Advanced Reactors

Total Page:16

File Type:pdf, Size:1020Kb

Advanced Reactors © 2012 European Nuclear Society Rue Belliard 65 1040 Brussels, Belgium Phone + 32 2 505 30 54 Fax +32 2 502 39 02 E-mail [email protected] Internet www.euronuclear.org ISBN 978-92-95064-14-0 These transactions contain all contributions submitted by 7 December 2012. The content of contributions published in this book reflects solely the opinions of the authors concerned. The European Nuclear Society is not responsible for details published and the accuracy of data presented. 2 of 96 ENC2012-A0026 Development of a thermohydraulic model of the Lazaro Chueca, A. (1); Ammirabile, L. (1); European Sodium Fast Reactor (ESFR) using Martorell, S. (2) the system code TRACE. 1 - JRC-IET, Netherlands 2 - Universidad Politecnica de Valencia, Spain ENC2012-A0028 Generation IV Technology Status including Anderson, G. (1); Lillington, J. (1) recent R & D Activities in ANSWERS 1 - AMEC, United Kingdom ENC2012-A0053 Preliminary Design Assessment of the Molten Merle-Lucotte, E. (1); Allibert, M. (1); Salt Fast Reactor Brovchenko, M. (1); Ghetta, V. (1); Heuer, D. (1); Rubiolo, P. (1); Laureau, A. (1) 1 - LPSC-IN2P3-CNRS / UJF / Grenoble INP, France ENC2012-A0078 Development of materials to withstand the Shepherd, D. (1) extreme, irradiated environments in advanced 1 - National Nuclear Laboratory, United Kingdom nuclear fission reactors ENC2012-A0126 ARCHER:- Material and component challenges Buckthorpe, D. (1) for the Advanced High Temperature Reactor 1 - AMEC, United Kingdom ENC2012-A0258 Pressure Drop Analysis of a Pressure-Tube Type Peiman, W. (1); Saltanov, E. (1); Pioro, I. SuperCritical Water-Cooled Reactor (SCWR) (1); Gabriel, K. (1) 1 - University of Ontario Institute of Technology, Canada ENC2012-A0003 SPES3: THE INTEGRAL FACILITY FOR Ferri, R. (1); Achilli, A. (1); Cattadori, G. SAFETY EXPERIMENTS ON SMALL AND (1); Bianchi, F. (1); Luce, A. (1); Monti, S. MEDIUM SIZED REACTORS (1); Meloni, P. (2); Ricotti, M. E. (3) 1 - SIET S.p.A., Italy 2 - ENEA, Italy 3 - POLITECNICO DI MILANO, Italy ENC2012-A0088 Review of three families of Small Modular Lecomte, M. (1); Beon, J.-Y. (1); Reactors (SMRs): land-based; floating; Poimboeuf, J.-M. (1); Vignon, D. (1) immersed 1 - NucAdvisor, France ENC2012-A0119 PRELIMINARY EVALUATION OF A SEVERE Lo frano, R. (1); Baudanza, V. (1); FLOODING EFFECTS ON AN INNOVATIVE Forasassi, G. (1) SMR. 1 - DIMNP-University of Pisa, Italy ENC2012-A0161 European Design Study on Supercritical Water Schulenberg, T. (1); Starflinger, J. (2); Cooled Reactors Class, A. (1) 1 - Karlsruhe Institute of Technology, Germany 2 - University of Stuttgart, Germany ENC2012-A0202 HEAT-TRANSFER CORRELATIONS FOR Pioro, I. (1); Mokry, S. (1); Gupta, S. (1); SUPERCRITICAL WATER AND CARBON Saltanov, E. (1) DIOXIDE FLOWING IN VERTICAL BARE 1 - University of Ontario Institute of Technology, TUBES Canada ENC2012-A0233 Safety analysis of a sodium-cooled fast reactor Perez-Martin, S. (1); Hering, W. (1); with transmutation capabilities Kruessmann, R. (1); Lemasson, D. (2); Massara, S. (2); Pfrang, W. (1); Ponomarev, A. (1); Schikorr, M. (1); Struwe, D. (1); Verwaerde, D. (2) 1 - Karlsruhe Institute of Technology, Germany 2 - EDF, France 3 of 96 ADVANCED REACTORS 4 of 96 ADVANCED REACTORS I 5 of 96 Development of a thermohydraulic model of the European Sodium Fast Reactor (ESFR) using the system code TRACE. Aurelio Lazaro1,2, Luca Ammirabile1, S. Martorell2 , G. Verdu2 1 - European Commission (EURATOM), Joint Research Centre Institute for Energy and Transport Westerduinweg 3, 1755 LE, Petten, The Netherlands Telf: +31(0)224 54 5446 Email: [email protected] 2- Departamento de Ingeniería Química y Nuclear. Universidad Politécnica de Valencia Cami de Vera, sn, 46021 Valencia. Abstract – One of the main goals of the Generation IV International Forum (GIF) nuclear energy systems is to excel in safety and reliability. To pursue such objective, the development of computational tools able to simulate operation conditions that may be critical for the safety of these innovative reactor concepts is essential. As part of the EURATOM contribution to GIF, the FP-7 CP-ESFR project has been launched to study a Sodium Fast Reactor (SFR) design. This paper presents how a thermohydraulic model of the ESFR plant has been developed using the best-estimate system code TRACE. The model simulates the primary, secondary and tertiary system. The primary system includes the reactor core with point kinetic neutronics implemented and it is able to analyse different accident transient scenarios. The work presented in the paper provides the first steps for the development of the transient part of an integrated safety analysis platform with capabilities to perform detailed simulations of the reactor dynamic thermohydraulic-neutronic coupling techniques. I. INTRODUCTION includes “working horse” designs (pool and loop type, oxide and carbide fuel) that describe cores and systems The Generation IV International Forum (GIF) is an which