 kDa inositol polyphosphate 5-phosphatase OS=Homo sapiens GN=INPP5E PE=1 SV=2 - [INP5E_HUMAN] P82987 ADAMTS-like protein 3 OS=Homo sapiens GN=ADAMTSL3 PE=2 SV=4 - [ATL3_HUMAN] Q9Y6K8 Adenylate kinase isoenzyme 5 OS=Homo sapiens GN=AK5 PE=1 SV=2 - [KAD5_HUMAN] P02763 Alpha-1-acid glycoprotein 1 OS=Homo sapiens GN=ORM1 PE=1 SV=1 - [A1AG1_HUMAN] P19652 Alpha-1-acid glycoprotein 2 OS=Homo sapiens GN=ORM2 PE=1 SV=2 - [A1AG2_HUMAN] P01011 Alpha-1-antichymotrypsin OS=Homo sapiens GN=SERPINA3 PE=1 SV=2 - [AACT_HUMAN] P01009 Alpha-1-antitrypsin OS=Homo sapiens GN=SERPINA1 PE=1 SV=3 - [A1AT_HUMAN] P04217 Alpha-1B-glycoprotein OS=Homo sapiens GN=A1BG PE=1 SV=4 - [A1BG_HUMAN] P08697 Alpha-2-antiplasmin OS=Homo sapiens GN=SERPINF2 PE=1 SV=3 - [A2AP_HUMAN] P02765 Alpha-2-HS-glycoprotein OS=Homo sapiens GN=AHSG PE=1 SV=1 - [FETUA_HUMAN] P01023 Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 - [A2MG_HUMAN] P01019 Angiotensinogen OS=Homo sapiens GN=AGT PE=1 SV=1 - [ANGT_HUMAN] Q9NQ90 Anoctamin-2 OS=Homo sapiens GN=ANO2 PE=1 SV=2 - [ANO2_HUMAN] P01008 Antithrombin-III OS=Homo sapiens GN=SERPINC1 PE=1 SV=1 - [ANT3_HUMAN] P02647 Apolipoprotein A-I OS=Homo sapiens GN=APOA1 PE=1 SV=1 - [APOA1_HUMAN] P02652 Apolipoprotein A-II OS=Homo sapiens GN=APOA2 PE=1 SV=1 - [APOA2_HUMAN] P06727 Apolipoprotein A-IV OS=Homo sapiens GN=APOA4 PE=1 SV=3 - [APOA4_HUMAN] P04114 Apolipoprotein B-100 OS=Homo sapiens GN=APOB PE=1 SV=2 - [APOB_HUMAN] P02654 Apolipoprotein C-I OS=Homo sapiens GN=APOC1 PE=1 SV=1 - [APOC1_HUMAN] P02655 Apolipoprotein C-II OS=Homo sapiens GN=APOC2 PE=1 SV=1 - [APOC2_HUMAN] P02656 Apolipoprotein C-III OS=Homo sapiens GN=APOC3 PE=1 SV=1 - [APOC3_HUMAN] P05090 Apolipoprotein D OS=Homo sapiens GN=APOD PE=1 SV=1 - [APOD_HUMAN] P02649 Apolipoprotein E OS=Homo sapiens GN=APOE PE=1 SV=1 - [APOE_HUMAN] O14791 Apolipoprotein L1 OS=Homo sapiens GN=APOL1 PE=1 SV=5 - [APOL1_HUMAN] O95445 Apolipoprotein M OS=Homo sapiens GN=APOM PE=1 SV=2 - [APOM_HUMAN] P08519 Apolipoprotein(a) OS=Homo sapiens GN=LPA PE=1 SV=1 - [APOA_HUMAN] Q6UWY0 Arylsulfatase K OS=Homo sapiens GN=ARSK PE=1 SV=1 - [ARSK_HUMAN] O75143 Autophagy-related protein 13 OS=Homo sapiens GN=ATG13 PE=1 SV=1 - [ATG13_HUMAN] Q9P281 BAH and coiled-coil domain-containing protein 1 OS=Homo sapiens GN=BAHCC1 PE=2 SV=3 - [BAHC1_HUMAN] P02749 Beta-2-glycoprotein 1 OS=Homo sapiens GN=APOH PE=1 SV=3 - [APOH_HUMAN] P56945 Breast cancer anti-estrogen resistance protein 1 OS=Homo sapiens GN=BCAR1 PE=1 SV=2 - [BCAR1_HUMAN] P25440 Bromodomain-containing protein 2 OS=Homo sapiens GN=BRD2 PE=1 SV=2 - [BRD2_HUMAN] P04003 C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 - [C4BPA_HUMAN] P20851 C4b-binding protein beta chain OS=Homo sapiens GN=C4BPB PE=1 SV=1 - [C4BPB_HUMAN] Q86UW7 Calcium-dependent secretion activator 2 OS=Homo sapiens GN=CADPS2 PE=1 SV=2 - [CAPS2_HUMAN] Q86XM0 Cation channel sperm-associated protein subunit delta OS=Homo sapiens GN=CATSPERD PE=2 SV=3 - [CTSRD_HUMAN] Q99467 CD180 antigen OS=Homo sapiens GN=CD180 PE=1 SV=2 - [CD180_HUMAN] O43866 CD5 antigen-like OS=Homo sapiens GN=CD5L PE=1 SV=1 - [CD5L_HUMAN] Q96SN8 CDK5 regulatory subunit-associated protein 2 OS=Homo sapiens GN=CDK5RAP2 PE=1 SV=5 - [CK5P2_HUMAN] O15078 Centrosomal protein of 290 kDa OS=Homo sapiens GN=CEP290 PE=1 SV=2 - [CE290_HUMAN] P00450 Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 - [CERU_HUMAN] Q9NZA1 Chloride intracellular channel protein 5 OS=Homo sapiens GN=CLIC5 PE=1 SV=3 - [CLIC5_HUMAN] Q8TD26 Chromodomain-helicase-DNA-binding protein 6 OS=Homo sapiens GN=CHD6 PE=1 SV=4 - [CHD6_HUMAN] Q3L8U1 Chromodomain-helicase-DNA-binding protein 9 OS=Homo sapiens GN=CHD9 PE=1 SV=2 - [CHD9_HUMAN] P10909 Clusterin OS=Homo sapiens GN=CLU PE=1 SV=1 - [CLUS_HUMAN] P03951 Coagulation factor XI OS=Homo sapiens GN=F11 PE=1 SV=1 - [FA11_HUMAN] P00748 Coagulation factor XII OS=Homo sapiens GN=F12 PE=1 SV=3 - [FA12_HUMAN] P05160 Coagulation factor XIII B chain OS=Homo sapiens GN=F13B PE=1 SV=3 - [F13B_HUMAN] Q9P1Z9 Coiled-coil domain-containing protein 180 OS=Homo sapiens GN=CCDC180 PE=2 SV=2 - [CC180_HUMAN] A6NC98 Coiled-coil domain-containing protein 88B OS=Homo sapiens GN=CCDC88B PE=1 SV=1 - [CC88B_HUMAN] Q2M329 Coiled-coil domain-containing protein 96 OS=Homo sapiens GN=CCDC96 PE=2 SV=2 - [CCD96_HUMAN] P02745 Complement C1q subcomponent subunit A OS=Homo sapiens GN=C1QA PE=1 SV=2 - [C1QA_HUMAN] P02746 Complement C1q subcomponent subunit B OS=Homo sapiens GN=C1QB PE=1 SV=3 - [C1QB_HUMAN] P02747 Complement C1q subcomponent subunit C OS=Homo sapiens GN=C1QC PE=1 SV=3 - [C1QC_HUMAN] P00736 Complement C1r subcomponent OS=Homo sapiens GN=C1R PE=1 SV=2 - [C1R_HUMAN] P09871 Complement C1s subcomponent OS=Homo sapiens GN=C1S PE=1 SV=1 - [C1S_HUMAN] P01024 Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 - [CO3_HUMAN] P0C0L4 Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=2 - [CO4A_HUMAN] P0C0L5 Complement C4-B OS=Homo sapiens GN=C4B PE=1 SV=2 - [CO4B_HUMAN] P01031 Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 - [CO5_HUMAN] P13671 Complement component C6 OS=Homo sapiens GN=C6 PE=1 SV=3 - [CO6_HUMAN] P07357 Complement component C8 alpha chain OS=Homo sapiens GN=C8A PE=1 SV=2 - [CO8A_HUMAN] P07358 Complement component C8 beta chain OS=Homo sapiens GN=C8B PE=1 SV=3 - [CO8B_HUMAN] P07360 Complement component C8 gamma chain OS=Homo sapiens GN=C8G PE=1 SV=3 - [CO8G_HUMAN] P02748 Complement component C9 OS=Homo sapiens GN=C9 PE=1 SV=2 - [CO9_HUMAN] P00751 Complement factor B OS=Homo sapiens GN=CFB PE=1 SV=2 - [CFAB_HUMAN] P08603 Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 - [CFAH_HUMAN] Q03591 Complement factor H-related protein 1 