Politique Industrielle Et De Relance : Nous Avons Beaucoup À Apprendre De Nos Filières Industrielles Stratégiques Et Historiques ! 2 Sommaire

Total Page:16

File Type:pdf, Size:1020Kb

Politique Industrielle Et De Relance : Nous Avons Beaucoup À Apprendre De Nos Filières Industrielles Stratégiques Et Historiques ! 2 Sommaire Politique industrielle et de relance : nous avons beaucoup à apprendre de nos filières industrielles stratégiques et historiques ! 2 Sommaire Introduction 04 Partie 1 06 Confrontées à l’impératif de souveraineté, les filières industrielles stratégiques et historiques ont intégré des enjeux spécifiques. Partie 2 14 Les « bonnes pratiques » des filières stratégiques historiques devraient inspirer d’autres secteurs mis en défaut d’autonomie par la crise sanitaire. Partie 3 18 Quels enseignements tirer en matière de politique industrielle dans un contexte de relance ? Contact 24 3 Introduction FILIÈRES INDUSTRIELLES Sous-marins australiens, usine de souveraineté. Dans le monde STRATÉGIQUES retraitement du combustible nucléaire économique, les appels à la relance HISTORIQUES en Chine, EPR, A380, succession ont été nombreux. Celle-ci devrait du porte-avions Charles de Gaulle… être fondée sur une nouvelle politique c’est très souvent par le prisme de industrielle générale, et la (re ?) DÉFENSE l’événement – grande négociation nomination du Haut-Commissaire TERRESTRE, NAVAL ET bilatérale, signature d’un contrat, au Plan devrait en être le vecteur : AÉRONAUTIQUE dérapage d’un programme – que les quelles priorités selon les secteurs ? industries de grands programmes avec quel plan de marche et quels (défense, énergie, transport, spatial) moyens de suivi ? ÉNERGIE font parler d’elles. Pourtant, ces NUCLÉAIRE grands contrats sont avant tout Autant de questions face auxquelles le fruit d’une politique industrielle nos filières stratégiques historiques ancrée sur le long terme, reposant doivent, de notre point de vue, être sur une logique de filière avec ses considérées comme un atout à double TRANSPORTS objectifs de compétitivité, avec titre : elles devront avoir un rôle AÉRONAUTIQUE CIVIL, un engagement dans la durée des dans la relance, et elles devront aussi FERROVIAIRE parties prenantes, y compris l’État, inspirer d’autres secteurs, en faisant et permettant in finede garantir partager leurs bonnes pratiques et l’indépendance et l’autonomie de la leurs retours d’expérience. SPATIAL nation dans un certain nombre de LANCEURS, SATELLITES secteurs jugés essentiels. Bien comprendre leurs caractéristiques fondamentales, Parce qu’elle nous a confrontés à nos ainsi que les outils, méthodes, faiblesses en termes d’indépendance modes de fonctionnement qu’elles et d’autonomie, parfois de façon ont développés devrait éclairer les aigüe, la crise sanitaire mondiale prises de décisions structurantes pour a mis en lumière les enjeux de d’autres secteurs. La structuration d’une filière : exemple avec le programme d’ensemble Barracuda ACTEURS DE LA FILIÈRE Utilisateur final : Marine Nationale (Force Océanique Stratégique) 6 SNA classe Suffren DGA CEA SID Maîtrise d’ouvrage DIRECTION LE COMMISSARIAT À SERVICE (selon les sous-programmes) GÉNÉRALE DE L’ÉNERGIE ATOMIQUE ET AUX D’INFRASTRUCTURE L’ARMEMENT ÉNERGIES ALTERNATIVES DE LA DÉFENSE Autorité de conception NAVAL GROUP TECHNICATOME INTÉGRATION ÎLOT NUCLÉAIRE DES EXEMPLES : SAFRAN THERMODYN Fournisseurs de rang 2 THALES MBDA Plus de 1000 fournisseurs dont plus de GRANDS GROUPES FILIÈRE INDUSTRIELLE 100 critiques de rang 3 à n* ET UNE MAJORITÉ DE PME/ETI DE CONCERT TRAVAILLANT * Ordre de grandeur : 5 – 6 rangs 4 1 2 Sous-marins Usine de australiens retraitement 12 SOUS-MARINS DES DÉCHETS SNA Barracuda hors système de combat NUCLÉAIRES Tête de filière : Tête de filière : Naval Group Orano 2016 2019 années 2030 >10 ans années 2030 Annonce Accord de Entrée en service Négociation Entrée en service prévue