allow developing and testing different options in a international initiative to develop a new generation of common agreed basis. The design that has been considered nuclear power plants that will excel in safety and reliability in this paper is the pool-type oxide-fuel concept. and will improve in other key-issues as the waste management or the optimization of the fuel usage [1]. This new technology requires specific tools to assess its safety behaviour. To pursue such an objective, the Among the different proposals framed in the GIF, the development and validation of computational tools able to Sodium Cooled Fast Reactor (SFR) has a unique position analyse transients that may affect the plant safety is since related projects have already been developed in essential. several countries for nearly 50 years. A demonstration project within the “European Sustainable Nuclear Industrial In this line, the JRC-IET is developing an integrated Initiative” (ESNII) is planned. The so called ASTRID safety analysis tool [3] with the objective to perform an prototype would be the first Generation IV system based on integrated core and safety analysis of nuclear reactor SFR concept [10]. systems. This platform will assist to fulfil the JRC-IET task to provide independent safety assessment of nuclear In addition to these initiatives, the Collaborative reactors and to contribute in this way to the policy support Project on the European Sodium Fast Reactors, framed in on nuclear safety in the European Union. the 7th Framework Programme, is part of the EURATOM contribution to GIF and merges the efforts of 24 European For its implementation to the ESFR pool-type concept Partners to indentify, organize and implement the R&D it has been pointed as system code the thermo-hydraulic effort needed to develop such a project [2]. This project code TRACE v5.0 [6]. In the following section of this 6 of 96 paper it will be explained how a one-dimensional model of B) and 24 Control and Shutdown Device (CSD) that has been built up and it will be compared with an contains natural boron carbide (19.9% B). equivalent model implemented in the thermo-hydraulic code RELAP5 [5]. A picture of the core layout is shown in Figure 2. II. THE ONE-DIMENSIONAL MODEL Two one-dimensional models have been developed in TRACE and RELAP5 for the ESFR pool-type oxide-core plant following the technical specifications fixed in the Working Horse documents . The plant layout is composed by the pool-type primary system where the heat is generated in the reactor core and transferred via the IHX to the secondary system. Here the heat is extracted from the IHXs and conveyed to the tertiary system where the steam generators produce the steam which drives the turbines, closing the thermodynamic cycle. The secondary system consists of 6 loops, which are thermally linked through the IHX with the pool-type primary and 6 tertiary loops, so that the tertiary system is formed by 36 separate circuits. Fig. 2. Oxide core layout [2]. The pool concept is featured by nearly all the primary The main thermodynamic variables in nominal sodium coolant inside the reactor vessel, enclosing the conditions are listed in Table I. primary pumps and the Intermediate Heat Exchangers (IHX) in addition to the internal structures surrounding the TABLE I core [7]. This configuration is shown in Figure 1. Nominal conditions of the ESFR pool-type plant. Variable Reactor Power (MWth) 3600 Core inlet temperature (˚C) 395 Core outlet temperature (C) 545 Average core structure temperature (˚C) 470 Average fuel temperature (˚C) 1227 II.A. The primary system The thermo-hydraulic configuration of the core is modelled by seven different components according to the core power distribution as proposed in the core technical specifications. These seven components correspond to the hot channel, the inner core zone, the outer core zone (two components), the central dummy assembly and control assemblies, the reflector and the by-pass. Fig. 1. ESFR pool-type concept [2]. These seven core regions (Figure 3) are modelled by a The core is composed by an inner and a outer zone PIPE component, and only six (by-pass excluded) are with different Pu mass content. There are 225 inner fuel attached to a heat structure (HTSTR component) to subassemblies with a Pu mass content of 14.5% and 228 simulate the heat transfer to the coolant. These core outer core sub-assemblies with a mass content of 17%. The components are connected both, to the hot (upper) and cold control rod system is composed of 9 Diverse Shutdown (lower) plena of the plant. The fuel thermal conductivity Devices (DSD) that contains enriched carbon carbide (90% was evaluated according to the Phillipponneau model [9]. 7 of 96 The radial core expansion (diagrid) feedback is calculated based on the expansion of the core support diagrid. The thermal inertia between the sodium core inlet temperature and the average diagrid temperature is taken into account considering a structure of 5 m diameter and 0.05 m thickness.
