Safety and International Development of Small Modular Reactors

Total Page:16

File Type:pdf, Size:1020Kb

Safety and International Development of Small Modular Reactors atw Vol. 60 (2015) | Issue 11 ı November aus den Unwägbarkeiten, die der Staat durch die von ihm um eine Scheinlösung. In Wirklichkeit bedarf es dafür eines unvermittelt neu gestartete Endlagersuche selbst ausgelöst ganz neuen Konzepts, das nicht nur verfassungsrechtlich hat. Allein dadurch kommt es zu zeitlich und inhaltlich belastbar ist, sondern auch zu finanziell tragfähigen unabsehbaren Kostenfolgen. Umso bemerkenswerter ist es, Lösungen für alle Verantwortlichen führt. Langfristig! 645 dass sich der Gesetzentwurf an keiner Stelle mit der Frage von in Betracht kommenden Alternativen auseinandersetzt. Dabei liegt es nahe zu prüfen, welche Regelungen erfor- Author Prof. Dr. Tobias Leidinger derlich sind, um die Finanzierung der Entsorgung wirklich Rechtsanwalt und Fachanwalt für Verwaltungsrecht langfristig zu gewährleisten. Einseitige, unbegrenzte Haf- Luther Rechtsanwaltsgesellschaft Graf-Adolf-Platz 15 tungs regelungen zulasten der heute existierenden Unter- 40213 Düsseldorf, Germany nehmen lösen das Problem jedenfalls nicht. Es handelt sich Safety and International Development of Small Modular Reactors (SMR) – A Study of GRS AND NEW BUILD OPERATION Sebastian Buchholz, Anne Krüssenberg and Andreas Schaffrath Introduction The abbreviation SMR stands for Small Modular Reactor and describes reactors with low power output. One reactor module, composed of primary, secondary and, where necessary, intermediate circuit and auxiliary systems, may be transported to the construction site as a whole or in few parts only and can therefore be connected quickly to the grid. Various modules can form a larger nuclear power plant and additional modules may be added one by one, while the others are in operation. Designers develop SMR for the deployment mainly in remote, sparsely populated areas or near cities respectively. SMR may provide in both cases electricity, district heating and potable water. The International Atomic Energy metal reactor (LMR) technology and licensing in the US. In the begin- Agency (IAEA) defines SMR as Small [SAN 14]. ning of 2014 Westinghouse announced, and Medium Sized Reactors. Reactors Additionally the governments of that it will decrease the financing for with a nominal power up to 300 MWel other countries are pushing the its SMR since it lost the second DOE are characterized as small, reactors development of market-ready SMR funding round [WNN 14b]. Also B&W: with a nominal power between 300 concepts. In Europe Great Britain is Although they won the funding round and 700 MMel as medium-sized. The strongly interested in SMR techno- in 2012, they announced in April modular character is not explicitly logy. In the USA the US Department of 2014 that they want to reduce their met by this definition but is also Energy (DOE) announced a $ 452 Mio fi nancing for the mPower to $ 15 Mio not excluded. In the literature the funding for supporting the realisation per year [WNN 14c]. abbreviation SMR is used for the of licensing processes in order to For this reason GRS has carried out characterisa tion of Small Modular support the commercial operation of a study on Safety and International Reactors. Within this article the abbre- one SMR until 2022. The DOE plans to development of Small Modular Reactors viation SMR is taken as a hypernym