Download (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Load more

ANALYTICAL SCIENCES NOVEMBER 2020, VOL. 36 2020 © The Japan Society for Analytical Chemistry
1

Supporting Information

Fig. S1 Detailed MS/MS data of myoglobin.

  • 2
  • ANALYTICAL SCIENCES NOVEMBER 2020, VOL. 36

Table S1 : The protein names (antigens) identified by pH 2.0 solution in the eluted-fraction. These proteins were identified one or more out of six analyses.

Accession

P08908 Q9NRR6 P82987 Q9Y6K8 P02763 P19652 P01011 P01009 P04217 P08697 P02765 P01023 P01019 Q9NQ90 P01008 P02647 P02652 P06727 P04114 P02654 P02655 P02656 P05090 P02649 O14791 O95445 P08519 Q6UWY0 O75143 Q9P281 P02749 P56945 P25440 P04003 P20851 Q86UW7 Q86XM0 Q99467 O43866 Q96SN8 O15078 P00450 Q9NZA1 Q8TD26 Q3L8U1 P10909 P03951 P00748 P05160 Q9P1Z9 A6NC98 Q2M329 P02745 P02746 P02747 P00736 P09871 P01024 P0C0L4 P0C0L5 P01031 P13671 P07357 P07358 P07360 P02748 P00751 P08603 Q03591 P36980 P05156 P08574 Q8NDL9 Q8TEB1 Q5VZ89 Q9UBT6 Q6PKX4 Q149N8 Q5NDL2 Q92611 Q86YB8 Q9HBU6 Q8IYD1 O15372 A9Z1Z3 Q2V2M9 P02751 P23142

Description

5-hydroxytryptamine receptor 1A OS=Homo sapiens GN=HTR1A PE=1 SV=3 - [5HT1A_HUMAN] 72 kDa inositol polyphosphate 5-phosphatase OS=Homo sapiens GN=INPP5E PE=1 SV=2 - [INP5E_HUMAN] ADAMTS-like protein 3 OS=Homo sapiens GN=ADAMTSL3 PE=2 SV=4 - [ATL3_HUMAN] Adenylate kinase isoenzyme 5 OS=Homo sapiens GN=AK5 PE=1 SV=2 - [KAD5_HUMAN] Alpha-1-acid glycoprotein 1 OS=Homo sapiens GN=ORM1 PE=1 SV=1 - [A1AG1_HUMAN] Alpha-1-acid glycoprotein 2 OS=Homo sapiens GN=ORM2 PE=1 SV=2 - [A1AG2_HUMAN] Alpha-1-antichymotrypsin OS=Homo sapiens GN=SERPINA3 PE=1 SV=2 - [AACT_HUMAN] Alpha-1-antitrypsin OS=Homo sapiens GN=SERPINA1 PE=1 SV=3 - [A1AT_HUMAN] Alpha-1B-glycoprotein OS=Homo sapiens GN=A1BG PE=1 SV=4 - [A1BG_HUMAN] Alpha-2-antiplasmin OS=Homo sapiens GN=SERPINF2 PE=1 SV=3 - [A2AP_HUMAN] Alpha-2-HS-glycoprotein OS=Homo sapiens GN=AHSG PE=1 SV=1 - [FETUA_HUMAN] Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 - [A2MG_HUMAN] Angiotensinogen OS=Homo sapiens GN=AGT PE=1 SV=1 - [ANGT_HUMAN] Anoctamin-2 OS=Homo sapiens GN=ANO2 PE=1 SV=2 - [ANO2_HUMAN] Antithrombin-III OS=Homo sapiens GN=SERPINC1 PE=1 SV=1 - [ANT3_HUMAN] Apolipoprotein A-I OS=Homo sapiens GN=APOA1 PE=1 SV=1 - [APOA1_HUMAN] Apolipoprotein A-II OS=Homo sapiens GN=APOA2 PE=1 SV=1 - [APOA2_HUMAN] Apolipoprotein A-IV OS=Homo sapiens GN=APOA4 PE=1 SV=3 - [APOA4_HUMAN] Apolipoprotein B-100 OS=Homo sapiens GN=APOB PE=1 SV=2 - [APOB_HUMAN] Apolipoprotein C-I OS=Homo sapiens GN=APOC1 PE=1 SV=1 - [APOC1_HUMAN] Apolipoprotein C-II OS=Homo sapiens GN=APOC2 PE=1 SV=1 - [APOC2_HUMAN] Apolipoprotein C-III OS=Homo sapiens GN=APOC3 PE=1 SV=1 - [APOC3_HUMAN] Apolipoprotein D OS=Homo sapiens GN=APOD PE=1 SV=1 - [APOD_HUMAN] Apolipoprotein E OS=Homo sapiens GN=APOE PE=1 SV=1 - [APOE_HUMAN] Apolipoprotein L1 OS=Homo sapiens GN=APOL1 PE=1 SV=5 - [APOL1_HUMAN] Apolipoprotein M OS=Homo sapiens GN=APOM PE=1 SV=2 - [APOM_HUMAN] Apolipoprotein(a) OS=Homo sapiens GN=LPA PE=1 SV=1 - [APOA_HUMAN] Arylsulfatase K OS=Homo sapiens GN=ARSK PE=1 SV=1 - [ARSK_HUMAN] Autophagy-related protein 13 OS=Homo sapiens GN=ATG13 PE=1 SV=1 - [ATG13_HUMAN] BAH and coiled-coil domain-containing protein 1 OS=Homo sapiens GN=BAHCC1 PE=2 SV=3 - [BAHC1_HUMAN] Beta-2-glycoprotein 1 OS=Homo sapiens GN=APOH PE=1 SV=3 - [APOH_HUMAN] Breast cancer anti-estrogen resistance protein 1 OS=Homo sapiens GN=BCAR1 PE=1 SV=2 - [BCAR1_HUMAN] Bromodomain-containing protein 2 OS=Homo sapiens GN=BRD2 PE=1 SV=2 - [BRD2_HUMAN] C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 - [C4BPA_HUMAN] C4b-binding protein beta chain OS=Homo sapiens GN=C4BPB PE=1 SV=1 - [C4BPB_HUMAN] Calcium-dependent secretion activator 2 OS=Homo sapiens GN=CADPS2 PE=1 SV=2 - [CAPS2_HUMAN] Cation channel sperm-associated protein subunit delta OS=Homo sapiens GN=CATSPERD PE=2 SV=3 - [CTSRD_HUMAN] CD180 antigen OS=Homo sapiens GN=CD180 PE=1 SV=2 - [CD180_HUMAN] CD5 antigen-like OS=Homo sapiens GN=CD5L PE=1 SV=1 - [CD5L_HUMAN] CDK5 regulatory subunit-associated protein 2 OS=Homo sapiens GN=CDK5RAP2 PE=1 SV=5 - [CK5P2_HUMAN] Centrosomal protein of 290 kDa OS=Homo sapiens GN=CEP290 PE=1 SV=2 - [CE290_HUMAN] Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 - [CERU_HUMAN] Chloride intracellular channel protein 5 OS=Homo sapiens GN=CLIC5 PE=1 SV=3 - [CLIC5_HUMAN] Chromodomain-helicase-DNA-binding protein 6 OS=Homo sapiens GN=CHD6 PE=1 SV=4 - [CHD6_HUMAN] Chromodomain-helicase-DNA-binding protein 9 OS=Homo sapiens GN=CHD9 PE=1 SV=2 - [CHD9_HUMAN] Clusterin OS=Homo sapiens GN=CLU PE=1 SV=1 - [CLUS_HUMAN] Coagulation factor XI OS=Homo sapiens GN=F11 PE=1 SV=1 - [FA11_HUMAN] Coagulation factor XII OS=Homo sapiens GN=F12 PE=1 SV=3 - [FA12_HUMAN] Coagulation factor XIII B chain OS=Homo sapiens GN=F13B PE=1 SV=3 - [F13B_HUMAN] Coiled-coil domain-containing protein 180 OS=Homo sapiens GN=CCDC180 PE=2 SV=2 - [CC180_HUMAN] Coiled-coil domain-containing protein 88B OS=Homo sapiens GN=CCDC88B PE=1 SV=1 - [CC88B_HUMAN] Coiled-coil domain-containing protein 96 OS=Homo sapiens GN=CCDC96 PE=2 SV=2 - [CCD96_HUMAN] Complement C1q subcomponent subunit A OS=Homo sapiens GN=C1QA PE=1 SV=2 - [C1QA_HUMAN] Complement C1q subcomponent subunit B OS=Homo sapiens GN=C1QB PE=1 SV=3 - [C1QB_HUMAN] Complement C1q subcomponent subunit C OS=Homo sapiens GN=C1QC PE=1 SV=3 - [C1QC_HUMAN] Complement C1r subcomponent OS=Homo sapiens GN=C1R PE=1 SV=2 - [C1R_HUMAN] Complement C1s subcomponent OS=Homo sapiens GN=C1S PE=1 SV=1 - [C1S_HUMAN] Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 - [CO3_HUMAN] Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=2 - [CO4A_HUMAN] Complement C4-B OS=Homo sapiens GN=C4B PE=1 SV=2 - [CO4B_HUMAN] Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 - [CO5_HUMAN] Complement component C6 OS=Homo sapiens GN=C6 PE=1 SV=3 - [CO6_HUMAN] Complement component C8 alpha chain OS=Homo sapiens GN=C8A PE=1 SV=2 - [CO8A_HUMAN] Complement component C8 beta chain OS=Homo sapiens GN=C8B PE=1 SV=3 - [CO8B_HUMAN] Complement component C8 gamma chain OS=Homo sapiens GN=C8G PE=1 SV=3 - [CO8G_HUMAN] Complement component C9 OS=Homo sapiens GN=C9 PE=1 SV=2 - [CO9_HUMAN] Complement factor B OS=Homo sapiens GN=CFB PE=1 SV=2 - [CFAB_HUMAN] Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 - [CFAH_HUMAN] Complement factor H-related protein 1 OS=Homo sapiens GN=CFHR1 PE=1 SV=2 - [FHR1_HUMAN] Complement factor H-related protein 2 OS=Homo sapiens GN=CFHR2 PE=1 SV=1 - [FHR2_HUMAN] Complement factor I OS=Homo sapiens GN=CFI PE=1 SV=2 - [CFAI_HUMAN] Cytochrome c1, heme protein, mitochondrial OS=Homo sapiens GN=CYC1 PE=1 SV=3 - [CY1_HUMAN] Cytosolic carboxypeptidase-like protein 5 OS=Homo sapiens GN=AGBL5 PE=2 SV=1 - [CBPC5_HUMAN] DDB1- and CUL4-associated factor 11 OS=Homo sapiens GN=DCAF11 PE=1 SV=1 - [DCA11_HUMAN] DENN domain-containing protein 4C OS=Homo sapiens GN=DENND4C PE=1 SV=2 - [DEN4C_HUMAN] DNA polymerase kappa OS=Homo sapiens GN=POLK PE=1 SV=1 - [POLK_HUMAN] Docking protein 6 OS=Homo sapiens GN=DOK6 PE=1 SV=1 - [DOK6_HUMAN] E3 ubiquitin-protein ligase SHPRH OS=Homo sapiens GN=SHPRH PE=1 SV=2 - [SHPRH_HUMAN] EGF domain-specific O-linked N-acetylglucosamine transferase OS=Homo sapiens GN=EOGT PE=1 SV=1 - [EOGT_HUMAN] ER degradation-enhancing alpha-mannosidase-like protein 1 OS=Homo sapiens GN=EDEM1 PE=1 SV=1 - [EDEM1_HUMAN] ERO1-like protein beta OS=Homo sapiens GN=ERO1LB PE=1 SV=2 - [ERO1B_HUMAN] Ethanolamine kinase 1 OS=Homo sapiens GN=ETNK1 PE=1 SV=1 - [EKI1_HUMAN] Eukaryotic peptide chain release factor GTP-binding subunit ERF3B OS=Homo sapiens GN=GSPT2 PE=1 SV=2 - [ERF3B_HUMAN] Eukaryotic translation initiation factor 3 subunit H OS=Homo sapiens GN=EIF3H PE=1 SV=1 - [EIF3H_HUMAN] Fer-1-like protein 4 OS=Homo sapiens GN=FER1L4 PE=2 SV=1 - [FR1L4_HUMAN] FH1/FH2 domain-containing protein 3 OS=Homo sapiens GN=FHOD3 PE=1 SV=2 - [FHOD3_HUMAN] Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 - [FINC_HUMAN] Fibulin-1 OS=Homo sapiens GN=FBLN1 PE=1 SV=4 - [FBLN1_HUMAN]