Recommended publications
  • Core Design and Optimization of the High Conversion Small Modular Reactor
    Technische Universität München Fakultät für Maschinenwesen Lehrstuhl für Nukleartechnik Core Design and Optimization of the High Conversion Small Modular Reactor Denis Janin Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzender: Prof. Phaedon-Stelios Koutsourelakis, PhD Prüfer der Dissertation: 1. Prof. Rafael Macián-Juan, PhD 2. Prof. Dr. Jean-Baptiste Thomas Die Dissertation wurde am 08.05.2018 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 01.11.2018 angenommen. ABSTRACT This research work investigates the design and optimization of the high conversion small modular reactor (HCSMR) core. The HCSMR has a thermal output of 600 MW for 200 MW electrical. It is an integrated PWR with a tightened fuel assembly lattice. The rod-to-rod pitch is 1.15 cm in a hexagonal fuel assembly geometry. As a result the moderation ratio (1.0) is reduced compared to large PWRs (around 2.0) and the HCSMR has an improved ability to convert 238U into 239Pu and use plutonium isotopes more efficiently. The core is loaded with MOX fuel. The HCSMR concept finds its roots both in large high conversion light water reactors and small modular reactor (SMR) concepts. The reduced core size results in an increased neutron leakage rate compared to large cores. This intrinsically supports the core behavior in voided situations. The necessity to introduce fertile fuel materials in the core to keep negative void coefficients is reduced, contributing to the HCSMR safety and limited core heterogeneity.
    [Show full text]
  • 60 Years of Marine Nuclear Power: 1955
    Marine Nuclear Power: 1939 - 2018 Part 4: Europe & Canada Peter Lobner July 2018 1 Foreword In 2015, I compiled the first edition of this resource document to support a presentation I made in August 2015 to The Lyncean Group of San Diego (www.lynceans.org) commemorating the 60th anniversary of the world’s first “underway on nuclear power” by USS Nautilus on 17 January 1955. That presentation to the Lyncean Group, “60 years of Marine Nuclear Power: 1955 – 2015,” was my attempt to tell a complex story, starting from the early origins of the US Navy’s interest in marine nuclear propulsion in 1939, resetting the clock on 17 January 1955 with USS Nautilus’ historic first voyage, and then tracing the development and exploitation of marine nuclear power over the next 60 years in a remarkable variety of military and civilian vessels created by eight nations. In July 2018, I finished a complete update of the resource document and changed the title to, “Marine Nuclear Power: 1939 – 2018.” What you have here is Part 4: Europe & Canada. The other parts are: Part 1: Introduction Part 2A: United States - Submarines Part 2B: United States - Surface Ships Part 3A: Russia - Submarines Part 3B: Russia - Surface Ships & Non-propulsion Marine Nuclear Applications Part 5: China, India, Japan and Other Nations Part 6: Arctic Operations 2 Foreword This resource document was compiled from unclassified, open sources in the public domain. I acknowledge the great amount of work done by others who have published material in print or posted information on the internet pertaining to international marine nuclear propulsion programs, naval and civilian nuclear powered vessels, naval weapons systems, and other marine nuclear applications.