OS=Homo sapiens GN=CFHR1 PE=1 SV=2 - [FHR1_HUMAN] P36980 Complement factor H-related protein 2 OS=Homo sapiens GN=CFHR2 PE=1 SV=1 - [FHR2_HUMAN] P05156 Complement factor I OS=Homo sapiens GN=CFI PE=1 SV=2 - [CFAI_HUMAN] P08574 Cytochrome c1, heme protein, mitochondrial OS=Homo sapiens GN=CYC1 PE=1 SV=3 - [CY1_HUMAN] Q8NDL9 Cytosolic carboxypeptidase-like protein 5 OS=Homo sapiens GN=AGBL5 PE=2 SV=1 - [CBPC5_HUMAN] Q8TEB1 DDB1- and CUL4-associated factor 11 OS=Homo sapiens GN=DCAF11 PE=1 SV=1 - [DCA11_HUMAN] Q5VZ89 DENN domain-containing protein 4C OS=Homo sapiens GN=DENND4C PE=1 SV=2 - [DEN4C_HUMAN] Q9UBT6 DNA polymerase kappa OS=Homo sapiens GN=POLK PE=1 SV=1 - [POLK_HUMAN] Q6PKX4 Docking protein 6 OS=Homo sapiens GN=DOK6 PE=1 SV=1 - [DOK6_HUMAN] Q149N8 E3 ubiquitin-protein ligase SHPRH OS=Homo sapiens GN=SHPRH PE=1 SV=2 - [SHPRH_HUMAN] Q5NDL2 EGF domain-specific O-linked N-acetylglucosamine transferase OS=Homo sapiens GN=EOGT PE=1 SV=1 - [EOGT_HUMAN] Q92611 ER degradation-enhancing alpha-mannosidase-like protein 1 OS=Homo sapiens GN=EDEM1 PE=1 SV=1 - [EDEM1_HUMAN] Q86YB8 ERO1-like protein beta OS=Homo sapiens GN=ERO1LB PE=1 SV=2 - [ERO1B_HUMAN] Q9HBU6 Ethanolamine kinase 1 OS=Homo sapiens GN=ETNK1 PE=1 SV=1 - [EKI1_HUMAN] Q8IYD1 Eukaryotic peptide chain release factor GTP-binding subunit ERF3B OS=Homo sapiens GN=GSPT2 PE=1 SV=2 - [ERF3B_HUMAN] O15372 Eukaryotic translation initiation factor 3 subunit H OS=Homo sapiens GN=EIF3H PE=1 SV=1 - [EIF3H_HUMAN] A9Z1Z3 Fer-1-like protein 4 OS=Homo sapiens GN=FER1L4 PE=2 SV=1 - [FR1L4_HUMAN] Q2V2M9 FH1/FH2 domain-containing protein 3 OS=Homo sapiens GN=FHOD3 PE=1 SV=2 - [FHOD3_HUMAN] P02751 Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 - [FINC_HUMAN] P23142 Fibulin-1 OS=Homo sapiens GN=FBLN1 PE=1 SV=4 - [FBLN1_HUMAN] ANALYTICAL SCIENCES NOVEMBER 2020, VOL. 36 3 O75955 Flotillin-1 OS=Homo sapiens GN=FLOT1 PE=1 SV=3 - [FLOT1_HUMAN] Q5SZK8 FRAS1-related extracellular matrix protein 2 OS=Homo sapiens GN=FREM2 PE=1 SV=2 - [FREM2_HUMAN] Q8WWL7 G2/mitotic-specific cyclin-B3 OS=Homo sapiens GN=CCNB3 PE=1 SV=2 - [CCNB3_HUMAN] Q08380 Galectin-3-binding protein OS=Homo sapiens GN=LGALS3BP PE=1 SV=1 - [LG3BP_HUMAN] Q9NUQ3 Gamma-taxilin OS=Homo sapiens GN=TXLNG PE=1 SV=2 - [TXLNG_HUMAN] P06396 Gelsolin OS=Homo sapiens GN=GSN PE=1 SV=1 - [GELS_HUMAN] Q12789 General transcription factor 3C polypeptide 1 OS=Homo sapiens GN=GTF3C1 PE=1 SV=4 - [TF3C1_HUMAN] Q9H4G4 Golgi-associated plant pathogenesis-related protein 1 OS=Homo sapiens GN=GLIPR2 PE=1 SV=3 - [GAPR1_HUMAN] Q9UQC2 GRB2-associated-binding protein 2 OS=Homo sapiens GN=GAB2 PE=1 SV=1 - [GAB2_HUMAN] P00738 Haptoglobin OS=Homo sapiens GN=HP PE=1 SV=1 - [HPT_HUMAN] P00739 Haptoglobin-related protein OS=Homo sapiens GN=HPR PE=1 SV=2 - [HPTR_HUMAN] Q86XA9 HEAT repeat-containing protein 5A OS=Homo