partenariat en cours stratégique Montant* : Concurrents battus : Montant : pour Orano : ThyssenKrupp (Allemagne); Consortium Mitsubishi €34,5bn Heavy Industries €20bn €11bn et Kawasaki Heavy * Dont système de combat non Industries fourni par Naval Group Exemples de grands contrats de grands Exemples Sources : https://www.latribune.fr/entreprises-finance/industrie/aeronautique-defense/dcns-remporte-le-contrat-du-siecle-en-australie-566856.html https://www.latribune.fr/entreprises-finance/industrie/aeronautique-defense/sous-marins-dcns-remet-son-offre-dans-la-competition-du-siecle-en-australie-531315.html https://www.latribune.fr/entreprises-finance/industrie/aeronautique-defense/sous-marins-les-cinq-cles-du-succes-de-dcns-en-australie-566901.html https://www.latribune.fr/entreprises-finance/industrie/energie-environnement/mega-contrat-nucleaire-a-20-milliards-la-chine-fait-lanterner-orano-ex-areva-809293.html https://www.usinenouvelle.com/article/la-chine-bouclerait-avec-orano-son-projet-d-usine-de-traitement-de-combustible-nucleaire.N880050 Exemple de l’enracinement d’une SPÉCIALISATION DES SITES DE NAVAL GROUP POUR L’ACTIVITÉ DISSUASION / SNLE filière dans l’économie nationale et locale : la composante maritime CHERBOURG Intégration des sous-marins, de la dissuasion nucléaire démentèlement BREST Maintien en Conditions Une filière aussi restreinte que la Opérationnelles, services composante océanique de la dissuasion nucléaire mobilise de nombreux LORIENT fournisseurs français, dans de nombreux Conception amont NANTES-INDRET départements. Ces fournisseurs Propulsion forment une part importante de la Base RUELLE SAINT- Industrielle et Technologique de Défense Volume d’achat* : Fonderie TROPEZ (BITD). Les sites de production et < A 10 M€ Torpilles DE 10 A 50 M€ et contre- d’intégration de Naval Group ont attiré DE 50 A 150 M€ mesure de nombreux fournisseurs clés et sont > A 150 M€ TOULON-OLLIOULES les bassins d’emplois locaux les plus *Achats de Naval Group, TechnicAtome, ArianeGroup Systèmes de combat sollicités. et systèmes d’armes Source : https://www.frstrategie.org/sites/default/files/documents/ publications/recherches-et-documents/2017/201701.pdf 5 Confrontées à l’impératif de souveraineté, les filières industrielles stratégiques et historiques ont intégré des enjeux spécifiques. 1 Partie | 1 Les filières industrielles stratégiques reposent sur des d’héritages industriels, technologiques et relationnels majeurs mais sensibles, forgés par le « temps long » et demandent une attention et des investissements continus. Les filières stratégiques industrielles du grand donneur d’ordre au plus portent sur des objets techniques petit sous-traitant s’est développé au complexes et au cycle de vie long de fil du temps, facilitant l’innovation, la plusieurs dizaines d’années entre leur compétitivité, mais aussi la cohérence conception et leur démantèlement. et la résilience de la filière. Un sous-marin SNLE intègre ainsi plus d’un million de pièces et navigue Ce triple héritage découle d’efforts 40 ans. La construction d’une continus, permis par un engagement centrale nucléaire nécessite plusieurs durable des acteurs de la filière millions d’heures d’ingénierie, (depuis Richelieu et Colbert pour la plusieurs années de construction, construction navale), en cohérence son exploitation dure 60 ans et son avec le « temps long » qui lui est démantèlement probablement une nécessaire, comme rappelé par le dizaine d’années. Président Macron lors du lancement du SNA Suffren en juillet 2019. La création, et a fortiori la vente de ces objets, est permise par un Ce « temps long » ne se décrète pas triple héritage. Celui-ci est avant et doit rester sous surveillance : tout technologique, représentant une rupture d’investissement ou plusieurs dizaines voire centaines d’attention se traduit rapidement d’années de savoirs et savoir-faire par une perte de compétitivité et accumulés. Il est aussi capitalistique de compétences. grâce aux efforts d’investissement consentis et enfinrelationnel : un tissu d’acteurs publics et privés, 7 1945 Création du CEA pour accélérer la recherche à des fins civiles et 1976 surtout militaires. Création de la Cogema. 