  • ANALYTICAL SCIENCES NOVEMBER 2020, VOL. 36
  • 3

O75955 Q5SZK8 Q8WWL7 Q08380 Q9NUQ3 P06396 Q12789 Q9H4G4 Q9UQC2 P00738 P00739 Q86XA9 P02790 O60658 P19113 P04196 O14686 Q6UXS9 Q13572 P35858 P19827 P19823 Q14624 Q6UXL0 P13645 P35527 P04264 P35908 Q8NI77 Q2TAC6 P01042 Q9NS86 Q6P1M3 Q8WUT4 Q9NZU0 O43679 Q86UK5 P18428 Q9Y2F5 Q6IPR1 Q15648 Q6P4Q7 Q8TAX7 Q8IZJ1
Flotillin-1 OS=Homo sapiens GN=FLOT1 PE=1 SV=3 - [FLOT1_HUMAN] FRAS1-related extracellular matrix protein 2 OS=Homo sapiens GN=FREM2 PE=1 SV=2 - [FREM2_HUMAN] G2/mitotic-specific cyclin-B3 OS=Homo sapiens GN=CCNB3 PE=1 SV=2 - [CCNB3_HUMAN] Galectin-3-binding protein OS=Homo sapiens GN=LGALS3BP PE=1 SV=1 - [LG3BP_HUMAN] Gamma-taxilin OS=Homo sapiens GN=TXLNG PE=1 SV=2 - [TXLNG_HUMAN] Gelsolin OS=Homo sapiens GN=GSN PE=1 SV=1 - [GELS_HUMAN] General transcription factor 3C polypeptide 1 OS=Homo sapiens GN=GTF3C1 PE=1 SV=4 - [TF3C1_HUMAN] Golgi-associated plant pathogenesis-related protein 1 OS=Homo sapiens GN=GLIPR2 PE=1 SV=3 - [GAPR1_HUMAN] GRB2-associated-binding protein 2 OS=Homo sapiens GN=GAB2 PE=1 SV=1 - [GAB2_HUMAN] Haptoglobin OS=Homo sapiens GN=HP PE=1 SV=1 - [HPT_HUMAN] Haptoglobin-related protein OS=Homo sapiens GN=HPR PE=1 SV=2 - [HPTR_HUMAN] HEAT repeat-containing protein 5A OS=Homo sapiens GN=HEATR5A PE=1 SV=2 - [HTR5A_HUMAN] Hemopexin OS=Homo sapiens GN=HPX PE=1 SV=2 - [HEMO_HUMAN] High affinity cAMP-specific and IBMX-insensitive 3',5'-cyclic phosphodiesterase 8A OS=Homo sapiens GN=PDE8A PE=1 SV=2 - [PDE8A_HUMAN] Histidine decarboxylase OS=Homo sapiens GN=HDC PE=1 SV=2 - [DCHS_HUMAN] Histidine-rich glycoprotein OS=Homo sapiens GN=HRG PE=1 SV=1 - [HRG_HUMAN] Histone-lysine N-methyltransferase 2D OS=Homo sapiens GN=KMT2D PE=1 SV=2 - [KMT2D_HUMAN] Inactive caspase-12 OS=Homo sapiens GN=CASP12 PE=2 SV=2 - [CASPC_HUMAN] Inositol-tetrakisphosphate 1-kinase OS=Homo sapiens GN=ITPK1 PE=1 SV=2 - [ITPK1_HUMAN] Insulin-like growth factor-binding protein complex acid labile subunit OS=Homo sapiens GN=IGFALS PE=1 SV=1 - [ALS_HUMAN] Inter-alpha-trypsin inhibitor heavy chain H1 OS=Homo sapiens GN=ITIH1 PE=1 SV=3 - [ITIH1_HUMAN] Inter-alpha-trypsin inhibitor heavy chain H2 OS=Homo sapiens GN=ITIH2 PE=1 SV=2 - [ITIH2_HUMAN] Inter-alpha-trypsin inhibitor heavy chain H4 OS=Homo sapiens GN=ITIH4 PE=1 SV=4 - [ITIH4_HUMAN] Interleukin-20 receptor subunit beta OS=Homo sapiens GN=IL20RB PE=1 SV=1 - [I20RB_HUMAN] Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT10 PE=1 SV=6 - [K1C10_HUMAN] Keratin, type I cytoskeletal 9 OS=Homo sapiens GN=KRT9 PE=1 SV=3 - [K1C9_HUMAN] Keratin, type II cytoskeletal 1 OS=Homo sapiens GN=KRT1 PE=1 SV=6 - [K2C1_HUMAN] Keratin, type II cytoskeletal 2 epidermal OS=Homo sapiens GN=KRT2 PE=1 SV=2 - [K22E_HUMAN] Kinesin-like protein KIF18A OS=Homo sapiens GN=KIF18A PE=1 SV=2 - [KI18A_HUMAN] Kinesin-like protein KIF19 OS=Homo sapiens GN=KIF19 PE=2 SV=2 - [KIF19_HUMAN] Kininogen-1 OS=Homo sapiens GN=KNG1 PE=1 SV=2 - [KNG1_HUMAN] LanC-like protein 2 OS=Homo sapiens GN=LANCL2 PE=1 SV=1 - [LANC2_HUMAN] Lethal(2) giant larvae protein homolog 2 OS=Homo sapiens GN=LLGL2 PE=1 SV=2 - [L2GL2_HUMAN] Leucine-rich repeat neuronal protein 4 OS=Homo sapiens GN=LRRN4 PE=1 SV=3 - [LRRN4_HUMAN] Leucine-rich repeat transmembrane protein FLRT3 OS=Homo sapiens GN=FLRT3 PE=1 SV=1 - [FLRT3_HUMAN] LIM domain-binding protein 2 OS=Homo sapiens GN=LDB2 PE=1 SV=1 - [LDB2_HUMAN] Limbin OS=Homo sapiens GN=EVC2 PE=1 SV=1 - [LBN_HUMAN] Lipopolysaccharide-binding protein OS=Homo sapiens GN=LBP PE=1 SV=3 - [LBP_HUMAN] Little elongation complex subunit 1 OS=Homo sapiens GN=ICE1 PE=1 SV=5 - [ICE1_HUMAN] LYR motif-containing protein 5 GN=LYRM5 PE=2 SV=2 - [LYRM5_HUMAN] Mediator of RNA polymerase II transcription subunit 1 OS=Homo sapiens GN=MED1 PE=1 SV=4 - [MED1_HUMAN] Metal transporter CNNM4 OS=Homo sapiens GN=CNNM4 PE=1 SV=3 - [CNNM4_HUMAN] Mucin-7 OS=Homo sapiens GN=MUC7 PE=1 SV=2 - [MUC7_HUMAN] Netrin receptor UNC5B OS=Homo sapiens GN=UNC5B PE=1 SV=2 - [UNC5B_HUMAN]