sapiens GN=HEATR5A PE=1 SV=2 - [HTR5A_HUMAN] P02790 Hemopexin OS=Homo sapiens GN=HPX PE=1 SV=2 - [HEMO_HUMAN] O60658 High affinity cAMP-specific and IBMX-insensitive 3',5'-cyclic phosphodiesterase 8A OS=Homo sapiens GN=PDE8A PE=1 SV=2 - [PDE8A_HUMAN] P19113 Histidine decarboxylase OS=Homo sapiens GN=HDC PE=1 SV=2 - [DCHS_HUMAN] P04196 Histidine-rich glycoprotein OS=Homo sapiens GN=HRG PE=1 SV=1 - [HRG_HUMAN] O14686 Histone-lysine N-methyltransferase 2D OS=Homo sapiens GN=KMT2D PE=1 SV=2 - [KMT2D_HUMAN] Q6UXS9 Inactive caspase-12 OS=Homo sapiens GN=CASP12 PE=2 SV=2 - [CASPC_HUMAN] Q13572 Inositol-tetrakisphosphate 1-kinase OS=Homo sapiens GN=ITPK1 PE=1
Recommended publications
  • Synergistic Genetic Interactions Between Pkhd1 and Pkd1 Result in an ARPKD-Like Phenotype in Murine Models
    BASIC RESEARCH www.jasn.org Synergistic Genetic Interactions between Pkhd1 and Pkd1 Result in an ARPKD-Like Phenotype in Murine Models Rory J. Olson,1 Katharina Hopp ,2 Harrison Wells,3 Jessica M. Smith,3 Jessica Furtado,1,4 Megan M. Constans,3 Diana L. Escobar,3 Aron M. Geurts,5 Vicente E. Torres,3 and Peter C. Harris 1,3 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background Autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant polycystic kidney disease (ADPKD) are genetically distinct, with ADPKD usually caused by the genes PKD1 or PKD2 (encoding polycystin-1 and polycystin-2, respectively) and ARPKD caused by PKHD1 (encoding fibrocys- tin/polyductin [FPC]). Primary cilia have been considered central to PKD pathogenesis due to protein localization and common cystic phenotypes in syndromic ciliopathies, but their relevance is questioned in the simple PKDs. ARPKD’s mild phenotype in murine models versus in humans has hampered investi- gating its pathogenesis. Methods To study the interaction between Pkhd1 and Pkd1, including dosage effects on the phenotype, we generated digenic mouse and rat models and characterized and compared digenic, monogenic, and wild-type phenotypes. Results The genetic interaction was synergistic in both species, with digenic animals exhibiting pheno- types of rapidly progressive PKD and early lethality resembling classic ARPKD. Genetic interaction be- tween Pkhd1 and Pkd1 depended on dosage in the digenic murine models, with no significant enhancement of the monogenic phenotype until a threshold of reduced expression at the second locus was breached.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • SUPPLEMENTARY MATERIAL Human Engineered Skeletal Muscle