1946 1952-1957 1960 1979 Lancement de Premier plan Création du site Création de l’usine la prospection/ quinquennal de de recherche de d’enrichissement extraction d’uranium l’énergie nucléaire. Cadarache. civil Georges Besse à par le CEA. Pierrelatte. 1940 1950 1960 1970 1980 1958 1963 1974 Mise en service de Mise en service du Engagement du contrat- l’usine de retraitement premier réacteur programme 1 pour 16 et d’extraction de graphite-gaz d’EDF à tranches de 900MWe. plutonium UP1 à Chinon (70MWe). Marcoule. 1976 1966 Premier contrat Mise en service de international de l’usine de retraitement Framatome en Afrique de la Hague (UP400). du Sud. 1967 1978 Divergence du réacteur Mise en service de Rapsodie, lancement Fessenheim-1 (réacteur de la filière à neutrons à eau pressurisée – rapides. 900MWe). 1969 Ouverture du centre de stockage des déchets de la Manche. Première caractéristique des filières industrielles stratégiques : elles découlent d’héritages industriels, technologiques et relationnels majeurs, forgés par le « temps long ». La chronologie de la filière nucléaire témoigne du long développement parallèle de trois Md€ Md€ sous-filières : l’amont du cycle (extraction, enrichissement, préparation du combustible), 83 22 la production d’électricité (réacteurs) et Coûts de mise en Investissements l’aval du cycle (retraitement et stockage des service du parc de dans le cycle du déchets). Chaque phase du cycle fut ainsi centrales actuel (58 combustible pour pensée en cohérence avec les autres, avec la tranches)* l’aval** volonté sous-jacente de « fermer le cycle ». Les compétences de la filière ont par ailleurs * Coûts overnight incluant les coûts été nourries par le travail en parallèle sur de construction, d’ingénierie, de main d’œuvre et les charges pré-exploitation ; plusieurs
Recommended publications
  • Advanced Reactors
    © 2012 European Nuclear Society Rue Belliard 65 1040 Brussels, Belgium Phone + 32 2 505 30 54 Fax +32 2 502 39 02 E-mail [email protected] Internet www.euronuclear.org ISBN 978-92-95064-14-0 These transactions contain all contributions submitted by 7 December 2012. The content of contributions published in this book reflects solely the opinions of the authors concerned. The European Nuclear Society is not responsible for details published and the accuracy of data presented. 2 of 96 ENC2012-A0026 Development of a thermohydraulic model of the Lazaro Chueca, A. (1); Ammirabile, L. (1); European Sodium Fast Reactor (ESFR) using Martorell, S. (2) the system code TRACE. 1 - JRC-IET, Netherlands 2 - Universidad Politecnica de Valencia, Spain ENC2012-A0028 Generation IV Technology Status including Anderson, G. (1); Lillington, J. (1) recent R & D Activities in ANSWERS 1 - AMEC, United Kingdom ENC2012-A0053 Preliminary Design Assessment of the Molten Merle-Lucotte, E. (1); Allibert, M. (1); Salt Fast Reactor Brovchenko, M. (1); Ghetta, V. (1); Heuer, D. (1); Rubiolo, P. (1); Laureau, A. (1) 1 - LPSC-IN2P3-CNRS / UJF / Grenoble INP, France ENC2012-A0078 Development of materials to withstand the Shepherd, D. (1) extreme, irradiated environments in advanced 1 - National Nuclear Laboratory, United Kingdom nuclear fission reactors ENC2012-A0126 ARCHER:- Material and component challenges Buckthorpe, D. (1) for the Advanced High Temperature Reactor 1 - AMEC, United Kingdom ENC2012-A0258 Pressure Drop Analysis of a Pressure-Tube Type Peiman, W. (1); Saltanov, E. (1); Pioro, I. SuperCritical Water-Cooled Reactor (SCWR) (1); Gabriel, K. (1) 1 - University of Ontario Institute of Technology, Canada ENC2012-A0003 SPES3: THE INTEGRAL FACILITY FOR Ferri, R.