  • Neurexin-2-beta OS=Homo sapiens GN=NRXN2 PE=2 SV=1 - [NRX2B_HUMAN]
  • P58401

Q5VWK0 P29474 Q9NXX6 Q6P4R8 O75694 O95948 P20941 P80108 P36955 P03952 P00747 P02775 P98161 P20742 Q6NUJ1 Q15751 Q8IZF3 Q86YR7 Q9P241 O00507 O43586 P27918 Q9P2B2 P02760 Q9Y3R5 Q9ULE4 Q6ZRQ5 Q9BZQ8 O60502 Q86TB9 Q8WUY3 Q92954 P00734 Q9Y5I0 Q587J7 Q14409 Q6P575 P0C7U2 Q96T37 B5MCN3 P11498 Q4ADV7 Q8NHQ8 Q9UN86 Q06141 Q13464
Neuroblastoma breakpoint family member 6 OS=Homo sapiens GN=NBPF6 PE=2 SV=2 - [NBPF6_HUMAN] Nitric oxide synthase, endothelial OS=Homo sapiens GN=NOS3 PE=1 SV=3 - [NOS3_HUMAN] Non-structural maintenance of chromosomes element 4 homolog A OS=Homo sapiens GN=NSMCE4A PE=1 SV=2 - [NSE4A_HUMAN] Nuclear factor related to kappa-B-binding protein OS=Homo sapiens GN=NFRKB PE=1 SV=2 - [NFRKB_HUMAN] Nuclear pore complex protein Nup155 OS=Homo sapiens GN=NUP155 PE=1 SV=1 - [NU155_HUMAN] One cut domain family member 2 OS=Homo sapiens GN=ONECUT2 PE=2 SV=2 - [ONEC2_HUMAN] Phosducin OS=Homo sapiens GN=PDC PE=1 SV=1 - [PHOS_HUMAN] Phosphatidylinositol-glycan-specific phospholipase D OS=Homo sapiens GN=GPLD1 PE=1 SV=3 - [PHLD_HUMAN] Pigment epithelium-derived factor OS=Homo sapiens GN=SERPINF1 PE=1 SV=4 - [PEDF_HUMAN] Plasma kallikrein OS=Homo sapiens GN=KLKB1 PE=1 SV=1 - [KLKB1_HUMAN] Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 - [PLMN_HUMAN] Platelet basic protein OS=Homo sapiens GN=PPBP PE=1 SV=3 - [CXCL7_HUMAN] Polycystin-1 OS=Homo sapiens GN=PKD1 PE=1 SV=3 - [PKD1_HUMAN] Pregnancy zone protein OS=Homo sapiens GN=PZP PE=1 SV=4 - [PZP_HUMAN] Proactivator polypeptide-like 1 OS=Homo sapiens GN=PSAPL1 PE=2 SV=2 - [SAPL1_HUMAN] Probable E3 ubiquitin-protein ligase HERC1 OS=Homo sapiens GN=HERC1 PE=1 SV=2 - [HERC1_HUMAN] Probable G-protein coupled receptor 115 OS=Homo sapiens GN=GPR115 PE=2 SV=3 - [GP115_HUMAN] Probable guanine nucleotide exchange factor MCF2L2 OS=Homo sapiens GN=MCF2L2 PE=2 SV=3 - [MF2L2_HUMAN] Probable phospholipid-transporting ATPase VD OS=Homo sapiens GN=ATP10D PE=2 SV=3 - [AT10D_HUMAN] Probable ubiquitin carboxyl-terminal hydrolase FAF-Y OS=Homo sapiens GN=USP9Y PE=2 SV=2 - [USP9Y_HUMAN] Proline-serine-threonine phosphatase-interacting protein 1 OS=Homo sapiens GN=PSTPIP1 PE=1 SV=1 - [PPIP1_HUMAN] Properdin OS=Homo sapiens GN=CFP PE=1 SV=2 - [PROP_HUMAN] Prostaglandin F2 receptor negative regulator OS=Homo sapiens GN=PTGFRN PE=1 SV=2 - [FPRP_HUMAN] Protein AMBP OS=Homo sapiens GN=AMBP PE=1 SV=1 - [AMBP_HUMAN] Protein dopey-2 OS=Homo sapiens GN=DOPEY2 PE=1 SV=5 - [DOP2_HUMAN] Protein FAM184B OS=Homo sapiens GN=FAM184B PE=2 SV=3 - [F184B_HUMAN] Protein MMS22-like OS=Homo sapiens GN=MMS22L PE=1 SV=3 - [MMS22_HUMAN] Protein Niban OS=Homo sapiens GN=FAM129A PE=1 SV=1 - [NIBAN_HUMAN] Protein O-GlcNAcase OS=Homo sapiens GN=MGEA5 PE=1 SV=2 - [OGA_HUMAN] Protein PAT1 homolog 1 OS=Homo sapiens GN=PATL1 PE=1 SV=2 - [PATL1_HUMAN] Protein prune homolog 2 OS=Homo sapiens GN=PRUNE2 PE=1 SV=3 - [PRUN2_HUMAN] Proteoglycan 4 OS=Homo sapiens GN=PRG4 PE=1 SV=2 - [PRG4_HUMAN] Prothrombin OS=Homo sapiens GN=F2 PE=1 SV=2 - [THRB_HUMAN] Protocadherin alpha-13 OS=Homo sapiens GN=PCDHA13 PE=2 SV=1 - [PCDAD_HUMAN] Putative ATP-dependent RNA helicase TDRD12 OS=Homo sapiens GN=TDRD12 PE=2 SV=2 - [TDR12_HUMAN] Putative glycerol kinase 3 OS=Homo sapiens GN=GK3P PE=5 SV=2 - [GLPK3_HUMAN] Putative inactive beta-glucuronidase protein GUSBP11 OS=Homo sapiens GN=GUSBP11 PE=5 SV=2 - [BGP11_HUMAN] Putative neutral ceramidase C OS=Homo sapiens GN=ASAH2C PE=2 SV=1 - [ASA2C_HUMAN] Putative RNA-binding protein 15 OS=Homo sapiens GN=RBM15 PE=1 SV=2 - [RBM15_HUMAN] Putative SEC14-like protein 6 OS=Homo sapiens GN=SEC14L6 PE=5 SV=1 - [S14L6_HUMAN] Pyruvate carboxylase, mitochondrial OS=Homo sapiens GN=PC PE=1 SV=2 - [PYC_HUMAN] RAB6A-GEF complex partner protein 1 OS=Homo sapiens GN=RIC1 PE=1 SV=2 - [RIC1_HUMAN] Ras association domain-containing protein 8 OS=Homo sapiens GN=RASSF8 PE=1 SV=2 - [RASF8_HUMAN] Ras GTPase-activating protein-binding protein 2 OS=Homo sapiens GN=G3BP2 PE=1 SV=2 - [G3BP2_HUMAN] Regenerating islet-derived protein 3-alpha OS=Homo sapiens GN=REG3A PE=1 SV=1 - [REG3A_HUMAN] Rho-associated protein kinase 1 OS=Homo sapiens GN=ROCK1 PE=1 SV=1 - [ROCK1_HUMAN]