    [Show full text]
  • Advances in Small Modular Reactor Technology Developments
    Advances in Small Modular Reactor Technology Developments Advances in Small Modular Reactor Technology Developments Technology in Small Modular Reactor Advances A Supplement to: IAEA Advanced Reactors Information System (ARIS) 2018 Edition For further information: Nuclear Power Technology Development Section (NPTDS) Division of Nuclear Power IAEA Department of Nuclear Energy International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria Telephone: +43 1 2600-0 Fax: +43 1 2600-7 Email: [email protected] Internet: http://www.iaea.org Printed by IAEA in Austria September 2018 18-02989E ADVANCES IN SMALL MODULAR REACTOR TECHNOLOGY DEVELOPMENTS 2018 Edition A Supplement to: IAEA Advanced Reactors Information System (ARIS) http://aris.iaea.org DISCLAIMER This is not an official IAEA publication. The material has not undergone an official review by the IAEA. The views expressed do not necessarily reflect those of the International Atomic Energy Agency or its Member States and remain the responsibility of the contributors. Although great care has been taken to maintain the accuracy of information contained in this publication, neither the IAEA nor its Member States assume any responsibility for consequences which may arise from its use. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA.
    [Show full text]
  • AIEA D”Pliant 2013
    The CEA is a leading IRSN is the public AREVA supplies ever DCNS designs, builds The EDF group is ASSYSTEM is an ANDRA (National AFNI (France I2EN: The mission of The INSTN stands public body in research, expert in nuclear and safer and more and supports French an integrated energy international Agency for Radioactive International Nuclear the International out as a specifically development and radiological risks for economical solutions Navy nuclear company with a Engineering and Waste Management) Agency) is your Institute of Nuclear nuclear oriented innovation. The CEA is all nuclear facilities. for power generation powered vessels for presence in a wide Innovation Consultancy ensures the sustainable partner to benefit from Energy (I2EN) is to higher education active in four main As a research and with less carbon: more than 50 years. range of electricity- representing 10,200 management of the experience and provide the best institution. As part of areas: low-carbon expert appraisal nuclear and With a large offer related businesses: people worldwide. radioactive waste know-how of France in training solutions for the CEA, the INSTN energies, defence and organisation, IRSN renewables. Ranked covering engineering, nuclear, renewable As a key participant produced in France the preparation of human resources draws on the scientific security, information works together with all first in the global manufacturing and and fossil-fuel fired in the nuclear industry and provides surface your nuclear project. development in potential of this technology and health the parties concerned nuclear power services, DCNS energy production; for 45 years, disposal solutions for AFNI will assist you to nuclear energy to leading institution in technology.
    [Show full text]
  • Politique Industrielle Et De Relance : Nous Avons Beaucoup À Apprendre De Nos Filières Industrielles Stratégiques Et Historiques ! 2 Sommaire
    Politique industrielle et de relance : nous avons beaucoup à apprendre de nos filières industrielles stratégiques et historiques ! 2 Sommaire Introduction 04 Partie 1 06 Confrontées à l’impératif de souveraineté, les filières industrielles stratégiques et historiques ont intégré des enjeux spécifiques. Partie 2 14 Les « bonnes pratiques » des filières stratégiques historiques devraient inspirer d’autres secteurs mis en défaut d’autonomie par la crise sanitaire. Partie 3 18 Quels enseignements tirer en matière de politique industrielle dans un contexte de relance ? Contact 24 3 Introduction FILIÈRES INDUSTRIELLES Sous-marins australiens, usine de souveraineté. Dans le monde STRATÉGIQUES retraitement du combustible nucléaire économique, les appels à la relance HISTORIQUES en Chine, EPR, A380, succession ont été nombreux. Celle-ci devrait du porte-avions Charles de Gaulle… être fondée sur une nouvelle politique c’est très souvent par le prisme de industrielle générale, et la (re ?) DÉFENSE l’événement – grande négociation nomination du Haut-Commissaire TERRESTRE, NAVAL ET bilatérale, signature d’un contrat, au Plan devrait en être le vecteur : AÉRONAUTIQUE dérapage d’un programme – que les quelles priorités selon les secteurs ? industries de grands programmes avec quel plan de marche et quels (défense, énergie, transport, spatial) moyens de suivi ? ÉNERGIE font parler d’elles. Pourtant, ces NUCLÉAIRE grands contrats sont avant tout Autant de questions face auxquelles le fruit d’une politique industrielle nos filières stratégiques historiques
