Advances in Small Modular Reactor Technology Developments

Total Page:16

File Type:pdf, Size:1020Kb

Advances in Small Modular Reactor Technology Developments spine = 8.30 mm, 150pp, 100gm paper Advances in Small Modular Reactor Technology Developments A Supplement to: IAEA Advanced Reactors Information System (ARIS) For further information: Nuclear Power Technology Development Section (NPTDS) Division of Nuclear Power IAEA Department of Nuclear Energy International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria Telephone: +43 1 2600-0 Fax: +43 1 2600-7 Email: Of [email protected] Internet: http://www.iaea.org Printed by IAEA in Austria September 2014 14-30651 ADVANCES IN SMALL MODULAR REACTOR TECHNOLOGY DEVELOPMENTS A Supplement to: IAEA Advanced Reactors Information System (ARIS) http://aris.iaea.org COPYRIGHT NOTICE All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non-commercial reproductions and translations are welcomed and considered on a case-by-case basis. Enquiries should be addressed to the IAEA Publishing Section at: Marketing and Sales Unit, Publishing Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria fax: +43 1 2600 29302 tel.: +43 1 2600 22417 email: [email protected] http://www.iaea.org/books © IAEA, 2014 Printed by the IAEA in Austria September 2014 FOREWORD The IAEA Department of Nuclear Energy devotes a number of its initiatives to support the development and deployment of small and medium-sized reactors (SMRs), recognizing their potential as options for enhancing the energy supply security both in expanding and embarking countries. Recently, the IAEA saw an increase in the participation of Member States in its programme for the technology development of SMRs. The driving forces in the development of such reactors are: meeting the need for flexible power generation for wider range of users and applications; replacing the ageing fossil fuel-fired power plants; enhancing safety performance through inherent and passive safety features; offering better economic affordability; suitability for non-electric applications; options for remote regions without established electricity grid infrastructures; and offering possibilities for synergetic energy systems that combine nuclear and alternate energy sources. The trend in development has been towards design certification of small modular reactors, which are defined as advanced reactors that produce electric power up to 300 MW(e), designed to be built in factories and shipped to utilities for installation as demand arises. These new factory-built designs aim to reduce lengthy construction times while simultaneously increasing quality, thereby minimizing the financing costs associated with nowadays construction projects that span 5–8 years. SMR designs include water-cooled reactors, high temperature gas cooled reactors, as well as liquid metal cooled reactors with fast neutron spectrum. Some of SMRs are to be deployed as multiple-module power plants. Several countries are also pioneering in the development and application of transportable nuclear power plants, including floating and seabed-based SMRs. The distinct concepts of operations, staffing and security requirements, size of emergency planning zones (EPZs), licensing process, legal and regulatory framework are the main issues for the SMRs deployment. The projected timelines of readiness for deployment of SMRs generally range from the present to 2025–2030. Member States, both those considering their first nuclear power plant and those with an existing nuclear power programme, are interested in information about advanced SMR designs and concepts, as well as new development trends. The IAEA Department of Nuclear Energy, which has been facilitating Member States in addressing common technologies and issues for SMRs and related fuel cycles in the past three decades, plays a prominent role in presenting international scientific forums and technical cooperation in this field for interested Member States. The IAEA has been regularly publishing booklets on the status of SMR technology developments with the objective to provide Member States, including those considering initiating a nuclear power programme and those already having practical experience in nuclear power, a balance and objective overview of the status of SMR designs. This booklet is reporting the advances in global development of small modular reactor designs and technologies. This booklet covers only water-cooled and high temperature gas cooled small modular reactor designs and technologies. As for various small reactors with fast neutron spectrum, they are reported in a recent dedicated booklet on status of innovative fast reactor designs and concepts (see Annex III). This booklet is intended as a supplement to the IAEA Advanced Reactor Information System (ARIS), which can be accessed at http://aris.iaea.org. This publication was developed by Nuclear Power Technology Development Section, Division of Nuclear Power of the IAEA Department of Nuclear Energy in cooperation with Member States. The IAEA acknowledges the roles and contributions of A. Iunikova in coordinating the development of this booklet. The IAEA officers responsible for this publication were H. Subki and F. Reitsma of the Division of Nuclear Power. CONTENTS INTRODUCTION ……………………………………………………………………………. 