  • 4
  • ANALYTICAL SCIENCES NOVEMBER 2020, VOL. 36

Q9UDX4 P49908 Q02383 O95835 P53350 P62714 P02787 P02768 P0DJI8
SEC14-like protein 3 OS=Homo sapiens GN=SEC14L3 PE=1 SV=1 - [S14L3_HUMAN] Selenoprotein P OS=Homo sapiens GN=SEPP1 PE=1 SV=3 - [SEPP1_HUMAN] Semenogelin-2 OS=Homo sapiens GN=SEMG2 PE=1 SV=1 - [SEMG2_HUMAN] Serine/threonine-protein kinase LATS1 OS=Homo sapiens GN=LATS1 PE=1 SV=1 - [LATS1_HUMAN] Serine/threonine-protein kinase PLK1 OS=Homo sapiens GN=PLK1 PE=1 SV=1 - [PLK1_HUMAN] Serine/threonine-protein phosphatase 2A catalytic subunit beta isoform OS=Homo sapiens GN=PPP2CB PE=1 SV=1 - [PP2AB_HUMAN] Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 - [TRFE_HUMAN] Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 - [ALBU_HUMAN] Serum amyloid A-1 protein OS=Homo sapiens GN=SAA1 PE=1 SV=1 - [SAA1_HUMAN]
P35542 P02743 P27169 P16219 Q9NQ36 Q9P2F8 O60292 Q8NFF2 Q8NA29 Q08357 Q8IZD6 Q96R06 Q8N412 Q6SZW1 Q15772 Q8IY92 O00391 Q6ZRP7 O15524 Q92777 Q96GM8 P82094 Q8WUA7 Q8N4U5 P05452 Q9BQ50 Q15025 O60602 Q9H497 O15050 Q15369 Q9ULS5 P02766 Q8NAT2 P41240 Q70CQ3 Q86XI8 Q8TBZ9 P46939 Q9P253 Q8NDX2 P07225 P04004 O95180 Q5TIE3 O43379 Q5GH72 Q96K62 Q9NQZ6 Q15326 Q9H091 P17038 Q969S3 Q5JPB2 Q05481
Serum amyloid A-4 protein OS=Homo sapiens GN=SAA4 PE=1 SV=2 - [SAA4_HUMAN] Serum amyloid P-component OS=Homo sapiens GN=APCS PE=1 SV=2 - [SAMP_HUMAN] Serum paraoxonase/arylesterase 1 OS=Homo sapiens GN=PON1 PE=1 SV=3 - [PON1_HUMAN] Short-chain specific acyl-CoA dehydrogenase, mitochondrial OS=Homo sapiens GN=ACADS PE=1 SV=1 - [ACADS_HUMAN] Signal peptide, CUB and EGF-like domain-containing protein 2 OS=Homo sapiens GN=SCUBE2 PE=2 SV=2 - [SCUB2_HUMAN] Signal-induced proliferation-associated 1-like protein 2 OS=Homo sapiens GN=SIPA1L2 PE=1 SV=2 - [SI1L2_HUMAN] Signal-induced proliferation-associated 1-like protein 3 OS=Homo sapiens GN=SIPA1L3 PE=1 SV=3 - [SI1L3_HUMAN] Sodium/potassium/calcium exchanger 4 OS=Homo sapiens GN=SLC24A4 PE=1 SV=2 - [NCKX4_HUMAN] Sodium-dependent lysophosphatidylcholine symporter 1 OS=Homo sapiens GN=MFSD2A PE=1 SV=1 - [NLS1_HUMAN] Sodium-dependent phosphate transporter 2 OS=Homo sapiens GN=SLC20A2 PE=1 SV=1 - [S20A2_HUMAN] Solute carrier family 22 member 15 OS=Homo sapiens GN=SLC22A15 PE=2 SV=1 - [S22AF_HUMAN] Sperm-associated antigen 5 OS=Homo sapiens GN=SPAG5 PE=1 SV=2 - [SPAG5_HUMAN] Sperm-tail PG-rich repeat-containing protein 2 OS=Homo sapiens GN=STPG2 PE=2 SV=1 - [STPG2_HUMAN] Sterile alpha and TIR motif-containing protein 1 OS=Homo sapiens GN=SARM1 PE=1 SV=1 - [SARM1_HUMAN] Striated muscle preferentially expressed protein kinase OS=Homo sapiens GN=SPEG PE=1 SV=4 - [SPEG_HUMAN] Structure-specific endonuclease subunit SLX4 OS=Homo sapiens GN=SLX4 PE=1 SV=3 - [SLX4_HUMAN] Sulfhydryl oxidase 1 OS=Homo sapiens GN=QSOX1 PE=1 SV=3 - [QSOX1_HUMAN] Sulfhydryl oxidase 2 OS=Homo sapiens GN=QSOX2 PE=1 SV=3 - [QSOX2_HUMAN] Suppressor of cytokine signaling 1 OS=Homo sapiens GN=SOCS1 PE=1 SV=1 - [SOCS1_HUMAN] Synapsin-2 OS=Homo sapiens GN=SYN2 PE=1 SV=3 - [SYN2_HUMAN] Target of EGR1 protein 1 OS=Homo sapiens GN=TOE1 PE=1 SV=1 - [TOE1_HUMAN] TATA element modulatory factor OS=Homo sapiens GN=TMF1 PE=1 SV=2 - [TMF1_HUMAN] TBC1 domain family member 22A OS=Homo sapiens GN=TBC1D22A PE=1 SV=2 - [TB22A_HUMAN] T-complex protein 11-like protein 2 OS=Homo sapiens GN=TCP11L2 PE=2 SV=1 - [T11L2_HUMAN] Tetranectin OS=Homo sapiens GN=CLEC3B PE=1 SV=3 - [TETN_HUMAN] Three prime repair exonuclease 2 OS=Homo sapiens GN=TREX2 PE=1 SV=1 - [TREX2_HUMAN] TNFAIP3-interacting protein 1 OS=Homo sapiens GN=TNIP1 PE=1 SV=2 - [TNIP1_HUMAN] Toll-like receptor 5 OS=Homo sapiens GN=TLR5 PE=1 SV=4 - [TLR5_HUMAN] Torsin-3A OS=Homo sapiens GN=TOR3A PE=1 SV=1 - [TOR3A_HUMAN] TPR and ankyrin repeat-containing protein 1 OS=Homo sapiens GN=TRANK1 PE=2 SV=4 - [TRNK1_HUMAN] Transcription elongation factor B polypeptide 1 OS=Homo sapiens GN=TCEB1 PE=1 SV=1 - [ELOC_HUMAN] Transmembrane and coiled-coil domains protein 3 OS=Homo sapiens GN=TMCC3 PE=2 SV=3 - [TMCC3_HUMAN] Transthyretin OS=Homo sapiens GN=TTR PE=1 SV=1 - [TTHY_HUMAN] Tudor domain-containing protein 5 OS=Homo sapiens GN=TDRD5 PE=1 SV=3 - [TDRD5_HUMAN] Tyrosine-protein kinase CSK OS=Homo sapiens GN=CSK PE=1 SV=1 - [CSK_HUMAN] Ubiquitin carboxyl-terminal hydrolase 30 OS=Homo sapiens GN=USP30 PE=1 SV=1 - [UBP30_HUMAN] Uncharacterized protein C19orf68 OS=Homo sapiens GN=C19orf68 PE=1 SV=2 - [CS068_HUMAN] Uncharacterized protein C7orf62 OS=Homo sapiens GN=C7orf62 PE=2 SV=1 - [CG062_HUMAN] Utrophin OS=Homo sapiens GN=UTRN PE=1 SV=2 - [UTRO_HUMAN] Vacuolar protein sorting-associated protein 18 homolog OS=Homo sapiens GN=VPS18 PE=1 SV=2 - [VPS18_HUMAN] Vesicular glutamate transporter 3 OS=Homo sapiens GN=SLC17A8 PE=1 SV=1 - [VGLU3_HUMAN] Vitamin K-dependent protein S OS=Homo sapiens GN=PROS1 PE=1 SV=1 - [PROS_HUMAN] Vitronectin OS=Homo sapiens GN=VTN PE=1 SV=1 - [VTNC_HUMAN] Voltage-dependent T-type calcium channel subunit alpha-1H OS=Homo sapiens GN=CACNA1H PE=1 SV=4 - [CAC1H_HUMAN] von Willebrand factor A domain-containing protein 5B1 OS=Homo sapiens GN=VWA5B1 PE=1 SV=2 - [VW5B1_HUMAN] WD repeat-containing protein 62 OS=Homo sapiens GN=WDR62 PE=1 SV=4 - [WDR62_HUMAN] XK-related protein 7 OS=Homo sapiens GN=XKR7 PE=2 SV=1 - [XKR7_HUMAN] Zinc finger and BTB domain-containing protein 45 OS=Homo sapiens GN=ZBTB45 PE=2 SV=1 - [ZBT45_HUMAN] Zinc finger C4H2 domain-containing protein OS=Homo sapiens GN=ZC4H2 PE=1 SV=1 - [ZC4H2_HUMAN] Zinc finger MYND domain-containing protein 11 OS=Homo sapiens GN=ZMYND11 PE=1 SV=2 - [ZMY11_HUMAN] Zinc finger MYND domain-containing protein 15 OS=Homo sapiens GN=ZMYND15 PE=2 SV=2 - [ZMY15_HUMAN] Zinc finger protein 43 OS=Homo sapiens GN=ZNF43 PE=2 SV=4 - [ZNF43_HUMAN] Zinc finger protein 622 OS=Homo sapiens GN=ZNF622 PE=1 SV=1 - [ZN622_HUMAN] Zinc finger protein 831 OS=Homo sapiens GN=ZNF831 PE=2 SV=4 - [ZN831_HUMAN] Zinc finger protein 91 OS=Homo sapiens GN=ZNF91 PE=2 SV=2 - [ZNF91_HUMAN]

Table S1 : The protein names (antigens) identified by pH 2.5 solution in the eluted-fraction. These proteins were identified one or more out of six analyses.