    [Show full text]
  • Les Réacteurs Nucléaires Bugey Jacky Ruste Ingénieur INSA Génie Physique Docteur Ingénieur Université Nancy 1 (Ing
    Ecole Doctorale SI-MMEA Science et Ingénierie en Matériaux, Mécanique, Energétique et Aéronautique Formation thématique : nucléaire et matériaux Chinon Chooz Les réacteurs nucléaires Bugey Jacky Ruste Ingénieur INSA Génie Physique Docteur Ingénieur Université Nancy 1 (Ing. Senior EDF R&D) 1 [email protected] Civeaux http://micro.icaunais.free.fr L’énergie nucléaire c’est : En 2013: 435 réacteurs en service (dont 58 en France) 73 réacteurs en construction 160 réacteurs programmés 320 réacteurs en projet… 5 % de l’énergie primaire produite dans le monde 13,5 % de la production mondiale d’électricité 30 % de la production électrique de l’Union Européenne 75 % de la production française d’électricité (2012) Nombre de morts par TWh produit (selon le Wall Street Daily) L’éolien est 4 fois plus dangereux, le solaire 10 fois plus, le pétrole 1.000 fois plus et le charbon 4.000 fois plus ! (responsable de 15.000 morts par an) Selon une autre étude publiée par « Environnemental Science & technology », entre 1971 et 2009, le nucléaire 2 aurait évité près de 2 millions de décès, en se substituant aux énergies fossiles… d’ici 2018 73 réacteurs seront construits dans le monde au printemps 2013 D’autres, au Nigéria, en Turquie, en Jordanie, en Grande Bretagne, en Argentine, au Brésil…… sont en projet… des PWR, BWR, Candu, VVER, EPR, … Il n’y a pas qu’un seul type de réacteurs nucléaires… il existe différentes filières 1 - Un réacteur nucléaire, comment ça marche ? 2 – Quelles sont les différentes filières actuelles? 3 3 – Que seront les réacteurs
    [Show full text]
  • World Status of the SMR Projects
    Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile RICERCA DI SISTEMA ELETTRICO World status of the SMR projects L. Paparusso, M.E. Ricotti, M. Sumini Report RdS/2011/166 WORLD STATUS OF THE SMR PROJECTS L. Paparusso, M.E. Ricotti – Politecnico di Milano, M. Sumini – Università di Bologna Dienca Settembre 2011 Report Ricerca di Sistema Elettrico Accordo di Programma Ministero dello Sviluppo Economico – ENEA Area: Governo, Gestione e sviluppo del sistema elettrico nazionale Progetto: Nuovo nucleare da fissione: collaborazioni internazionali e sviluppo competenze in materia nucleare Responsabile Progetto: Paride Meloni, ENEA CIRTEN Consorzio Interuniversitario per la Ricerca TEcnologica Nucleare °POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA, Sezione INGEGNERIA NUCLEARE-CeSNEF *UNIVERSITA’ DI BOLOGNA DIENCA - Dipartimento di Ingegneria Energetica, Nucleare e del controllo ambientale World status of the SMR projects L. Paparusso°, M.E. Ricotti°, M. Sumini* CERSE POLIMI RL 1351/2011 Milano, Settembre 2011 Lavoro svolto in esecuzione della linea progettuale LP1– punto B4 AdP MSE‐ENEA “Ricerca di Sistema Elettrico” - PAR2008-09 Progetto 1.3 – “Nuovo Nucleare da Fissione”. Rapporto “World status of the SMR projects” INDEX EXECUTIVE SUMMARY .................................................................................................................... ‐ 3 ‐ 1 INTRODUCTION .................................................................................................................. ‐ 4 ‐ SMR projects
    [Show full text]
  • Safety and International Development of Small Modular Reactors
    atw Vol. 60 (2015) | Issue 11 ı November aus den Unwägbarkeiten, die der Staat durch die von ihm um eine Scheinlösung. In Wirklichkeit bedarf es dafür eines unvermittelt neu gestartete Endlagersuche selbst ausgelöst ganz neuen Konzepts, das nicht nur verfassungsrechtlich hat. Allein dadurch kommt es zu zeitlich und inhaltlich belastbar ist, sondern auch zu finanziell tragfähigen unabsehbaren Kostenfolgen. Umso bemerkenswerter ist es, Lösungen für alle Verantwortlichen führt. Langfristig! 