    SUPPLEMENTARY MATERIAL Human engineered skeletal muscle of hypaxial origin from pluripotent stem cells with advanced function and regenerative capacity Mina Shahriyari1,2, Md Rezaul Islam3, M. Sadman Sakib3, Anastasia Rika1,2, Dennis Krüger3, Lalit Kaurani3, Harithaa Anandakumar1,2, Orr Shomroni4, Matthias Schmidt5, Jana Zschüntzsch5, Jens Schmidt5, Gabriela Salinas-Riester4, Andreas Unger6, Wolfgang A. Linke6, André Fischer3,7, Wolfram-Hubertus Zimmermann1,2,3,7,8*, Malte Tiburcy1,2* 1 Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany. 2 DZHK (German Center for Cardiovascular Research), partner site Göttingen. 3 Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany 4 NGS Integrative Genomics Core Unit, Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany 5 Department of Neurology, University Medical Center Göttingen, Göttingen, Germany 6 Institute of Physiology II, University of Münster, D-48149 Münster, Germany 7 Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany; 8 Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Göttingen, Germany Supplementary table 1 related to Figure 2: Biological process annotation of coexpression clusters. Cluster Biological process annotated Enriched GO terms identifier Black Migrating limb progenitors Muscle
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Whole-Exome Sequencing of Metastatic Cancer and Biomarkers of Treatment Response
    Supplementary Online Content Beltran H, Eng K, Mosquera JM, et al. Whole-exome sequencing of metastatic cancer and biomarkers of treatment response. JAMA Oncol. Published online May 28, 2015. doi:10.1001/jamaoncol.2015.1313 eMethods eFigure 1. A schematic of the IPM Computational Pipeline eFigure 2. Tumor purity analysis eFigure 3. Tumor purity estimates from Pathology team versus computationally (CLONET) estimated tumor purities values for frozen tumor specimens (Spearman correlation 0.2765327, p- value = 0.03561) eFigure 4. Sequencing metrics Fresh/frozen vs. FFPE tissue eFigure 5. Somatic copy number alteration profiles by tumor type at cytogenetic map location resolution; for each cytogenetic map location the mean genes aberration frequency is reported eFigure 6. The 20 most frequently aberrant genes with respect to copy number gains/losses detected per tumor type eFigure 7. Top 50 genes with focal and large scale copy number gains (A) and losses (B) across the cohort eFigure 8. Summary of total number of copy number alterations across PM tumors eFigure 9. An example of tumor evolution looking at serial biopsies from PM222, a patient with metastatic bladder carcinoma eFigure 10. PM12 somatic mutations by coverage and allele frequency (A) and (B) mutation correlation between primary (y- axis) and brain metastasis (x-axis) eFigure 11. Point mutations across 5 metastatic sites of a 55 year old patient with metastatic prostate cancer at time of rapid autopsy eFigure 12. CT scans from patient PM137, a patient with recurrent platinum refractory metastatic urothelial carcinoma eFigure 13. Tracking tumor genomics between primary and metastatic samples from patient PM12 eFigure 14.