1 WATER COOLED REACTORS …………………………………………………………….. 5 CAREM-25 (CNEA, Argentina) ………………………………………. 7 ACP-100 (CNNC, China) ………………………………………………….. 11 Flexblue (DCNS, France) ………………………………………………….. 14 AHWR300-LEU (BARC, India) …………………………………………… 18 IRIS (IRIS, International Consortium) …………………………………….. 22 DMS (Hitachi-GE Nuclear Energy, Japan) ………………………………… 26 IMR (Mitsubishi Heavy Industries, Japan) ………………………………… 30 SMART (KAERI, Republic of Korea) …………………………………….. 34 KLT-40S (OKBM Afrikantov, Russian Federation) ………………………. 38 VBER-300 (OKBM Afrikantov, Russian Federation) …………………….. 42 ABV-6M (OKBM Afrikantov, Russian Federation) ………………………. 46 RITM-200 (OKBM Afrikantov, Russian Federation) …………………….. 50 VVER-300 (OKB Gidropress, Russian Federation) ………………………. 54 VK-300 (RDIPE, Russian Federation) …………………………………….. 58 UNITHERM (RDIPE, Russian Federation) ……………………………….. 62 RUTA-70 (RDIPE, IPPE, Russian Federation) ………………………. 66 SHELF (RDIPE, Russian Federation) ……………………………………… 70 ELENA (Research Russian Centre “Kurchatov ……………………………. 72 Institute”, Russian Federation) mPower (B&W Generation mPower, USA) ……………………………... 76 NuScale (NuScale Power Inc., USA) ……………………………………… 80 Westinghouse SMR (Westinghouse Electric Company LLC, USA) ……... 84 SMR-160 (Holtec International, USA) …………………………………….. 88 HIGH TEMPERATURE GAS COOLED REACTORS …………………………………... 93 HTR-PM (Tsinghua University, China) …………………………………... 95 GT-HTR300 (Japan Atomic Energy Agency, Japan) ………………………. 99 GT-MHR (OKBM Afrikantov, Russian Federation) ………………………. 103 MHR-T reactor/Hydrogen production complex ……………………………. 107 (OKBM Afrikantov, Russian Federation) MHR-100 (OKBM Afrikantov, Russian Federation) ………………………. 111 PBMR-400 (Pebble Bed Modular Reactor SOC Ltd, South Africa) ……….. 115 HTMR-100 (STL, South Africa) ………………………………………... 119 SC-HTGR (AREVA, USA) ………………………………………………… 123 Xe-100 (X-energy, USA) ………………………………………………….. 127 ANNEX I Summary of SMR design status …………………………………………….. 131 ANNEX II Map of global SMR technology development ………………………………. 135 ANNEX III Bibliography ..………………………………………………………………... 137 ANNEX IV Acronyms …………………………………………………………………… 139 INTRODUCTION Small and medium sized reactors (SMRs) include a large variety of designs and technologies and in general, consist of: ñ advanced SMRs, including modular reactors and integrated PWRs; ñ innovative SMRs, including small-sized Gen-IV reactors with non-water coolant/ moderator; ñ converted or modified SMRs, including barge mounted floating NPP and seabed-based reactors; ñ conventional SMRs, those of Gen-II technologies and still being deployed. Advanced SMRs having an equivalent electric power of less than 700 MW(e) or even less than 300 MW(e) are part of a new generation of nuclear power plant designs being developed to provide a flexible, cost-effective energy for various applications. Advanced SMR designs include water-cooled reactors, high-temperature gas cooled reactors, as well as liquid-metal cooled reactors with fast neutron spectrum. The trend of development has been towards design certification of small modular reactors, which are defined as advanced reactors that produce equivalent electric power less than 300 MW(e) designed to be built in factories and shipped to utilities for installation as demand arises. The SMR systems adopt modularization, by which the structures, systems and components are shop-fabricated then shipped and assembled onsite, thus the construction time for SMRs can be substantially reduced. Some of the SMRs are to be deployed as multiple-module power plants allowing utilities to add additional reactor and power conversion modules as demand for local power increases. Advanced SMRs will use different approaches from large reactors for achieving a high level of safety and reliability in their systems, structures, components, and that will be the result of a complex
Recommended publications
  • Developing an Intergovernmental Nuclear Regulatory Organization