    [Show full text]
  • Core Design and Optimization of the High Conversion Small Modular Reactor
    Technische Universität München Fakultät für Maschinenwesen Lehrstuhl für Nukleartechnik Core Design and Optimization of the High Conversion Small Modular Reactor Denis Janin Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzender: Prof. Phaedon-Stelios Koutsourelakis, PhD Prüfer der Dissertation: 1. Prof. Rafael Macián-Juan, PhD 2. Prof. Dr. Jean-Baptiste Thomas Die Dissertation wurde am 08.05.2018 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 01.11.2018 angenommen. ABSTRACT This research work investigates the design and optimization of the high conversion small modular reactor (HCSMR) core. The HCSMR has a thermal output of 600 MW for 200 MW electrical. It is an integrated PWR with a tightened fuel assembly lattice. The rod-to-rod pitch is 1.15 cm in a hexagonal fuel assembly geometry. As a result the moderation ratio (1.0) is reduced compared to large PWRs (around 2.0) and the HCSMR has an improved ability to convert 238U into 239Pu and use plutonium isotopes more efficiently. The core is loaded with MOX fuel. The HCSMR concept finds its roots both in large high conversion light water reactors and small modular reactor (SMR) concepts. The reduced core size results in an increased neutron leakage rate compared to large cores. This intrinsically supports the core behavior in voided situations. The necessity to introduce fertile fuel materials in the core to keep negative void coefficients is reduced, contributing to the HCSMR safety and limited core heterogeneity.
    [Show full text]
  • 60 Years of Marine Nuclear Power: 1955
    Marine Nuclear Power: 1939 - 2018 Part 4: Europe & Canada Peter Lobner July 2018 1 Foreword In 2015, I compiled the first edition of this resource document to support a presentation I made in August 2015 to The Lyncean Group of San Diego (www.lynceans.org) commemorating the 60th anniversary of the world’s first “underway on nuclear power” by USS Nautilus on 17 January 1955. That presentation to the Lyncean Group, “60 years of Marine Nuclear Power: 1955 – 2015,” was my attempt to tell a complex story, starting from the early origins of the US Navy’s interest in marine nuclear propulsion in 1939, resetting the clock on 17 January 1955 with USS Nautilus’ historic first voyage, and then tracing the development and exploitation of marine nuclear power over the next 60 years in a remarkable variety of military and civilian vessels created by eight nations. In July 2018, I finished a complete update of the resource document and changed the title to, “Marine Nuclear Power: 1939 – 2018.” What you have here is Part 4: Europe & Canada. The other parts are: Part 1: Introduction Part 2A: United States - Submarines Part 2B: United States - Surface Ships Part 3A: Russia - Submarines Part 3B: Russia - Surface Ships & Non-propulsion Marine Nuclear Applications Part 5: China, India, Japan and Other Nations Part 6: Arctic Operations 2 Foreword This resource document was compiled from unclassified, open sources in the public domain. I acknowledge the great amount of work done by others who have published material in print or posted information on the internet pertaining to international marine nuclear propulsion programs, naval and civilian nuclear powered vessels, naval weapons systems, and other marine nuclear applications.