    [Show full text]
  • Wo2017/132291
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date W O 2017/132291 A l 3 August 2017 (03.08.2017) P O P C T (51) International Patent Classification: [US/US]; 77 Massachusetts Avenue, Cambridge, MA A61K 48/00 (2006.01) C12Q 1/68 (2006.01) 02139 (US). THE GENERAL HOSPITAL CORPORA¬ A61K 39/395 (2006.01) G01N 33/574 (2006.01) TION [US/US]; 55 Fruit Street, Boston, MA 021 14 (US). C12N 15/11 (2006.01) (72) Inventors; and (21) International Application Number: (71) Applicants : REGEV, Aviv [US/US]; 415 Main Street, PCT/US2017/014995 Cambridge, MA 02142 (US). BERNSTEIN, Bradley [US/US]; 55 Fruit Street, Boston, MA 021 14 (US). (22) International Filing Date: TIROSH, Itay [US/US]; 415 Main Street, Cambridge, 25 January 20 17 (25.01 .2017) MA 02142 (US). SUVA, Mario [US/US]; 55 Fruit Street, (25) Filing Language: English Bostn, MA 02144 (US). ROZENBALTT-ROSEN, Orit [US/US]; 415 Main Street, Cambridge, MA 02142 (US). (26) Publication Language: English (74) Agent: NIX, F., Brent; Johnson, Marcou & Isaacs, LLC, (30) Priority Data: 317A East Liberty St., Savannah, GA 31401 (US). 62/286,850 25 January 2016 (25.01.2016) US 62/437,558 2 1 December 201 6 (21. 12.2016) US (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (71) Applicants: THE BROAD INSTITUTE, INC. [US/US]; AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, 415 Main Street, Cambridge, MA 02142 (US).
    [Show full text]
  • Open Full Page
    Published OnlineFirst February 10, 2017; DOI: 10.1158/2159-8290.CD-16-1045 RESEARCH ARTICLE Interaction Landscape of Inherited Polymorphisms with Somatic Events in Cancer Hannah Carter 1 , 2 , 3 , 4 , Rachel Marty 5 , Matan Hofree 6 , Andrew M. Gross 5 , James Jensen 5 , Kathleen M. Fisch1,2,3,7 , Xingyu Wu 2 , Christopher DeBoever 5 , Eric L. Van Nostrand 4,8 , Yan Song 4,8 , Emily Wheeler 4,8 , Jason F. Kreisberg 1,3 , Scott M. Lippman 2 , Gene W. Yeo 4,8 , J. Silvio Gutkind 2 , 3 , and Trey Ideker 1 , 2 , 3 , 4 , 5,6 Downloaded from cancerdiscovery.aacrjournals.org on September 27, 2021. © 2017 American Association for Cancer Research. Published OnlineFirst February 10, 2017; DOI: 10.1158/2159-8290.CD-16-1045 ABSTRACT Recent studies have characterized the extensive somatic alterations that arise dur- ing cancer. However, the somatic evolution of a tumor may be signifi cantly affected by inherited polymorphisms carried in the germline. Here, we analyze genomic data for 5,954 tumors to reveal and systematically validate 412 genetic interactions between germline polymorphisms and major somatic events, including tumor formation in specifi c tissues and alteration of specifi c cancer genes. Among germline–somatic interactions, we found germline variants in RBFOX1 that increased incidence of SF3B1 somatic mutation by 8-fold via functional alterations in RNA splicing. Similarly, 19p13.3 variants were associated with a 4-fold increased likelihood of somatic mutations in PTEN. In support of this associ- ation, we found that PTEN knockdown sensitizes the MTOR pathway to high expression of the 19p13.3 gene GNA11 .