Accession

Q07973 Q06136 O14639 Q6VMQ6 O75366 P19652 P01011 P01009 P08697 P02765 P01023 P01019 Q9Y2G4 P01008 P02647 P02652 P06727 P04114 P02654 P02655 P02656 P55056

Description

1,25-dihydroxyvitamin D(3) 24-hydroxylase, mitochondrial OS=Homo sapiens GN=CYP24A1 PE=1 SV=2 - [CP24A_HUMAN] 3-ketodihydrosphingosine reductase OS=Homo sapiens GN=KDSR PE=1 SV=1 - [KDSR_HUMAN] Actin-binding LIM protein 1 OS=Homo sapiens GN=ABLIM1 PE=1 SV=3 - [ABLM1_HUMAN] Activating transcription factor 7-interacting protein 1 OS=Homo sapiens GN=ATF7IP PE=1 SV=3 - [MCAF1_HUMAN] Advillin OS=Homo sapiens GN=AVIL PE=1 SV=3 - [AVIL_HUMAN] Alpha-1-acid glycoprotein 2 OS=Homo sapiens GN=ORM2 PE=1 SV=2 - [A1AG2_HUMAN] Alpha-1-antichymotrypsin OS=Homo sapiens GN=SERPINA3 PE=1 SV=2 - [AACT_HUMAN] Alpha-1-antitrypsin OS=Homo sapiens GN=SERPINA1 PE=1 SV=3 - [A1AT_HUMAN] Alpha-2-antiplasmin OS=Homo sapiens GN=SERPINF2 PE=1 SV=3 - [A2AP_HUMAN] Alpha-2-HS-glycoprotein OS=Homo sapiens GN=AHSG PE=1 SV=1 - [FETUA_HUMAN] Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 - [A2MG_HUMAN] Angiotensinogen OS=Homo sapiens GN=AGT PE=1 SV=1 - [ANGT_HUMAN] Ankyrin repeat domain-containing protein 6 OS=Homo sapiens GN=ANKRD6 PE=1 SV=3 - [ANKR6_HUMAN] Antithrombin-III OS=Homo sapiens GN=SERPINC1 PE=1 SV=1 - [ANT3_HUMAN] Apolipoprotein A-I OS=Homo sapiens GN=APOA1 PE=1 SV=1 - [APOA1_HUMAN] Apolipoprotein A-II OS=Homo sapiens GN=APOA2 PE=1 SV=1 - [APOA2_HUMAN] Apolipoprotein A-IV OS=Homo sapiens GN=APOA4 PE=1 SV=3 - [APOA4_HUMAN] Apolipoprotein B-100 OS=Homo sapiens GN=APOB PE=1 SV=2 - [APOB_HUMAN] Apolipoprotein C-I OS=Homo sapiens GN=APOC1 PE=1 SV=1 - [APOC1_HUMAN] Apolipoprotein C-II OS=Homo sapiens GN=APOC2 PE=1 SV=1 - [APOC2_HUMAN] Apolipoprotein C-III OS=Homo sapiens GN=APOC3 PE=1 SV=1 - [APOC3_HUMAN] Apolipoprotein C-IV OS=Homo sapiens GN=APOC4 PE=1 SV=1 - [APOC4_HUMAN]

Recommended publications
  • Synergistic Genetic Interactions Between Pkhd1 and Pkd1 Result in an ARPKD-Like Phenotype in Murine Models

    Synergistic Genetic Interactions Between Pkhd1 and Pkd1 Result in an ARPKD-Like Phenotype in Murine Models

    BASIC RESEARCH www.jasn.org Synergistic Genetic Interactions between Pkhd1 and Pkd1 Result in an ARPKD-Like Phenotype in Murine Models Rory J. Olson,1 Katharina Hopp ,2 Harrison Wells,3 Jessica M. Smith,3 Jessica Furtado,1,4 Megan M. Constans,3 Diana L. Escobar,3 Aron M. Geurts,5 Vicente E. Torres,3 and Peter C. Harris 1,3 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background Autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant polycystic kidney disease (ADPKD) are genetically distinct, with ADPKD usually caused by the genes PKD1 or PKD2 (encoding polycystin-1 and polycystin-2, respectively) and ARPKD caused by PKHD1 (encoding fibrocys- tin/polyductin [FPC]). Primary cilia have been considered central to PKD pathogenesis due to protein localization and common cystic phenotypes in syndromic ciliopathies, but their relevance is questioned in the simple PKDs. ARPKD’s mild phenotype in murine models versus in humans has hampered investi- gating its pathogenesis. Methods To study the interaction between Pkhd1 and Pkd1, including dosage effects on the phenotype, we generated digenic mouse and rat models and characterized and compared digenic, monogenic, and wild-type phenotypes. Results The genetic interaction was synergistic in both species, with digenic animals exhibiting pheno- types of rapidly progressive PKD and early lethality resembling classic ARPKD. Genetic interaction be- tween Pkhd1 and Pkd1 depended on dosage in the digenic murine models, with no significant enhancement of the monogenic phenotype until a threshold of reduced expression at the second locus was breached.
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus

    A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus

    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
  • SUPPLEMENTARY MATERIAL Human Engineered Skeletal Muscle

    SUPPLEMENTARY MATERIAL Human Engineered Skeletal Muscle

    SUPPLEMENTARY MATERIAL Human engineered skeletal muscle of hypaxial origin from pluripotent stem cells with advanced function and regenerative capacity Mina Shahriyari1,2, Md Rezaul Islam3, M. Sadman Sakib3, Anastasia Rika1,2, Dennis Krüger3, Lalit Kaurani3, Harithaa Anandakumar1,2, Orr Shomroni4, Matthias Schmidt5, Jana Zschüntzsch5, Jens Schmidt5, Gabriela Salinas-Riester4, Andreas Unger6, Wolfgang A. Linke6, André Fischer3,7, Wolfram-Hubertus Zimmermann1,2,3,7,8*, Malte Tiburcy1,2* 1 Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany. 2 DZHK (German Center for Cardiovascular Research), partner site Göttingen. 3 Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany 4 NGS Integrative Genomics Core Unit, Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany 5 Department of Neurology, University Medical Center Göttingen, Göttingen, Germany 6 Institute of Physiology II, University of Münster, D-48149 Münster, Germany 7 Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany; 8 Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Göttingen, Germany Supplementary table 1 related to Figure 2: Biological process annotation of coexpression clusters. Cluster Biological process annotated Enriched GO terms identifier Black Migrating limb progenitors Muscle
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD

    Supplementary Table S4. FGA Co-Expressed Gene List in LUAD

    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
  • Whole-Exome Sequencing of Metastatic Cancer and Biomarkers of Treatment Response