    Developing an Intergovernmental Nuclear Regulatory Organization: Lessons Learned from the International Civil Aviation Organization, the International Maritime Organization, and the International Telecommunication Union Clarence Eugene Carpenter, Jr. Bachelor of Science in Mechanical Engineering, May 1988 Seattle University, Seattle, WA Master of Science in Technical Management, May 1997 The Johns Hopkins University, Baltimore, MD Master of Arts in International Science and Technology Policy, May 2009 The George Washington University, Washington, DC A Dissertation submitted to The Faculty of The Columbian College of Arts and Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy January 10, 2020 Dissertation directed by Kathryn Newcomer Professor of Public Policy and Public Administration The Columbian College of Arts and Sciences of The George Washington University certifies that Clarence Eugene Carpenter, Jr. has passed the Final Examination for the degree of Doctor of Philosophy as of November 26, 2019. This is the final and approved form of the dissertation. Developing an Intergovernmental Nuclear Regulatory Organization: Lessons Learned from the International Civil Aviation Organization, the International Maritime Organization, and the International Telecommunication Union Clarence Eugene Carpenter, Jr. Dissertation Research Committee: Kathryn Newcomer, Professor of Public Policy and Public Administration, Dissertation Director Philippe Bardet, Assistant Professor,
    [Show full text]
  • Survey of Design and Regulatory Requirements for New Small Reactors, Contract No
    Canadian Nuclear Safety Commission - R550.1 Survey of Design and Regulatory Requirements for New Small Reactors, Contract No. 87055-13-0356 Final Report - July 3, 2014 RSP-0299 Canadian Nuclear Safety Commission R550.1 Survey of Design and Regulatory Requirements for New Small Reactors, Contract No. 87055-13-0356 Final Report July 3, Released for Brian Gihm 0 Victor Snell Jim Sarvinis Milan Ducic 2014 Use Victor Snell Date Rev. Status Prepared By Checked By Approved By Approved By Client - CNSC H346105-0000-00-124-0002, Rev. 0 Page i © Hatch 2015 All rights reserved, including all rights relating to the use of this document or its contents. Canadian Nuclear Safety Commission - R550.1 Survey of Design and Regulatory Requirements for New Small Reactors, Contract No. 87055-13-0356 Final Report - July 3, 2014 Executive Summary The objectives of this report are to perform a design survey of small modular reactors (SMRs) with near-term deployment potential, with a particular emphasis on identifying their innovative safety features, and to review the Canadian nuclear regulatory framework to assess whether the current and proposed regulatory documents adequately address SMR licensing challenges. SMRs are being designed to lower the initial financing cost of a nuclear power plant or to supply electricity in small grids (often in remote areas) which cannot accommodate large nuclear power plants (NPPs). The majority of the advanced SMR designs is based on pressurized water reactor (PWR) technology, while some non-PWR Generation IV technologies (e.g., gas-cooled reactor, lead-cooled reactor, sodium-cooled fast reactor, etc.) are also being pursued.
    [Show full text]
  • Russia Highly Appreciates the Activity of IAEA and Its Role in Promoting "Peaceful Atom” in Every Aspects of Life
    Unofficial translation Dear colleagues, ladies and gentlemen! Russia highly appreciates the activity of IAEA and its role in promoting "peaceful atom” in every aspects of life. We strongly support Agency's activities in the field of nuclear science and technology, participate in virtually all areas of activity and provide our knowledge, experience, educational opportunities and experimental facilities to promote this important industry. We are convinced that nuclear and radiation technologies, based on solid foundation of science, will make a significant contribution to achievement of Sustainable Development Goals of mankind, including problems of climate and power supply. The strategic goal of Russian nuclear industry is to ensure the innovative development of our country based on the expansion of application of nuclear technologies in various sectors of the economy. The focus is traditionally set on the development of nuclear energy technologies. We are convinced that the future of nuclear energy is inextricably linked with the closure of the nuclear fuel cycle. Russian scientists have already made a significant contribution to the development and commercialization of this direction, demonstrating to the world the operability and attractiveness of its key element - fast neutron reactor of 4th generation. This was the basis for the development and implementation of the Breakthrough project with a demonstration of technical solutions for existing challenges, nuclear power industry faces today: critical decision to increase the safety of nuclear power generation is the transition to “natural safety” reactor systems and the resolution of issues related to the management of spent nuclear fuel and radioactive waste. Undoubtedly, one of the components of new technological platform is the development of low and medium power sector of nuclear power industry.