    [Show full text]
  • Table SII. Significantly Differentially Expressed Mrnas of GSE23558 Data Series with the Criteria of Adjusted P<0.05 And
    Table SII. Significantly differentially expressed mRNAs of GSE23558 data series with the criteria of adjusted P<0.05 and logFC>1.5. Probe ID Adjusted P-value logFC Gene symbol Gene title A_23_P157793 1.52x10-5 6.91 CA9 carbonic anhydrase 9 A_23_P161698 1.14x10-4 5.86 MMP3 matrix metallopeptidase 3 A_23_P25150 1.49x10-9 5.67 HOXC9 homeobox C9 A_23_P13094 3.26x10-4 5.56 MMP10 matrix metallopeptidase 10 A_23_P48570 2.36x10-5 5.48 DHRS2 dehydrogenase A_23_P125278 3.03x10-3 5.40 CXCL11 C-X-C motif chemokine ligand 11 A_23_P321501 1.63x10-5 5.38 DHRS2 dehydrogenase A_23_P431388 2.27x10-6 5.33 SPOCD1 SPOC domain containing 1 A_24_P20607 5.13x10-4 5.32 CXCL11 C-X-C motif chemokine ligand 11 A_24_P11061 3.70x10-3 5.30 CSAG1 chondrosarcoma associated gene 1 A_23_P87700 1.03x10-4 5.25 MFAP5 microfibrillar associated protein 5 A_23_P150979 1.81x10-2 5.25 MUCL1 mucin like 1 A_23_P1691 2.71x10-8 5.12 MMP1 matrix metallopeptidase 1 A_23_P350005 2.53x10-4 5.12 TRIML2 tripartite motif family like 2 A_24_P303091 1.23x10-3 4.99 CXCL10 C-X-C motif chemokine ligand 10 A_24_P923612 1.60x10-5 4.95 PTHLH parathyroid hormone like hormone A_23_P7313 6.03x10-5 4.94 SPP1 secreted phosphoprotein 1 A_23_P122924 2.45x10-8 4.93 INHBA inhibin A subunit A_32_P155460 6.56x10-3 4.91 PICSAR P38 inhibited cutaneous squamous cell carcinoma associated lincRNA A_24_P686965 8.75x10-7 4.82 SH2D5 SH2 domain containing 5 A_23_P105475 7.74x10-3 4.70 SLCO1B3 solute carrier organic anion transporter family member 1B3 A_24_P85099 4.82x10-5 4.67 HMGA2 high mobility group AT-hook 2 A_24_P101651
    [Show full text]
  • Deficient Mutant Identifies Novel Alterations in Gene Expression
    www.nature.com/scientificreports OPEN Neuroprotection by Heat Shock Factor-1 (HSF1) and Trimerization- Defcient Mutant Identifes Novel Received: 21 May 2018 Accepted: 5 November 2018 Alterations in Gene Expression Published: xx xx xxxx Zhe Qu1, Anto Sam Crosslee Louis Sam Titus1, Zhenyu Xuan 2 & Santosh R. D’Mello 1 Heat shock factor-1 (HSF1) protects neurons from death caused by the accumulation of misfolded proteins by stimulating the transcription of genes encoding heat shock proteins (HSPs). This stimulatory action depends on the association of trimeric HSF1 to sequences within HSP gene promoters. However, we recently described that HSF-AB, a mutant form of HSF1 that is incapable of either homo-trimerization, association with HSP gene promoters, or stimulation of HSP expression, protects neurons just as efciently as wild-type HSF1 suggesting an alternative neuroprotective mechanism that is activated by HSF1. To gain insight into the mechanism by which HSF1 and HSF1-AB protect neurons, we used RNA-Seq technology to identify transcriptional alterations induced by these proteins in either healthy cerebellar granule neurons (CGNs) or neurons primed to die. When HSF1 was ectopically-expressed in healthy neurons, 1,211 diferentially expressed genes (DEGs) were identifed with 1,075 being upregulated. When HSF1 was expressed in neurons primed to die, 393 genes were upregulated and 32 genes were downregulated. In sharp contrast, HSF1-AB altered expression of 13 genes in healthy neurons and only 6 genes in neurons under apoptotic conditions, suggesting that the neuroprotective efect of HSF1-AB may be mediated by a non-transcriptional mechanism. We validated the altered expression of 15 genes by QPCR.