    Whole-Exome Sequencing of Metastatic Cancer and Biomarkers of Treatment Response

    Supplementary Online Content Beltran H, Eng K, Mosquera JM, et al. Whole-exome sequencing of metastatic cancer and biomarkers of treatment response. JAMA Oncol. Published online May 28, 2015. doi:10.1001/jamaoncol.2015.1313 eMethods eFigure 1. A schematic of the IPM Computational Pipeline eFigure 2. Tumor purity analysis eFigure 3. Tumor purity estimates from Pathology team versus computationally (CLONET) estimated tumor purities values for frozen tumor specimens (Spearman correlation 0.2765327, p- value = 0.03561) eFigure 4. Sequencing metrics Fresh/frozen vs. FFPE tissue eFigure 5. Somatic copy number alteration profiles by tumor type at cytogenetic map location resolution; for each cytogenetic map location the mean genes aberration frequency is reported eFigure 6. The 20 most frequently aberrant genes with respect to copy number gains/losses detected per tumor type eFigure 7. Top 50 genes with focal and large scale copy number gains (A) and losses (B) across the cohort eFigure 8. Summary of total number of copy number alterations across PM tumors eFigure 9. An example of tumor evolution looking at serial biopsies from PM222, a patient with metastatic bladder carcinoma eFigure 10. PM12 somatic mutations by coverage and allele frequency (A) and (B) mutation correlation between primary (y- axis) and brain metastasis (x-axis) eFigure 11. Point mutations across 5 metastatic sites of a 55 year old patient with metastatic prostate cancer at time of rapid autopsy eFigure 12. CT scans from patient PM137, a patient with recurrent platinum refractory metastatic urothelial carcinoma eFigure 13. Tracking tumor genomics between primary and metastatic samples from patient PM12 eFigure 14.
  • Wo2017/132291

    Wo2017/132291

    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date W O 2017/132291 A l 3 August 2017 (03.08.2017) P O P C T (51) International Patent Classification: [US/US]; 77 Massachusetts Avenue, Cambridge, MA A61K 48/00 (2006.01) C12Q 1/68 (2006.01) 02139 (US). THE GENERAL HOSPITAL CORPORA¬ A61K 39/395 (2006.01) G01N 33/574 (2006.01) TION [US/US]; 55 Fruit Street, Boston, MA 021 14 (US). C12N 15/11 (2006.01) (72) Inventors; and (21) International Application Number: (71) Applicants : REGEV, Aviv [US/US]; 415 Main Street, PCT/US2017/014995 Cambridge, MA 02142 (US). BERNSTEIN, Bradley [US/US]; 55 Fruit Street, Boston, MA 021 14 (US). (22) International Filing Date: TIROSH, Itay [US/US]; 415 Main Street, Cambridge, 25 January 20 17 (25.01 .2017) MA 02142 (US). SUVA, Mario [US/US]; 55 Fruit Street, (25) Filing Language: English Bostn, MA 02144 (US). ROZENBALTT-ROSEN, Orit [US/US]; 415 Main Street, Cambridge, MA 02142 (US). (26) Publication Language: English (74) Agent: NIX, F., Brent; Johnson, Marcou & Isaacs, LLC, (30) Priority Data: 317A East Liberty St., Savannah, GA 31401 (US). 62/286,850 25 January 2016 (25.01.2016) US 62/437,558 2 1 December 201 6 (21. 12.2016) US (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (71) Applicants: THE BROAD INSTITUTE, INC. [US/US]; AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, 415 Main Street, Cambridge, MA 02142 (US).
  • Open Full Page

    Open Full Page

    Published OnlineFirst February 10, 2017; DOI: 10.1158/2159-8290.CD-16-1045 RESEARCH ARTICLE Interaction Landscape of Inherited Polymorphisms with Somatic Events in Cancer Hannah Carter 1 , 2 , 3 , 4 , Rachel Marty 5 , Matan Hofree 6 , Andrew M. Gross 5 , James Jensen 5 , Kathleen M. Fisch1,2,3,7 , Xingyu Wu 2 , Christopher DeBoever 5 , Eric L. Van Nostrand 4,8 , Yan Song 4,8 , Emily Wheeler 4,8 , Jason F. Kreisberg 1,3 , Scott M. Lippman 2 , Gene W. Yeo 4,8 , J. Silvio Gutkind 2 , 3 , and Trey Ideker 1 , 2 , 3 , 4 , 5,6 Downloaded from cancerdiscovery.aacrjournals.org on September 27, 2021. © 2017 American Association for Cancer Research. Published OnlineFirst February 10, 2017; DOI: 10.1158/2159-8290.CD-16-1045 ABSTRACT Recent studies have characterized the extensive somatic alterations that arise dur- ing cancer. However, the somatic evolution of a tumor may be signifi cantly affected by inherited polymorphisms carried in the germline. Here, we analyze genomic data for 5,954 tumors to reveal and systematically validate 412 genetic interactions between germline polymorphisms and major somatic events, including tumor formation in specifi c tissues and alteration of specifi c cancer genes. Among germline–somatic interactions, we found germline variants in RBFOX1 that increased incidence of SF3B1 somatic mutation by 8-fold via functional alterations in RNA splicing. Similarly, 19p13.3 variants were associated with a 4-fold increased likelihood of somatic mutations in PTEN. In support of this associ- ation, we found that PTEN knockdown sensitizes the MTOR pathway to high expression of the 19p13.3 gene GNA11 .
  • Table SII. Significantly Differentially Expressed Mrnas of GSE23558 Data Series with the Criteria of Adjusted P<0.05 And

    Table SII. Significantly Differentially Expressed Mrnas of GSE23558 Data Series with the Criteria of Adjusted P<0.05 And

    Table SII. Significantly differentially expressed mRNAs of GSE23558 data series with the criteria of adjusted P<0.05 and logFC>1.5. Probe ID Adjusted P-value logFC Gene symbol Gene title A_23_P157793 1.52x10-5 6.91 CA9 carbonic anhydrase 9 A_23_P161698 1.14x10-4 5.86 MMP3 matrix metallopeptidase 3 A_23_P25150 1.49x10-9 5.67 HOXC9 homeobox C9 A_23_P13094 3.26x10-4 5.56 MMP10 matrix metallopeptidase 10 A_23_P48570 2.36x10-5 5.48 DHRS2 dehydrogenase A_23_P125278 3.03x10-3 5.40 CXCL11 C-X-C motif chemokine ligand 11 A_23_P321501 1.63x10-5 5.38 DHRS2 dehydrogenase A_23_P431388 2.27x10-6 5.33 SPOCD1 SPOC domain containing 1 A_24_P20607 5.13x10-4 5.32 CXCL11 C-X-C motif chemokine ligand 11 A_24_P11061 3.70x10-3 5.30 CSAG1 chondrosarcoma associated gene 1 A_23_P87700 1.03x10-4 5.25 MFAP5 microfibrillar associated protein 5 A_23_P150979 1.81x10-2 5.25 MUCL1 mucin like 1 A_23_P1691 2.71x10-8 5.12 MMP1 matrix metallopeptidase 1 A_23_P350005 2.53x10-4 5.12 TRIML2 tripartite motif family like 2 A_24_P303091 1.23x10-3 4.99 CXCL10 C-X-C motif chemokine ligand 10 A_24_P923612 1.60x10-5 4.95 PTHLH parathyroid hormone like hormone A_23_P7313 6.03x10-5 4.94 SPP1 secreted phosphoprotein 1 A_23_P122924 2.45x10-8 4.93 INHBA inhibin A subunit A_32_P155460 6.56x10-3 4.91 PICSAR P38 inhibited cutaneous squamous cell carcinoma associated lincRNA A_24_P686965 8.75x10-7 4.82 SH2D5 SH2 domain containing 5 A_23_P105475 7.74x10-3 4.70 SLCO1B3 solute carrier organic anion transporter family member 1B3 A_24_P85099 4.82x10-5 4.67 HMGA2 high mobility group AT-hook 2 A_24_P101651
  • Deficient Mutant Identifies Novel Alterations in Gene Expression