    [Show full text]
  • Advanced Reactors
    © 2012 European Nuclear Society Rue Belliard 65 1040 Brussels, Belgium Phone + 32 2 505 30 54 Fax +32 2 502 39 02 E-mail [email protected] Internet www.euronuclear.org ISBN 978-92-95064-14-0 These transactions contain all contributions submitted by 7 December 2012. The content of contributions published in this book reflects solely the opinions of the authors concerned. The European Nuclear Society is not responsible for details published and the accuracy of data presented. 2 of 96 ENC2012-A0026 Development of a thermohydraulic model of the Lazaro Chueca, A. (1); Ammirabile, L. (1); European Sodium Fast Reactor (ESFR) using Martorell, S. (2) the system code TRACE. 1 - JRC-IET, Netherlands 2 - Universidad Politecnica de Valencia, Spain ENC2012-A0028 Generation IV Technology Status including Anderson, G. (1); Lillington, J. (1) recent R & D Activities in ANSWERS 1 - AMEC, United Kingdom ENC2012-A0053 Preliminary Design Assessment of the Molten Merle-Lucotte, E. (1); Allibert, M. (1); Salt Fast Reactor Brovchenko, M. (1); Ghetta, V. (1); Heuer, D. (1); Rubiolo, P. (1); Laureau, A. (1) 1 - LPSC-IN2P3-CNRS / UJF / Grenoble INP, France ENC2012-A0078 Development of materials to withstand the Shepherd, D. (1) extreme, irradiated environments in advanced 1 - National Nuclear Laboratory, United Kingdom nuclear fission reactors ENC2012-A0126 ARCHER:- Material and component challenges Buckthorpe, D. (1) for the Advanced High Temperature Reactor 1 - AMEC, United Kingdom ENC2012-A0258 Pressure Drop Analysis of a Pressure-Tube Type Peiman, W. (1); Saltanov, E. (1); Pioro, I. SuperCritical Water-Cooled Reactor (SCWR) (1); Gabriel, K. (1) 1 - University of Ontario Institute of Technology, Canada ENC2012-A0003 SPES3: THE INTEGRAL FACILITY FOR Ferri, R.
    [Show full text]
  • A Comparison of Advanced Nuclear Technologies
    A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D MARCH 2017 B | CHAPTER NAME ABOUT THE CENTER ON GLOBAL ENERGY POLICY The Center on Global Energy Policy provides independent, balanced, data-driven analysis to help policymakers navigate the complex world of energy. We approach energy as an economic, security, and environmental concern. And we draw on the resources of a world-class institution, faculty with real-world experience, and a location in the world’s finance and media capital. Visit us at energypolicy.columbia.edu facebook.com/ColumbiaUEnergy twitter.com/ColumbiaUEnergy ABOUT THE SCHOOL OF INTERNATIONAL AND PUBLIC AFFAIRS SIPA’s mission is to empower people to serve the global public interest. Our goal is to foster economic growth, sustainable development, social progress, and democratic governance by educating public policy professionals, producing policy-related research, and conveying the results to the world. Based in New York City, with a student body that is 50 percent international and educational partners in cities around the world, SIPA is the most global of public policy schools. For more information, please visit www.sipa.columbia.edu A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D* MARCH 2017 *Andrew C. Kadak is the former president of Yankee Atomic Electric Company and professor of the practice at the Massachusetts Institute of Technology. He continues to consult on nuclear operations, advanced nuclear power plants, and policy and regulatory matters in the United States. He also serves on senior nuclear safety oversight boards in China. He is a graduate of MIT from the Nuclear Science and Engineering Department.