finance in particular such SMR, which (SMR) [BUS 15] in 2014 funded by the for both definitions. is factory produced and transported to German Federal Ministry for Economics Basically, SMR are no fundamen- the construction site. Concepts with a Affairs and Energy. Main content and tally new approach. Since the mid of maximum power of 300 MWe, which results of this study are presented in the last century the former USSR and are eligible for funding, have to start the following. First, a status of devel- the USA have used nuclear reactors operation until 2025. The DOE will opment of the SMR concepts is given. as engines for their submarines, finance at most 50 % of the costs over Secondly, the main characteristics merchant vessels and ice breakers. 5 years, while the private enterprises and special features of the different Currently, a new interest in SMR is have to fund the other half. The concepts are summarized. The third currently awakened, based on their funding must be paid back, when the and main part considers the charac- particular safety features. 5 SMR project is not completed. Babcock and teristics of the safety systems of SMR. concepts are currently under construc- Wilcox (B&W) won the first funding tion: the CAREM in Argentina, 2 CNP­ round in November 2012 with its Deployment and Develop­ 300 in Pakistan and 2 KLT­40S in concept mPower, NuScale the second ment Status and of SMR Russia – all three concepts based on funding round in March 2013 with its This section gives a tabular overview light water reactor (LWR) techno- homonymous SMR concept [WNA 14]. on the deployment and development logy – 2 HTR­PM in China based on In the meantime, the funding of status of those SMR investigated by gas cooled reactor technology and the SMR projects was reduced be- GRS. Currently three of these SMR are 1 PFBR­500 in India based on liquid cause of high costs for development operating, two in China and one in Operation and New Build Safety and International Development of Small Modular Reactors (SMR) – A Study of GRS ı Sebastian Buchholz, Anne Krüssenberg and Andreas Schaffrath atw Vol. 60 (2015) | Issue 11 ı November Name Type Manu facturer Country P [MWe] Status Site Currently Operating 646 CEFR LMR CIAE/CNEIC CN 20 Operating, Prototype for CDFR-1000 Tuoli (CN) CNP-300 LWR CNNC CN 325 Operating, additional planned Qinshan 1 (CN), Chashma (PK) PHWR-220 HWR BARC IN 236 16 operating, additional planned Rajasthan, Madras, Narora, Kakrapar, Kaiga (all IN) Currently under Construction CAREM LWR CNEA AR 27 Start of construction: February 2014 Atucha, AR CNP-300 LWR CNNC CN 325 2 blocks under construction Chashma, PK KLT-40S LWR OKBM Afrikantov RU 35 2 reactors in Akademik Lomonosov, Akademik Lomonosov deployment: 2016 (Barge) HTR-PM GCR INET CN 105 Demonstration plant Shidaowan, CN under construction since 2012 (2 modules) PFBR-500 LMR IGCAR IN 500 Under construction, Kalpakkam, IN first criticality planned in September 2014 Concepts with Planned Deployment ACP-100 LWR CNNC CN 100 Planned construction (Start 2015) Zhangzhou, later: Jiangxi, Hunan, Jilin ALFRED LMR Int Int 125 Planned construction (Start 2017) Mioveni, RO BREST-OD-300 LMR NIKIET RU 300 Planned construction Beloyarsk, RU CNP-300 LWR CNNC CN 325 Operating, additional construction planned PK OPERATION AND NEW BUILD OPERATION G4M LMR Gen4 Energy US 25 Planned construction Savannah River, US GT-MHR GCR Int Int 285 Planned construction Seversk, RU