    [Show full text]
  • Effect of Fucoxanthinol on Pancreatic
    CANCER GENOMICS & PROTEOMICS 18 : 407-423 (2021) doi:10.21873/cgp.20268 Effect of Fucoxanthinol on Pancreatic Ductal Adenocarcinoma Cells from an N-Nitrosobis(2-oxopropyl)amine-initiated Syrian Golden Hamster Pancreatic Carcinogenesis Model MASARU TERASAKI 1,2 , YUSAKU NISHIZAKA 1, WATARU MURASE 1, ATSUHITO KUBOTA 1, HIROYUKI KOJIMA 1,2 , MARESHIGE KOJOMA 1, TAKUJI TANAKA 3, HAYATO MAEDA 4, KAZUO MIYASHITA 5, MICHIHIRO MUTOH 6 and MAMI TAKAHASHI 7 1School of Pharmaceutical Sciences and 2Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan; 3Department of Diagnostic Pathology and Research Center of Diagnostic Pathology, Gifu Municipal Hospital, Gifu, Japan; 4Faculty of Agriculture and Life Science, Hirosaki University, Aomori, Japan; 5Center for Industry-University Collaboration, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan; 6Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; 7Central Animal Division, National Cancer Center, Tokyo, Japan Abstract. Background/Aim: Fucoxanthinol (FxOH) is a as a cancer chemopreventive agent in a hamster pancreatic marine carotenoid metabolite with potent anti-cancer activity. carcinogenesis model. However, little is known about the efficacy of FxOH in pancreatic cancer. In the present study, we investigated the Pancreatic cancer is one of the most lethal cancers worldwide inhibitory effect of FxOH on six types of cells cloned from N- because it is treatment resistant and has aggressive potential nitrosobis(2-oxopropyl)amine (BOP)-induced hamster for metastasis/invasion with resultant poor prognosis. From pancreatic cancer (HaPC) cells. Materials and Methods: the GLOBOCAN 2018 estimates, 432,242 pancreatic cancer FxOH action and its molecular mechanisms were investigated deaths occur per year (4.5% of total) (1), and the 5-year in HaPC cells using flow-cytometry, comprehensive gene survival rate remains poor at 10% (2 ).
    [Show full text]
  • Post-Transcriptionally Impaired De Novo Mutations Contribute to The
    bioRxiv preprint doi: https://doi.org/10.1101/175844; this version posted November 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Post-transcriptionally impaired de novo mutations 2 contribute to the genetic etiology of four neuropsychiatric 3 disorders 4 5 Fengbiao Mao1,2¶, Lu Wang3¶, Xiaolu Zhao2, Zhongshan Li4, Luoyuan Xiao5, 6 Rajesh C. Rao2, Jinchen Li4, Huajing Teng1*, Xin He6*, and Zhong Sheng Sun1,4* 7 8 1 Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, 9 China. 10 2 Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA. 11 3 Institute of Life Science, Southeast University, Nanjing 210096, China. 12 4 Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325027, 13 China 14 5 Department of Computer Science and Technology, Tsinghua University, Beijing 15 100084, China. 16 6 Department of Human Genetics, University of Chicago, Chicago, IL, USA. 17 18 ¶These authors contributed equally to this work 19 * Corresponding authors 20 E-mail: 21 [email protected] (Z.S.S.) 22 [email protected] (X.H.) 23 [email protected] (H.T.) 24 25 1 bioRxiv preprint doi: https://doi.org/10.1101/175844; this version posted November 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • The Genetic Program of Pancreatic Beta-Cell Replication in Vivo
    Page 1 of 65 Diabetes The genetic program of pancreatic beta-cell replication in vivo Agnes Klochendler1, Inbal Caspi2, Noa Corem1, Maya Moran3, Oriel Friedlich1, Sharona Elgavish4, Yuval Nevo4, Aharon Helman1, Benjamin Glaser5, Amir Eden3, Shalev Itzkovitz2, Yuval Dor1,* 1Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel 2Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel. 3Department of Cell and Developmental Biology, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel 4Info-CORE, Bioinformatics Unit of the I-CORE Computation Center, The Hebrew University and Hadassah, The Institute for Medical Research Israel- Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel 5Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel *Correspondence: [email protected] Running title: The genetic program of pancreatic β-cell replication 1 Diabetes Publish Ahead of Print, published online March 18, 2016 Diabetes Page 2 of 65 Abstract The molecular program underlying infrequent replication of pancreatic beta- cells remains largely inaccessible. Using transgenic mice expressing GFP in cycling cells we sorted live, replicating beta-cells and determined their transcriptome. Replicating beta-cells upregulate hundreds of proliferation- related genes, along with many novel putative cell cycle components. Strikingly, genes involved in beta-cell functions, namely glucose sensing and insulin secretion were repressed. Further studies using single molecule RNA in situ hybridization revealed that in fact, replicating beta-cells double the amount of RNA for most genes, but this upregulation excludes genes involved in beta-cell function.
    [Show full text]