645 dass sich der Gesetzentwurf an keiner Stelle mit der Frage von in Betracht kommenden Alternativen auseinandersetzt. Dabei liegt es nahe zu prüfen, welche Regelungen erfor- Author Prof. Dr. Tobias Leidinger derlich sind, um die Finanzierung der Entsorgung wirklich Rechtsanwalt und Fachanwalt für Verwaltungsrecht langfristig zu gewährleisten. Einseitige, unbegrenzte Haf- Luther Rechtsanwaltsgesellschaft Graf-Adolf-Platz 15 tungs regelungen zulasten der heute existierenden Unter- 40213 Düsseldorf, Germany nehmen lösen das Problem jedenfalls nicht. Es handelt sich Safety and International Development of Small Modular Reactors (SMR) – A Study of GRS AND NEW BUILD OPERATION Sebastian Buchholz, Anne Krüssenberg and Andreas Schaffrath Introduction The abbreviation SMR stands for Small Modular Reactor and describes reactors with low power output. One reactor module, composed of primary, secondary and, where necessary, intermediate circuit and auxiliary systems, may be transported to the construction site as a whole or in few parts only and can therefore be connected quickly to the grid. Various modules can form a larger nuclear power plant and additional modules may be added one by one, while the others are in operation. Designers develop SMR for the deployment mainly in remote, sparsely populated areas or near cities respectively.
    [Show full text]
  • [Document Title]
    [EHNUR WP 4] ADVANCED NUCLEAR POWER PLANT CONCEPTS AND TIMETABLES FOR THEIR COMMERCIAL DEPLOYMENT Steven C. Sholly1 VIENNA, June 2013 1 Institute of Safety/Security and Risk Sciences, University of Natural Resources and Life Sciences Copyright Vienna, June 2013 Media owner and editor: University of Natural Resources and Life Sciences Vienna, Department of Water, Atmosphere and Environment, Institute of Safety and Risk Sciences, Borkowskigasse 4, 1190 Wien, Austria URL: http://www.risk.boku.ac.at ReportWP4 – Advanced Nuclear Power Plant Concepts and Timetables EHNUR EXECUTIVE SUMMARY Most currently operating nuclear power plants are Generation II reactors (except for a few remaining Generation I units and a few Generation III units). Generation III and Generation III+ nuclear power plant concepts are widely recognized to be significant improvements over Generation II reactor designs. Both Generation III designs (standardized designs safer than Generation II) and Generation III+ designs (standardized designs safer than Generation II and with the expectation of greater economy of scale) are available for immediate deployment. The absolute minimum schedule for a Generation III or III+ nuclear power plant project is 10 years from feasibility study to completion of startup testing. Such a schedule is only achievable by: (a) an experienced utility, (b) with the reactor sited at an existing nuclear power plant site, and (c) with a design for which first-of-a-kind engineering (FOAKE) is complete. Under other circumstances (e.g. a utility new to nuclear generation, a greenfield site, a utility in a country without significant nuclear infrastructure, a nuclear power plant design where FOAKE has not yet been accomplished), the schedule would extend from fifteen to seventeen years and perhaps more.
    [Show full text]
  • Small Modular Reactors the State of Play, 2013
    Small Modular Reactors The State of Play, 2013 Alexander Glaser Georgetown University, Doha, Qatar October 27, 2013 Revision 4 Nuclear Power Reactors in the World, 2013 435 operational reactors (9 fewer than in February 2011) in 31 countries provide about 13% of global electricity 32+1 18+1 164–11 Europe 104–4 50–4 14+4 0+1 3 21+2 2 6 20+1 2 2 2 More than 10 GW installed today Less than 10 GW installed today Source: IAEA PRIS Last update: October 2013 Scenario for Global Nuclear Capacity, 2035–2060 GCAM policy scenario (450 ppm, stabilizes at dT = 2.25 °C by the end of the century) Former Soviet Union Canada 62–137 GW 18–26 GW Eastern Europe 18–45 GW China Western Europe Middle East 93–482 GW Japan United States 129–163 GW 9–86 GW 52–66 GW 139–261 GW South Korea 32–47 GW Africa 8–88 GW Latin America India 19–277 GW 15–74 GW Southeast Asia 15–147 GW Australia / NZ 0–11 GW Installed capacity in 2035; total 0610 GW Installed capacity in 2060: total 1910 GW Global Change Assessment Model, www.globalchange.umd.edu/models/gcam/ A. Glaser, Georgetown University, Doha, Qatar October 2013 3 What is Being Built Today? Hitting the “Reset” Button in 2011? New Grid Connections, Permanent Shutdowns, and New Construction Starts over the Past Decade 20 New grid connections and permanent shutdowns New construction starts 15 ROK China 10 Russia USA South Korea UAE UAE 5 0 Number of reactors Number -5 USA -10 -15 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Source: International Atomic Energy Agency, Power Reactor Information System (PRIS), www.iaea.org/PRIS, October 2013 A.