MHYRRA ADS-LMR SCK CEN BE Heat only Planned construction (Start 2015) Mol, BE PHWR-220 HWR BARC IN 236 16 operating, further planned IN RITM-200 LWR OKBM Afrikantov RU 175 MWth Completion expected: 2018, Icebreaker LK-60 2 more in 2019 and 2020 SVBR-100 LMR AKME RU 101 .5 Planned construction RIAR in Dimitrovgrad VK-300 LWR RDIPE RU 250 Planned construction Kola peninsula, (Current status unknown) Archangelsk, Primorskaya Further Concepts 4S LMR Toshiba/CRIEPI JP 10-50 Well-developed, possible construction site: Galena (Alaska) ABV-6M LWR OKBM Afrikantov RU 6 Well-developed Adams Engine GCR Adams Atomic FR 10 2010 folded Engines Inc . AHWR300-LEU HWR BARC IN 304 Well-developed, site selection started ANGSTREM LMR OKBM Gidropress RU 6 n/s ANTAR-ES/SC-HTR GCR AREVA US 250 Developing phase ARC-100 LMR ARC LLC US 100 Developing phase ASTRID LMR CEA FR 600 Conceptional design phase till 2015 ELENA LWR Kurchatov Institut RU 0 .1 - Em2 GCR GA US 240 Early state ENHS LMR University of Calif . US 50-75 Well-developed, demonstration plant till 2025 FBNR LWR Federal University BR 70 Early state of Rio Grande do Sul Flexblue LWR DCNS FR 160 Developing phase Fuji MSR TTS Int 200 Market maturity planned till 2018-2025 GTHTR GCR JAEA JP 274 Development after Fukushima doubtful IMR LWR MHI JP 350 Licensing earliest 2020 IRIS LWR Int Int 335 Just before licensing of US NRC, needs investors LSPR LMR Titech JP 53 Developing phase mPower LWR B&W US 180 Well-developed, DOE funding, financing reduced since 2014 MRX LWR JAERI/ JAEA JP 30 no up to date information available NHR-200 LWR INET CN Heat only n/s NIKA-70 LWR NIKIET RU 15 Apparently folded in favour of KLT-40S und VBER NP 300 LWR AREVA FR 300 no current information available NuScale LWR NuScale Power Inc . US 45 Well-developed, funded by DOE PB-AHTR MSR UCB/ORNL US 410 Early state PBMR GCR ESCOM ZA 165 International commercialization PEACER LMR NUTRECK KR 300-550 Development phase, planned demonstration plant (PATER) PRISM LMR GE-Hitachi US 311 Well-developed, US NRC licensing pending RADIX LWR Radix Power Systems US 10-50 n/s RAPID LMR CRIEPI JP 1 Development phase RAPID-L LMR CRIEPI JP 0 .2 Development phase RUTA-70 LWR NIKIET RU Heat only Development phase, lacking funding SC-GFR GCR SNL US 100/200 Conceptual phase Operation and New Build Safety and International Development of Small Modular Reactors (SMR) – A Study of GRS ı Sebastian Buchholz, Anne Krüssenberg and Andreas Schaffrath atw Vol. 60 (2015) | Issue 11 ı November Name Type Manu facturer Country P [MWe] Status Site SCOR600 LWR CEA FR 630 Development phase SHELF LWR NIKIET RU 6 Early design phase 647 SmAHTR MSR ORNL US 50 Early design phase SMART LWR KAERI KR 100 Licensing completed SMR-160 LWR HOLTEC US 160 Well-developed, US NRC licensing shall start in 2016 SSTAR LMR ANL/LLNL US 20 Well-developed STAR-LM LMR ANL US 175 Development phase STAR-H2 LMR ANL US Heat only Development phase, construction till 2030 planned SVBR-10 LMR AKME RU 12 Development phase TRIGA LWR GA US 11,8 Focus of GA lies on GT-MHR and EM2 TSMR MSR SINAP CN 45 Development phase TWR LMR Terrapower US 500 Construction of a demonstration plant between until 2022 planned U-Battery GCR Int Int 5-10 Development phase UNITHERM LWR RDIPE/ NIKIET RU 2 .5-6 .0 n/s VBER-300 LWR OKBM Afrikantov RU 295-325 Well-developed Westinghouse SMR LWR Westinghouse US 225 Well-developed, decreased financing since 2014 WWER-300 LWR OKBM Gidropress RU 300 n/s | Tab.