    [Show full text]
  • Russia's Akademik Lomonosov – the First Modern Floating Nuclear
    Russia’s Akademik Lomonosov – The First Modern Floating Nuclear Power Plant (FNPP) Peter Lobner, 15 May 2021 1. Introduction Designated Project 20870, construction of Akademik Lomonosov started on 15 April 2007, when the keel was laid at the Sevmash shipyard in Severodvinsk, which also is Russia’s premier submarine building shipyard. Originally, Akademik Lomonosov was expected to supply power to the Sevmash shipyard itself and the town of Severodvinsk, in Northwest Russia. Cutaway drawing showing the general arrangement of the Akademik Lomonosov. Source: Rosatom In August 2008, the hull of Akademik Lomonosov was transferred to the Baltic Shipyard in St. Petersburg, where a second “keel laying” was held in May 2009. Plans for deploying the FNPP were reconsidered, leading to the final selection of Pevek, a remote Arctic coastal city in Russia’s Far East. The FNPP was launched on 30 June 2010 and outfitting continued with the vessel secured dockside at the Baltic Shipyard. Two un-fueled OKBM Afrikantov KLT-40S modular pressurized water reactors (PWRs) were installed in October 2013. 1 After work on the vessel and reactor systems was completed in April 2018, Akademik Lomonosov was towed 4,000 km (2,485 miles) around Norway to Murmansk, where the reactors were fuelled and tested at Rosatomflot facilities, which also support their nuclear- powered icebreaker fleet. In June 2019, the Russian nuclear regulatory agency Rostekhnadzor issued a 10-year license to Rosenergoatom to operate Akademik Lomonosov until 2029. After successfully completing testing, Akademik Lomonosov departed Murmansk on 23 August 2019 and was towed 4,770 km (2,964 miles) along the Northern Sea Route, arriving at its final destination on 9 September 2019 at a new protected pier at Pevek, which is about 980 km (609 miles) west of the Bering Strait.
    [Show full text]
  • Core Design and Optimization of the High Conversion Small Modular Reactor
    Technische Universität München Fakultät für Maschinenwesen Lehrstuhl für Nukleartechnik Core Design and Optimization of the High Conversion Small Modular Reactor Denis Janin Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzender: Prof. Phaedon-Stelios Koutsourelakis, PhD Prüfer der Dissertation: 1. Prof. Rafael Macián-Juan, PhD 2. Prof. Dr. Jean-Baptiste Thomas Die Dissertation wurde am 08.05.2018 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 01.11.2018 angenommen. ABSTRACT This research work investigates the design and optimization of the high conversion small modular reactor (HCSMR) core. The HCSMR has a thermal output of 600 MW for 200 MW electrical. It is an integrated PWR with a tightened fuel assembly lattice. The rod-to-rod pitch is 1.15 cm in a hexagonal fuel assembly geometry. As a result the moderation ratio (1.0) is reduced compared to large PWRs (around 2.0) and the HCSMR has an improved ability to convert 238U into 239Pu and use plutonium isotopes more efficiently. The core is loaded with MOX fuel. The HCSMR concept finds its roots both in large high conversion light water reactors and small modular reactor (SMR) concepts. The reduced core size results in an increased neutron leakage rate compared to large cores. This intrinsically supports the core behavior in voided situations. The necessity to introduce fertile fuel materials in the core to keep negative void coefficients is reduced, contributing to the HCSMR safety and limited core heterogeneity.
    [Show full text]
  • 60 Years of Marine Nuclear Power: 1955
    Marine Nuclear Power: 1939 - 2018 Part 4: Europe & Canada Peter Lobner July 2018 1 Foreword In 2015, I compiled the first edition of this resource document to support a presentation I made in August 2015 to The Lyncean Group of San Diego (www.lynceans.org) commemorating the 60th anniversary of the world’s first “underway on nuclear power” by USS Nautilus on 17 January 1955. That presentation to the Lyncean Group, “60 years of Marine Nuclear Power: 1955 – 2015,” was my attempt to tell a complex story, starting from the early origins of the US Navy’s interest in marine nuclear propulsion in 1939, resetting the clock on 17 January 1955 with USS Nautilus’ historic first voyage, and then tracing the development and exploitation of marine nuclear power over the next 60 years in a remarkable variety of military and civilian vessels created by eight nations. In July 2018, I finished a complete update of the resource document and changed the title to, “Marine Nuclear Power: 1939 – 2018.” What you have here is Part 4: Europe & Canada. The other parts are: Part 1: Introduction Part 2A: United States - Submarines Part 2B: United States - Surface Ships Part 3A: Russia - Submarines Part 3B: Russia - Surface Ships & Non-propulsion Marine Nuclear Applications Part 5: China, India, Japan and Other Nations Part 6: Arctic Operations 2 Foreword This resource document was compiled from unclassified, open sources in the public domain. I acknowledge the great amount of work done by others who have published material in print or posted information on the internet pertaining to international marine nuclear propulsion programs, naval and civilian nuclear powered vessels, naval weapons systems, and other marine nuclear applications.