    [Show full text]
  • Advances in Small Modular Reactor Technology Developments
    Advances in Small Modular Reactor Technology Developments Advances in Small Modular Reactor Technology Developments Technology in Small Modular Reactor Advances A Supplement to: IAEA Advanced Reactors Information System (ARIS) 2018 Edition For further information: Nuclear Power Technology Development Section (NPTDS) Division of Nuclear Power IAEA Department of Nuclear Energy International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria Telephone: +43 1 2600-0 Fax: +43 1 2600-7 Email: [email protected] Internet: http://www.iaea.org Printed by IAEA in Austria September 2018 18-02989E ADVANCES IN SMALL MODULAR REACTOR TECHNOLOGY DEVELOPMENTS 2018 Edition A Supplement to: IAEA Advanced Reactors Information System (ARIS) http://aris.iaea.org DISCLAIMER This is not an official IAEA publication. The material has not undergone an official review by the IAEA. The views expressed do not necessarily reflect those of the International Atomic Energy Agency or its Member States and remain the responsibility of the contributors. Although great care has been taken to maintain the accuracy of information contained in this publication, neither the IAEA nor its Member States assume any responsibility for consequences which may arise from its use. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA.
    [Show full text]
  • AIEA D”Pliant 2013
    The CEA is a leading IRSN is the public AREVA supplies ever DCNS designs, builds The EDF group is ASSYSTEM is an ANDRA (National AFNI (France I2EN: The mission of The INSTN stands public body in research, expert in nuclear and safer and more and supports French an integrated energy international Agency for Radioactive International Nuclear the International out as a specifically development and radiological risks for economical solutions Navy nuclear company with a Engineering and Waste Management) Agency) is your Institute of Nuclear nuclear oriented innovation. The CEA is all nuclear facilities. for power generation powered vessels for presence in a wide Innovation Consultancy ensures the sustainable partner to benefit from Energy (I2EN) is to higher education active in four main As a research and with less carbon: more than 50 years. range of electricity- representing 10,200 management of the experience and provide the best institution. As part of areas: low-carbon expert appraisal nuclear and With a large offer related businesses: people worldwide. radioactive waste know-how of France in training solutions for the CEA, the INSTN energies, defence and organisation, IRSN renewables. Ranked covering engineering, nuclear, renewable As a key participant produced in France the preparation of human resources draws on the scientific security, information works together with all first in the global manufacturing and and fossil-fuel fired in the nuclear industry and provides surface your nuclear project. development in potential of this technology and health the parties concerned nuclear power services, DCNS energy production; for 45 years, disposal solutions for AFNI will assist you to nuclear energy to leading institution in technology.
    [Show full text]
  • Les Réacteurs Nucléaires Bugey Jacky Ruste Ingénieur INSA Génie Physique Docteur Ingénieur Université Nancy 1 (Ing
    Ecole Doctorale SI-MMEA Science et Ingénierie en Matériaux, Mécanique, Energétique et Aéronautique Formation thématique : nucléaire et matériaux Chinon Chooz Les réacteurs nucléaires Bugey Jacky Ruste Ingénieur INSA Génie Physique Docteur Ingénieur Université Nancy 1 (Ing. Senior EDF R&D) 1 [email protected] Civeaux http://micro.icaunais.free.fr L’énergie nucléaire c’est : En 2013: 435 réacteurs en service (dont 58 en France) 73 réacteurs en construction 160 réacteurs programmés 320 réacteurs en projet… 5 % de l’énergie primaire produite dans le monde 13,5 % de la production mondiale d’électricité 30 % de la production électrique de l’Union Européenne 75 % de la production française d’électricité (2012) Nombre de morts par TWh produit (selon le Wall Street Daily) L’éolien est 4 fois plus dangereux, le solaire 10 fois plus, le pétrole 1.000 fois plus et le charbon 4.000 fois plus ! (responsable de 15.000 morts par an) Selon une autre étude publiée par « Environnemental Science & technology », entre 1971 et 2009, le nucléaire 2 aurait évité près de 2 millions de décès, en se substituant aux énergies fossiles… d’ici 2018 73 réacteurs seront construits dans le monde au printemps 2013 D’autres, au Nigéria, en Turquie, en Jordanie, en Grande Bretagne, en Argentine, au Brésil…… sont en projet… des PWR, BWR, Candu, VVER, EPR, … Il n’y a pas qu’un seul type de réacteurs nucléaires… il existe différentes filières 1 - Un réacteur nucléaire, comment ça marche ? 