    Deficient Mutant Identifies Novel Alterations in Gene Expression

    www.nature.com/scientificreports OPEN Neuroprotection by Heat Shock Factor-1 (HSF1) and Trimerization- Defcient Mutant Identifes Novel Received: 21 May 2018 Accepted: 5 November 2018 Alterations in Gene Expression Published: xx xx xxxx Zhe Qu1, Anto Sam Crosslee Louis Sam Titus1, Zhenyu Xuan 2 & Santosh R. D’Mello 1 Heat shock factor-1 (HSF1) protects neurons from death caused by the accumulation of misfolded proteins by stimulating the transcription of genes encoding heat shock proteins (HSPs). This stimulatory action depends on the association of trimeric HSF1 to sequences within HSP gene promoters. However, we recently described that HSF-AB, a mutant form of HSF1 that is incapable of either homo-trimerization, association with HSP gene promoters, or stimulation of HSP expression, protects neurons just as efciently as wild-type HSF1 suggesting an alternative neuroprotective mechanism that is activated by HSF1. To gain insight into the mechanism by which HSF1 and HSF1-AB protect neurons, we used RNA-Seq technology to identify transcriptional alterations induced by these proteins in either healthy cerebellar granule neurons (CGNs) or neurons primed to die. When HSF1 was ectopically-expressed in healthy neurons, 1,211 diferentially expressed genes (DEGs) were identifed with 1,075 being upregulated. When HSF1 was expressed in neurons primed to die, 393 genes were upregulated and 32 genes were downregulated. In sharp contrast, HSF1-AB altered expression of 13 genes in healthy neurons and only 6 genes in neurons under apoptotic conditions, suggesting that the neuroprotective efect of HSF1-AB may be mediated by a non-transcriptional mechanism. We validated the altered expression of 15 genes by QPCR.
  • Effect of Fucoxanthinol on Pancreatic

    Effect of Fucoxanthinol on Pancreatic

    CANCER GENOMICS & PROTEOMICS 18 : 407-423 (2021) doi:10.21873/cgp.20268 Effect of Fucoxanthinol on Pancreatic Ductal Adenocarcinoma Cells from an N-Nitrosobis(2-oxopropyl)amine-initiated Syrian Golden Hamster Pancreatic Carcinogenesis Model MASARU TERASAKI 1,2 , YUSAKU NISHIZAKA 1, WATARU MURASE 1, ATSUHITO KUBOTA 1, HIROYUKI KOJIMA 1,2 , MARESHIGE KOJOMA 1, TAKUJI TANAKA 3, HAYATO MAEDA 4, KAZUO MIYASHITA 5, MICHIHIRO MUTOH 6 and MAMI TAKAHASHI 7 1School of Pharmaceutical Sciences and 2Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan; 3Department of Diagnostic Pathology and Research Center of Diagnostic Pathology, Gifu Municipal Hospital, Gifu, Japan; 4Faculty of Agriculture and Life Science, Hirosaki University, Aomori, Japan; 5Center for Industry-University Collaboration, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan; 6Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; 7Central Animal Division, National Cancer Center, Tokyo, Japan Abstract. Background/Aim: Fucoxanthinol (FxOH) is a as a cancer chemopreventive agent in a hamster pancreatic marine carotenoid metabolite with potent anti-cancer activity. carcinogenesis model. However, little is known about the efficacy of FxOH in pancreatic cancer. In the present study, we investigated the Pancreatic cancer is one of the most lethal cancers worldwide inhibitory effect of FxOH on six types of cells cloned from N- because it is treatment resistant and has aggressive potential nitrosobis(2-oxopropyl)amine (BOP)-induced hamster for metastasis/invasion with resultant poor prognosis. From pancreatic cancer (HaPC) cells. Materials and Methods: the GLOBOCAN 2018 estimates, 432,242 pancreatic cancer FxOH action and its molecular mechanisms were investigated deaths occur per year (4.5% of total) (1), and the 5-year in HaPC cells using flow-cytometry, comprehensive gene survival rate remains poor at 10% (2 ).
  • Post-Transcriptionally Impaired De Novo Mutations Contribute to The

    Post-Transcriptionally Impaired De Novo Mutations Contribute to The

    bioRxiv preprint doi: https://doi.org/10.1101/175844; this version posted November 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Post-transcriptionally impaired de novo mutations 2 contribute to the genetic etiology of four neuropsychiatric 3 disorders 4 5 Fengbiao Mao1,2¶, Lu Wang3¶, Xiaolu Zhao2, Zhongshan Li4, Luoyuan Xiao5, 6 Rajesh C. Rao2, Jinchen Li4, Huajing Teng1*, Xin He6*, and Zhong Sheng Sun1,4* 7 8 1 Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, 9 China. 10 2 Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA. 11 3 Institute of Life Science, Southeast University, Nanjing 210096, China. 12 4 Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325027, 13 China 14 5 Department of Computer Science and Technology, Tsinghua University, Beijing 15 100084, China. 16 6 Department of Human Genetics, University of Chicago, Chicago, IL, USA. 17 18 ¶These authors contributed equally to this work 19 * Corresponding authors 20 E-mail: 21 [email protected] (Z.S.S.) 22 [email protected] (X.H.) 23 [email protected] (H.T.) 24 25 1 bioRxiv preprint doi: https://doi.org/10.1101/175844; this version posted November 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
  • The Genetic Program of Pancreatic Beta-Cell Replication in Vivo

    The Genetic Program of Pancreatic Beta-Cell Replication in Vivo

    Page 1 of 65 Diabetes The genetic program of pancreatic beta-cell replication in vivo Agnes Klochendler1, Inbal Caspi2, Noa Corem1, Maya Moran3, Oriel Friedlich1, Sharona Elgavish4, Yuval Nevo4, Aharon Helman1, Benjamin Glaser5, Amir Eden3, Shalev Itzkovitz2, Yuval Dor1,* 1Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel 2Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel. 3Department of Cell and Developmental Biology, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel 4Info-CORE, Bioinformatics Unit of the I-CORE Computation Center, The Hebrew University and Hadassah, The Institute for Medical Research Israel- Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel 5Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel *Correspondence: [email protected] Running title: The genetic program of pancreatic β-cell replication 1 Diabetes Publish Ahead of Print, published online March 18, 2016 Diabetes Page 2 of 65 Abstract The molecular program underlying infrequent replication of pancreatic beta- cells remains largely inaccessible. Using transgenic mice expressing GFP in cycling cells we sorted live, replicating beta-cells and determined their transcriptome. Replicating beta-cells upregulate hundreds of proliferation- related genes, along with many novel putative cell cycle components. Strikingly, genes involved in beta-cell functions, namely glucose sensing and insulin secretion were repressed. Further studies using single molecule RNA in situ hybridization revealed that in fact, replicating beta-cells double the amount of RNA for most genes, but this upregulation excludes genes involved in beta-cell function.