Recommended publications
  • Advanced Reactors
    © 2012 European Nuclear Society Rue Belliard 65 1040 Brussels, Belgium Phone + 32 2 505 30 54 Fax +32 2 502 39 02 E-mail [email protected] Internet www.euronuclear.org ISBN 978-92-95064-14-0 These transactions contain all contributions submitted by 7 December 2012. The content of contributions published in this book reflects solely the opinions of the authors concerned. The European Nuclear Society is not responsible for details published and the accuracy of data presented. 2 of 96 ENC2012-A0026 Development of a thermohydraulic model of the Lazaro Chueca, A. (1); Ammirabile, L. (1); European Sodium Fast Reactor (ESFR) using Martorell, S. (2) the system code TRACE. 1 - JRC-IET, Netherlands 2 - Universidad Politecnica de Valencia, Spain ENC2012-A0028 Generation IV Technology Status including Anderson, G. (1); Lillington, J. (1) recent R & D Activities in ANSWERS 1 - AMEC, United Kingdom ENC2012-A0053 Preliminary Design Assessment of the Molten Merle-Lucotte, E. (1); Allibert, M. (1); Salt Fast Reactor Brovchenko, M. (1); Ghetta, V. (1); Heuer, D. (1); Rubiolo, P. (1); Laureau, A. (1) 1 - LPSC-IN2P3-CNRS / UJF / Grenoble INP, France ENC2012-A0078 Development of materials to withstand the Shepherd, D. (1) extreme, irradiated environments in advanced 1 - National Nuclear Laboratory, United Kingdom nuclear fission reactors ENC2012-A0126 ARCHER:- Material and component challenges Buckthorpe, D. (1) for the Advanced High Temperature Reactor 1 - AMEC, United Kingdom ENC2012-A0258 Pressure Drop Analysis of a Pressure-Tube Type Peiman, W. (1); Saltanov, E. (1); Pioro, I. SuperCritical Water-Cooled Reactor (SCWR) (1); Gabriel, K. (1) 1 - University of Ontario Institute of Technology, Canada ENC2012-A0003 SPES3: THE INTEGRAL FACILITY FOR Ferri, R.
    [Show full text]
  • Core Design and Optimization of the High Conversion Small Modular Reactor
    Technische Universität München Fakultät für Maschinenwesen Lehrstuhl für Nukleartechnik Core Design and Optimization of the High Conversion Small Modular Reactor Denis Janin Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzender: Prof. Phaedon-Stelios Koutsourelakis, PhD Prüfer der Dissertation: 1. Prof. Rafael Macián-Juan, PhD 2. Prof. Dr. Jean-Baptiste Thomas Die Dissertation wurde am 08.05.2018 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 01.11.2018 angenommen. ABSTRACT This research work investigates the design and optimization of the high conversion small modular reactor (HCSMR) core. The HCSMR has a thermal output of 600 MW for 200 MW electrical. It is an integrated PWR with a tightened fuel assembly lattice. The rod-to-rod pitch is 1.15 cm in a hexagonal fuel assembly geometry. As a result the moderation ratio (1.0) is reduced compared to large PWRs (around 2.0) and the HCSMR has an improved ability to convert 238U into 239Pu and use plutonium isotopes more efficiently. The core is loaded with MOX fuel. The HCSMR concept finds its roots both in large high conversion light water reactors and small modular reactor (SMR) concepts. The reduced core size results in an increased neutron leakage rate compared to large cores. This intrinsically supports the core behavior in voided situations. The necessity to introduce fertile fuel materials in the core to keep negative void coefficients is reduced, contributing to the HCSMR safety and limited core heterogeneity.
    [Show full text]
  • 60 Years of Marine Nuclear Power: 1955
    Marine Nuclear Power: 1939 - 2018 Part 4: Europe & Canada Peter Lobner July 2018 1 Foreword In 2015, I compiled the first edition of this resource document to support a presentation I made in August 2015 to The Lyncean Group of San Diego (www.lynceans.org) commemorating the 60th anniversary of the world’s first “underway on nuclear power” by USS Nautilus on 17 January 1955. That presentation to the Lyncean Group, “60 years of Marine Nuclear Power: 1955 – 2015,” was my attempt to tell a complex story, starting from the early origins of the US Navy’s interest in marine nuclear propulsion in 1939, resetting the clock on 17 January 1955 with USS Nautilus’ historic first voyage, and then tracing the development and exploitation of marine nuclear power over the next 60 years in a remarkable variety of military and civilian vessels created by eight nations. In July 2018, I finished a complete update of the resource document and changed the title to, “Marine Nuclear Power: 1939 – 2018.” What you have here is Part 4: Europe & Canada. The other parts are: Part 1: Introduction Part 2A: United States - Submarines Part 2B: United States - Surface Ships Part 3A: Russia - Submarines Part 3B: Russia - Surface Ships & Non-propulsion Marine Nuclear Applications Part 5: China, India, Japan and Other Nations Part 6: Arctic Operations 2 Foreword This resource document was compiled from unclassified, open sources in the public domain. I acknowledge the great amount of work done by others who have published material in print or posted information on the internet pertaining to international marine nuclear propulsion programs, naval and civilian nuclear powered vessels, naval weapons systems, and other marine nuclear applications.