2 – Quelles sont les différentes filières actuelles? 3 3 – Que seront les réacteurs
    [Show full text]
  • World Status of the SMR Projects
    Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile RICERCA DI SISTEMA ELETTRICO World status of the SMR projects L. Paparusso, M.E. Ricotti, M. Sumini Report RdS/2011/166 WORLD STATUS OF THE SMR PROJECTS L. Paparusso, M.E. Ricotti – Politecnico di Milano, M. Sumini – Università di Bologna Dienca Settembre 2011 Report Ricerca di Sistema Elettrico Accordo di Programma Ministero dello Sviluppo Economico – ENEA Area: Governo, Gestione e sviluppo del sistema elettrico nazionale Progetto: Nuovo nucleare da fissione: collaborazioni internazionali e sviluppo competenze in materia nucleare Responsabile Progetto: Paride Meloni, ENEA CIRTEN Consorzio Interuniversitario per la Ricerca TEcnologica Nucleare °POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA, Sezione INGEGNERIA NUCLEARE-CeSNEF *UNIVERSITA’ DI BOLOGNA DIENCA - Dipartimento di Ingegneria Energetica, Nucleare e del controllo ambientale World status of the SMR projects L. Paparusso°, M.E. Ricotti°, M. Sumini* CERSE POLIMI RL 1351/2011 Milano, Settembre 2011 Lavoro svolto in esecuzione della linea progettuale LP1– punto B4 AdP MSE‐ENEA “Ricerca di Sistema Elettrico” - PAR2008-09 Progetto 1.3 – “Nuovo Nucleare da Fissione”. Rapporto “World status of the SMR projects” INDEX EXECUTIVE SUMMARY .................................................................................................................... ‐ 3 ‐ 1 INTRODUCTION .................................................................................................................. ‐ 4 ‐ SMR projects
    [Show full text]
  • Safety and International Development of Small Modular Reactors
    atw Vol. 60 (2015) | Issue 11 ı November aus den Unwägbarkeiten, die der Staat durch die von ihm um eine Scheinlösung. In Wirklichkeit bedarf es dafür eines unvermittelt neu gestartete Endlagersuche selbst ausgelöst ganz neuen Konzepts, das nicht nur verfassungsrechtlich hat. Allein dadurch kommt es zu zeitlich und inhaltlich belastbar ist, sondern auch zu finanziell tragfähigen unabsehbaren Kostenfolgen. Umso bemerkenswerter ist es, Lösungen für alle Verantwortlichen führt. Langfristig! 645 dass sich der Gesetzentwurf an keiner Stelle mit der Frage von in Betracht kommenden Alternativen auseinandersetzt. Dabei liegt es nahe zu prüfen, welche Regelungen erfor- Author Prof. Dr. Tobias Leidinger derlich sind, um die Finanzierung der Entsorgung wirklich Rechtsanwalt und Fachanwalt für Verwaltungsrecht langfristig zu gewährleisten. Einseitige, unbegrenzte Haf- Luther Rechtsanwaltsgesellschaft Graf-Adolf-Platz 15 tungs regelungen zulasten der heute existierenden Unter- 40213 Düsseldorf, Germany nehmen lösen das Problem jedenfalls nicht. Es handelt sich Safety and International Development of Small Modular Reactors (SMR) – A Study of GRS AND NEW BUILD OPERATION Sebastian Buchholz, Anne Krüssenberg and Andreas Schaffrath Introduction The abbreviation SMR stands for Small Modular Reactor and describes reactors with low power output. One reactor module, composed of primary, secondary and, where necessary, intermediate circuit and auxiliary systems, may be transported to the construction site as a whole or in few parts only and can therefore be connected quickly to the grid. Various modules can form a larger nuclear power plant and additional modules may be added one by one, while the others are in operation. Designers develop SMR for the deployment mainly in remote, sparsely populated areas or near cities respectively.