    [Show full text]
  • Safety Analysis of a Compact Integral Small Light Water Reactor
    Safety Analysis of a Compact Integral Small Light Water Reactor by Zhiyuan Cheng B. Eng. Nuclear Science and Engineering (2018) Fudan University SUBMITTED TO THE DEPARTMENT OF NUCLEAR SCIENCE AND ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN NUCLEAR SCIENCE AND ENGINEERING AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2020 © 2020 Massachusetts Institute of Technology. All rights reserved. Signature of Author……………………………………………………………... Zhiyuan Cheng Department of Nuclear Science and Engineering May 11, 2020 Certified by: …………………………………………………………………… Koroush Shirvan Assistant Professor of Nuclear Science and Engineering Thesis Supervisor Certified by: …………………………………………………………………… Emilio Baglietto Associate Professor of Nuclear Science and Engineering Thesis Reader Accepted by ...….….…….......………………………………………………………… Ju Li, Ph.D. Battelle Energy Alliance Professor of Nuclear Science and Engineering Professor of Materials Science and Engineering Chair Department Committee on Graduate Students Safety Analysis of a Compact Integral Small Light Water Reactor by Zhiyuan Cheng Submitted to the Department of Nuclear Science and Engineering on May 11, 2020 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Nuclear Science and Engineering Abstract Small modular reactors (SMRs) hold great promise in meeting a diverse market while reducing the risk of delays during nuclear construction compared to large gigawatt-sized reactors. However, due to lack of economy of scale, their capital cost needs to be reduced. Increasing the compactness or power density of the nuclear island is one way to reduce capital cost. This work first assesses the transient analysis of a compact integral small light water reactor to examine its safety performance. Subsequently, a parametric optimization study with the goal of increasing its power density (i.e.
    [Show full text]
  • Interview André Kolmayer, Directeur De La Business Unit Nucléaire Civil Chez DCNS Lundi 27 Août 2012
    Interview André Kolmayer, Directeur de la Business Unit Nucléaire Civil chez DCNS lundi 27 août 2012 Dans la même rubrique Pouvez-vous nous décrire brièvement votre parcours ? Interview André Kolmayer, Directeur de la Comment avez-vous été amené à travailler dans le Business Unit Nucléaire Civil chez DCNS nucléaire et chez DCNS ? Interview with Jean-Pol Poncelet, General Director of Foratom J’ai suivi une formation classique. Après mes Interview d’Etienne Klein, Physicien et Philosophe au CEA classes préparatoires, j’ai intégré INPG Interview de Jacques Foos, Professeur au Grenoble puis INSTN Grenoble, avant de Conservatoire National des Arts et Métiers poursuivre par un MBA. En 1979, le nucléaire Interview de Jacques Percebois, Président de était au cœur de la politique d’indépendance la Commission "Energies 2050" nationale et la construction en série du Interview Laurent Midrier, Directeur de l’Agence Nucléaire France – Bureau Veritas programme électronucléaire commençait ; Interview de Monsieur Bruno Deschamps, c’est ce programme qui nous a permis jusqu’à Chef de Mission Sûreté Qualité au CNPE de aujourd’hui de bénéficier d’une électricité à Gravelines bas coût. Ces grands projets suscitaient Interview de Monsieur le Maire de Pierrelatte Yves Le BELLEC l’enthousiasme des jeunes ingénieurs et c’est à cette époque Jean-Marie Chevalier, ancien Directeur du que je suis entré à Framatome, qui allait plus tard fusionner Centre de Géopolitique de l’Energie et des avec la Cogema pour donner naissance à AREVA. J’y ai occupé Matières Premières différents postes, de l’ingénierie à la direction de grands Interview de Mme Maïté JAUREGUY-NAUDIN, projets, comme la centrale nucléaire de Ling Ao, en Chine.
    [Show full text]