    [Show full text]
  • Advances in Small Modular Reactor Technology Developments
    Advances in Small Modular Reactor Technology Developments Advances in Small Modular Reactor Technology Developments Technology in Small Modular Reactor Advances A Supplement to: IAEA Advanced Reactors Information System (ARIS) 2018 Edition For further information: Nuclear Power Technology Development Section (NPTDS) Division of Nuclear Power IAEA Department of Nuclear Energy International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria Telephone: +43 1 2600-0 Fax: +43 1 2600-7 Email: [email protected] Internet: http://www.iaea.org Printed by IAEA in Austria September 2018 18-02989E ADVANCES IN SMALL MODULAR REACTOR TECHNOLOGY DEVELOPMENTS 2018 Edition A Supplement to: IAEA Advanced Reactors Information System (ARIS) http://aris.iaea.org DISCLAIMER This is not an official IAEA publication. The material has not undergone an official review by the IAEA. The views expressed do not necessarily reflect those of the International Atomic Energy Agency or its Member States and remain the responsibility of the contributors. Although great care has been taken to maintain the accuracy of information contained in this publication, neither the IAEA nor its Member States assume any responsibility for consequences which may arise from its use. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA.
    [Show full text]
  • AIEA D”Pliant 2013
    The CEA is a leading IRSN is the public AREVA supplies ever DCNS designs, builds The EDF group is ASSYSTEM is an ANDRA (National AFNI (France I2EN: The mission of The INSTN stands public body in research, expert in nuclear and safer and more and supports French an integrated energy international Agency for Radioactive International Nuclear the International out as a specifically development and radiological risks for economical solutions Navy nuclear company with a Engineering and Waste Management) Agency) is your Institute of Nuclear nuclear oriented innovation. The CEA is all nuclear facilities. for power generation powered vessels for presence in a wide Innovation Consultancy ensures the sustainable partner to benefit from Energy (I2EN) is to higher education active in four main As a research and with less carbon: more than 50 years. range of electricity- representing 10,200 management of the experience and provide the best institution. As part of areas: low-carbon expert appraisal nuclear and With a large offer related businesses: people worldwide. radioactive waste know-how of France in training solutions for the CEA, the INSTN energies, defence and organisation, IRSN renewables. Ranked covering engineering, nuclear, renewable As a key participant produced in France the preparation of human resources draws on the scientific security, information works together with all first in the global manufacturing and and fossil-fuel fired in the nuclear industry and provides surface your nuclear project. development in potential of this technology and health the parties concerned nuclear power services, DCNS energy production; for 45 years, disposal solutions for AFNI will assist you to nuclear energy to leading institution in technology.