    [Show full text]
  • [Document Title]
    [EHNUR WP 4] ADVANCED NUCLEAR POWER PLANT CONCEPTS AND TIMETABLES FOR THEIR COMMERCIAL DEPLOYMENT Steven C. Sholly1 VIENNA, June 2013 1 Institute of Safety/Security and Risk Sciences, University of Natural Resources and Life Sciences Copyright Vienna, June 2013 Media owner and editor: University of Natural Resources and Life Sciences Vienna, Department of Water, Atmosphere and Environment, Institute of Safety and Risk Sciences, Borkowskigasse 4, 1190 Wien, Austria URL: http://www.risk.boku.ac.at ReportWP4 – Advanced Nuclear Power Plant Concepts and Timetables EHNUR EXECUTIVE SUMMARY Most currently operating nuclear power plants are Generation II reactors (except for a few remaining Generation I units and a few Generation III units). Generation III and Generation III+ nuclear power plant concepts are widely recognized to be significant improvements over Generation II reactor designs. Both Generation III designs (standardized designs safer than Generation II) and Generation III+ designs (standardized designs safer than Generation II and with the expectation of greater economy of scale) are available for immediate deployment. The absolute minimum schedule for a Generation III or III+ nuclear power plant project is 10 years from feasibility study to completion of startup testing. Such a schedule is only achievable by: (a) an experienced utility, (b) with the reactor sited at an existing nuclear power plant site, and (c) with a design for which first-of-a-kind engineering (FOAKE) is complete. Under other circumstances (e.g. a utility new to nuclear generation, a greenfield site, a utility in a country without significant nuclear infrastructure, a nuclear power plant design where FOAKE has not yet been accomplished), the schedule would extend from fifteen to seventeen years and perhaps more.
    [Show full text]
  • Small Modular Reactors the State of Play, 2013
    Small Modular Reactors The State of Play, 2013 Alexander Glaser Georgetown University, Doha, Qatar October 27, 2013 Revision 4 Nuclear Power Reactors in the World, 2013 435 operational reactors (9 fewer than in February 2011) in 31 countries provide about 13% of global electricity 32+1 18+1 164–11 Europe 104–4 50–4 14+4 0+1 3 21+2 2 6 20+1 2 2 2 More than 10 GW installed today Less than 10 GW installed today Source: IAEA PRIS Last update: October 2013 Scenario for Global Nuclear Capacity, 2035–2060 GCAM policy scenario (450 ppm, stabilizes at dT = 2.25 °C by the end of the century) Former Soviet Union Canada 62–137 GW 18–26 GW Eastern Europe 18–45 GW China Western Europe Middle East 93–482 GW Japan United States 129–163 GW 9–86 GW 52–66 GW 139–261 GW South Korea 32–47 GW Africa 8–88 GW Latin America India 19–277 GW 15–74 GW Southeast Asia 15–147 GW Australia / NZ 0–11 GW Installed capacity in 2035; total 0610 GW Installed capacity in 2060: total 1910 GW Global Change Assessment Model, www.globalchange.umd.edu/models/gcam/ A. Glaser, Georgetown University, Doha, Qatar October 2013 3 What is Being Built Today? Hitting the “Reset” Button in 2011? New Grid Connections, Permanent Shutdowns, and New Construction Starts over the Past Decade 20 New grid connections and permanent shutdowns New construction starts 15 ROK China 10 Russia USA South Korea UAE UAE 5 0 Number of reactors Number -5 USA -10 -15 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Source: International Atomic Energy Agency, Power Reactor Information System (PRIS), www.iaea.org/PRIS, October 2013 A.