    [Show full text]
  • Politique Industrielle Et De Relance : Nous Avons Beaucoup À Apprendre De Nos Filières Industrielles Stratégiques Et Historiques ! 2 Sommaire
    Politique industrielle et de relance : nous avons beaucoup à apprendre de nos filières industrielles stratégiques et historiques ! 2 Sommaire Introduction 04 Partie 1 06 Confrontées à l’impératif de souveraineté, les filières industrielles stratégiques et historiques ont intégré des enjeux spécifiques. Partie 2 14 Les « bonnes pratiques » des filières stratégiques historiques devraient inspirer d’autres secteurs mis en défaut d’autonomie par la crise sanitaire. Partie 3 18 Quels enseignements tirer en matière de politique industrielle dans un contexte de relance ? Contact 24 3 Introduction FILIÈRES INDUSTRIELLES Sous-marins australiens, usine de souveraineté. Dans le monde STRATÉGIQUES retraitement du combustible nucléaire économique, les appels à la relance HISTORIQUES en Chine, EPR, A380, succession ont été nombreux. Celle-ci devrait du porte-avions Charles de Gaulle… être fondée sur une nouvelle politique c’est très souvent par le prisme de industrielle générale, et la (re ?) DÉFENSE l’événement – grande négociation nomination du Haut-Commissaire TERRESTRE, NAVAL ET bilatérale, signature d’un contrat, au Plan devrait en être le vecteur : AÉRONAUTIQUE dérapage d’un programme – que les quelles priorités selon les secteurs ? industries de grands programmes avec quel plan de marche et quels (défense, énergie, transport, spatial) moyens de suivi ? ÉNERGIE font parler d’elles. Pourtant, ces NUCLÉAIRE grands contrats sont avant tout Autant de questions face auxquelles le fruit d’une politique industrielle nos filières stratégiques historiques
    [Show full text]
  • Les Réacteurs Nucléaires Bugey Jacky Ruste Ingénieur INSA Génie Physique Docteur Ingénieur Université Nancy 1 (Ing
    Ecole Doctorale SI-MMEA Science et Ingénierie en Matériaux, Mécanique, Energétique et Aéronautique Formation thématique : nucléaire et matériaux Chinon Chooz Les réacteurs nucléaires Bugey Jacky Ruste Ingénieur INSA Génie Physique Docteur Ingénieur Université Nancy 1 (Ing. Senior EDF R&D) 1 [email protected] Civeaux http://micro.icaunais.free.fr L’énergie nucléaire c’est : En 2013: 435 réacteurs en service (dont 58 en France) 73 réacteurs en construction 160 réacteurs programmés 320 réacteurs en projet… 5 % de l’énergie primaire produite dans le monde 13,5 % de la production mondiale d’électricité 30 % de la production électrique de l’Union Européenne 75 % de la production française d’électricité (2012) Nombre de morts par TWh produit (selon le Wall Street Daily) L’éolien est 4 fois plus dangereux, le solaire 10 fois plus, le pétrole 1.000 fois plus et le charbon 4.000 fois plus ! (responsable de 15.000 morts par an) Selon une autre étude publiée par « Environnemental Science & technology », entre 1971 et 2009, le nucléaire 2 aurait évité près de 2 millions de décès, en se substituant aux énergies fossiles… d’ici 2018 73 réacteurs seront construits dans le monde au printemps 2013 D’autres, au Nigéria, en Turquie, en Jordanie, en Grande Bretagne, en Argentine, au Brésil…… sont en projet… des PWR, BWR, Candu, VVER, EPR, … Il n’y a pas qu’un seul type de réacteurs nucléaires… il existe différentes filières 1 - Un réacteur nucléaire, comment ça marche ? 2 – Quelles sont les différentes filières actuelles? 3 3 – Que seront les réacteurs
    [Show full text]
  • World Status of the SMR Projects
    Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile RICERCA DI SISTEMA ELETTRICO World status of the SMR projects L. Paparusso, M.E. Ricotti, M. Sumini Report RdS/2011/166 WORLD STATUS OF THE SMR PROJECTS L. Paparusso, M.E. Ricotti – Politecnico di Milano, M. Sumini – Università di Bologna Dienca Settembre 2011 Report Ricerca di Sistema Elettrico Accordo di Programma Ministero dello Sviluppo Economico – ENEA Area: Governo, Gestione e sviluppo del sistema elettrico nazionale Progetto: Nuovo nucleare da fissione: collaborazioni internazionali e sviluppo competenze in materia nucleare Responsabile Progetto: Paride Meloni, ENEA CIRTEN Consorzio Interuniversitario per la Ricerca TEcnologica Nucleare °POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA, Sezione INGEGNERIA NUCLEARE-CeSNEF *UNIVERSITA’ DI BOLOGNA DIENCA - Dipartimento di Ingegneria Energetica, Nucleare e del controllo ambientale World status of the SMR projects L. Paparusso°, M.E. Ricotti°, M. Sumini* CERSE POLIMI RL 1351/2011 Milano, Settembre 2011 Lavoro svolto in esecuzione della linea progettuale LP1– punto B4 AdP MSE‐ENEA “Ricerca di Sistema Elettrico” - PAR2008-09 Progetto 1.3 – “Nuovo Nucleare da Fissione”. Rapporto “World status of the SMR projects” INDEX EXECUTIVE SUMMARY .................................................................................................................... ‐ 3 ‐ 1 INTRODUCTION .................................................................................................................. ‐ 4 ‐ SMR projects
    [Show full text]
  • [Document Title]
    [EHNUR WP 4] ADVANCED NUCLEAR POWER PLANT CONCEPTS AND TIMETABLES FOR THEIR COMMERCIAL DEPLOYMENT Steven C. Sholly1 VIENNA, June 2013 1 Institute of Safety/Security and Risk Sciences, University of Natural Resources and Life Sciences Copyright Vienna, June 2013 Media owner and editor: University of Natural Resources and Life Sciences Vienna, Department of Water, Atmosphere and Environment, Institute of Safety and Risk Sciences, Borkowskigasse 4, 1190 Wien, Austria URL: http://www.risk.boku.ac.at ReportWP4 – Advanced Nuclear Power Plant Concepts and Timetables EHNUR EXECUTIVE SUMMARY Most currently operating nuclear power plants are Generation II reactors (except for a few remaining Generation I units and a few Generation III units). Generation III and Generation III+ nuclear power plant concepts are widely recognized to be significant improvements over Generation II reactor designs. Both Generation III designs (standardized designs safer than Generation II) and Generation III+ designs (standardized designs safer than Generation II and with the expectation of greater economy of scale) are available for immediate deployment. The absolute minimum schedule for a Generation III or III+ nuclear power plant project is 10 years from feasibility study to completion of startup testing. Such a schedule is only achievable by: (a) an experienced utility, (b) with the reactor sited at an existing nuclear power plant site, and (c) with a design for which first-of-a-kind engineering (FOAKE) is complete. Under other circumstances (e.g. a utility new to nuclear generation, a greenfield site, a utility in a country without significant nuclear infrastructure, a nuclear power plant design where FOAKE has not yet been accomplished), the schedule would extend from fifteen to seventeen years and perhaps more.
    [Show full text]
  • Small Modular Reactors the State of Play, 2013
    Small Modular Reactors The State of Play, 2013 Alexander Glaser Georgetown University, Doha, Qatar October 27, 2013 Revision 4 Nuclear Power Reactors in the World, 2013 435 operational reactors (9 fewer than in February 2011) in 31 countries provide about 13% of global electricity 32+1 18+1 164–11 Europe 104–4 50–4 14+4 0+1 3 21+2 2 6 20+1 2 2 2 More than 10 GW installed today Less than 10 GW installed today Source: IAEA PRIS Last update: October 2013 Scenario for Global Nuclear Capacity, 2035–2060 GCAM policy scenario (450 ppm, stabilizes at dT = 2.25 °C by the end of the century) Former Soviet Union Canada 62–137 GW 18–26 GW Eastern Europe 18–45 GW China Western Europe Middle East 93–482 GW Japan United States 129–163 GW 9–86 GW 52–66 GW 139–261 GW South Korea 32–47 GW Africa 8–88 GW Latin America India 19–277 GW 15–74 GW Southeast Asia 15–147 GW Australia / NZ 0–11 GW Installed capacity in 2035; total 0610 GW Installed capacity in 2060: total 1910 GW Global Change Assessment Model, www.globalchange.umd.edu/models/gcam/ A. Glaser, Georgetown University, Doha, Qatar October 2013 3 What is Being Built Today? Hitting the “Reset” Button in 2011? New Grid Connections, Permanent Shutdowns, and New Construction Starts over the Past Decade 20 New grid connections and permanent shutdowns New construction starts 15 ROK China 10 Russia USA South Korea UAE UAE 5 0 Number of reactors Number -5 USA -10 -15 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Source: International Atomic Energy Agency, Power Reactor Information System (PRIS), www.iaea.org/PRIS, October 2013 A.