    [Show full text]
  • Safety Analysis of a Compact Integral Small Light Water Reactor
    Safety Analysis of a Compact Integral Small Light Water Reactor by Zhiyuan Cheng B. Eng. Nuclear Science and Engineering (2018) Fudan University SUBMITTED TO THE DEPARTMENT OF NUCLEAR SCIENCE AND ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN NUCLEAR SCIENCE AND ENGINEERING AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2020 © 2020 Massachusetts Institute of Technology. All rights reserved. Signature of Author……………………………………………………………... Zhiyuan Cheng Department of Nuclear Science and Engineering May 11, 2020 Certified by: …………………………………………………………………… Koroush Shirvan Assistant Professor of Nuclear Science and Engineering Thesis Supervisor Certified by: …………………………………………………………………… Emilio Baglietto Associate Professor of Nuclear Science and Engineering Thesis Reader Accepted by ...….….…….......………………………………………………………… Ju Li, Ph.D. Battelle Energy Alliance Professor of Nuclear Science and Engineering Professor of Materials Science and Engineering Chair Department Committee on Graduate Students Safety Analysis of a Compact Integral Small Light Water Reactor by Zhiyuan Cheng Submitted to the Department of Nuclear Science and Engineering on May 11, 2020 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Nuclear Science and Engineering Abstract Small modular reactors (SMRs) hold great promise in meeting a diverse market while reducing the risk of delays during nuclear construction compared to large gigawatt-sized reactors. However, due to lack of economy of scale, their capital cost needs to be reduced. Increasing the compactness or power density of the nuclear island is one way to reduce capital cost. This work first assesses the transient analysis of a compact integral small light water reactor to examine its safety performance. Subsequently, a parametric optimization study with the goal of increasing its power density (i.e.
    [Show full text]
  • Interview André Kolmayer, Directeur De La Business Unit Nucléaire Civil Chez DCNS Lundi 27 Août 2012
    Interview André Kolmayer, Directeur de la Business Unit Nucléaire Civil chez DCNS lundi 27 août 2012 Dans la même rubrique Pouvez-vous nous décrire brièvement votre parcours ? Interview André Kolmayer, Directeur de la Comment avez-vous été amené à travailler dans le Business Unit Nucléaire Civil chez DCNS nucléaire et chez DCNS ? Interview with Jean-Pol Poncelet, General Director of Foratom J’ai suivi une formation classique. Après mes Interview d’Etienne Klein, Physicien et Philosophe au CEA classes préparatoires, j’ai intégré INPG Interview de Jacques Foos, Professeur au Grenoble puis INSTN Grenoble, avant de Conservatoire National des Arts et Métiers poursuivre par un MBA. En 1979, le nucléaire Interview de Jacques Percebois, Président de était au cœur de la politique d’indépendance la Commission "Energies 2050" nationale et la construction en série du Interview Laurent Midrier, Directeur de l’Agence Nucléaire France – Bureau Veritas programme électronucléaire commençait ; Interview de Monsieur Bruno Deschamps, c’est ce programme qui nous a permis jusqu’à Chef de Mission Sûreté Qualité au CNPE de aujourd’hui de bénéficier d’une électricité à Gravelines bas coût. Ces grands projets suscitaient Interview de Monsieur le Maire de Pierrelatte Yves Le BELLEC l’enthousiasme des jeunes ingénieurs et c’est à cette époque Jean-Marie Chevalier, ancien Directeur du que je suis entré à Framatome, qui allait plus tard fusionner Centre de Géopolitique de l’Energie et des avec la Cogema pour donner naissance à AREVA. J’y ai occupé Matières Premières différents postes, de l’ingénierie à la direction de grands Interview de Mme Maïté JAUREGUY-NAUDIN, projets, comme la centrale nucléaire de Ling Ao, en Chine.
    [Show full text]