    [Show full text]
  • Safety Analysis of a Compact Integral Small Light Water Reactor
    Safety Analysis of a Compact Integral Small Light Water Reactor by Zhiyuan Cheng B. Eng. Nuclear Science and Engineering (2018) Fudan University SUBMITTED TO THE DEPARTMENT OF NUCLEAR SCIENCE AND ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN NUCLEAR SCIENCE AND ENGINEERING AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2020 © 2020 Massachusetts Institute of Technology. All rights reserved. Signature of Author……………………………………………………………... Zhiyuan Cheng Department of Nuclear Science and Engineering May 11, 2020 Certified by: …………………………………………………………………… Koroush Shirvan Assistant Professor of Nuclear Science and Engineering Thesis Supervisor Certified by: …………………………………………………………………… Emilio Baglietto Associate Professor of Nuclear Science and Engineering Thesis Reader Accepted by ...….….…….......………………………………………………………… Ju Li, Ph.D. Battelle Energy Alliance Professor of Nuclear Science and Engineering Professor of Materials Science and Engineering Chair Department Committee on Graduate Students Safety Analysis of a Compact Integral Small Light Water Reactor by Zhiyuan Cheng Submitted to the Department of Nuclear Science and Engineering on May 11, 2020 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Nuclear Science and Engineering Abstract Small modular reactors (SMRs) hold great promise in meeting a diverse market while reducing the risk of delays during nuclear construction compared to large gigawatt-sized reactors. However, due to lack of economy of scale, their capital cost needs to be reduced. Increasing the compactness or power density of the nuclear island is one way to reduce capital cost. This work first assesses the transient analysis of a compact integral small light water reactor to examine its safety performance. Subsequently, a parametric optimization study with the goal of increasing its power density (i.e.
    [Show full text]
  • Interview André Kolmayer, Directeur De La Business Unit Nucléaire Civil Chez DCNS Lundi 27 Août 2012
    Interview André Kolmayer, Directeur de la Business Unit Nucléaire Civil chez DCNS lundi 27 août 2012 Dans la même rubrique Pouvez-vous nous décrire brièvement votre parcours ? Interview André Kolmayer, Directeur de la Comment avez-vous été amené à travailler dans le Business Unit Nucléaire Civil chez DCNS nucléaire et chez DCNS ? Interview with Jean-Pol Poncelet, General Director of Foratom J’ai suivi une formation classique. Après mes Interview d’Etienne Klein, Physicien et Philosophe au CEA classes préparatoires, j’ai intégré INPG Interview de Jacques Foos, Professeur au Grenoble puis INSTN Grenoble, avant de Conservatoire National des Arts et Métiers poursuivre par un MBA. En 1979, le nucléaire Interview de Jacques Percebois, Président de était au cœur de la politique d’indépendance la Commission "Energies 2050" nationale et la construction en série du Interview Laurent Midrier, Directeur de l’Agence Nucléaire France – Bureau Veritas programme électronucléaire commençait ; Interview de Monsieur Bruno Deschamps, c’est ce programme qui nous a permis jusqu’à Chef de Mission Sûreté Qualité au CNPE de aujourd’hui de bénéficier d’une électricité à Gravelines bas coût. Ces grands projets suscitaient Interview de Monsieur le Maire de Pierrelatte Yves Le BELLEC l’enthousiasme des jeunes ingénieurs et c’est à cette époque Jean-Marie Chevalier, ancien Directeur du que je suis entré à Framatome, qui allait plus tard fusionner Centre de Géopolitique de l’Energie et des avec la Cogema pour donner naissance à AREVA. J’y ai occupé Matières Premières différents postes, de l’ingénierie à la direction de grands Interview de Mme Maïté JAUREGUY-NAUDIN, projets, comme la centrale nucléaire de Ling Ao, en Chine.
    [Show full text]