    [Show full text]
  • Nuclear Power Industry
    JSC ATOMENERGOMASH RESULTS OF 20161 1 The brochure data are valid as of April 26, 2017. JSC ATOMENERGOMASH RESULTS OF 2016 The pilot fast neutron reactor After a long interruption, JSC Atomenergomash with primary sodium CEFR the nuclear industry equipment reinforces the key 3,668 developed under the order manufacture was resumed at business areas – nuclear from Chinese Nuclear Power “Atommash” plant. In particular, power industry, gas and Corporation. The developer the activities were commenced petrochemical industry, of the reactor plant was for the manufacture of the main shipbuilding and general 10 YEARS OF PROGRESS OJSC Afrikantov OKBM, the equipment of the reactor island industry. steam generator developer of the Power units 1 and 2 of was OJSC OKB GIDROPRESS. Belarusian NPP. THE HISTORY OF JSC ATOMENERGOMASH, THE mechanical ENGINEERING DIVISION OF ROSATOM STATE CORPORATION (THE «DIVISION») STARTED FROM TWO 2,947 OJSC Atomenergomash The complete cycle of steam COMPANIES. TODAY THE DIVISION IS ONE OF THE LEADING mechanical ENGINEERING COMPANIES IN RUSSIA. IT COMPRISES OVER 20 LEADING ENGINEERING manufactured a core catcher generators manufacture was at the Atommash plant in mastered – from semi-products JSC TsKBM completed the BUREAUS, MAJOR MACHINE BUILDERS, RESEARCH INSTITUTIONS. THE DIVISION IS INVOLVED IN THE KEY PROJECTS IMPLEMENTED BY ROSATOM, WIDENS unprecedentedly short time (PJSC Energomashspetsstal) to test of the new MCP design – and supplied it to the Baltic body manufacture (OJSC PZM), single-shaft configuration 2,414 Labor productivity per employee, thousand rubles THE COMPETENCES AND ACTIVELY MASTERS NEW MARKETS AND TECHNOLOGIES. 2,397 NPP. assembly of in-vessel components with water cooling of motor and shipment to client and bearing assemblies that (OJSC ZiO-Podolsk).
    [Show full text]
  • Status of Small and Medium Sized Reactor Designs
    STATUS OF SMALL AND MEDIUM SIZED REACTOR DESIGNS A Supplement to the IAEA Advanced Reactors Information System (ARIS) http://aris.iaea.org @ September 2012 STATUS OF SMALL AND MEDIUM SIZED REACTOR DESIGNS A Supplement to the IAEA Advanced Reactors Information System (ARIS) http://aris.iaea.org FOREWORD There is renewed interest in Member States grids and lower rates of increase in demand. in the development and application of small They are designed with modular technology, and medium sized reactors (SMRs) having an pursuing economies of series production, factory equivalent electric power of less than 700 MW(e) fabrication and short construction times. The or even less than 300 MW(e). At present, most projected timelines of readiness for deployment new nuclear power plants under construction of SMR designs generally range from the present or in operation are large, evolutionary designs to 2025–2030. with power levels of up to 1700 MW(e), The objective of this booklet is to provide building on proven systems while incorporating Member States, including those considering technological advances. The considerable initiating a nuclear power programme and those development work on small to medium sized already having practical experience in nuclear designs generally aims to provide increased power, with a brief introduction to the IAEA benefits in the areas of safety and security, non- Advanced Reactors Information System (ARIS) proliferation, waste management, and resource by presenting a balanced and objective overview utilization and economy, as well as to offer a of the status of SMR designs. variety of energy products and flexibility in This report is intended as a supplementary design, siting and fuel cycle options.
    [Show full text]
  • Advances in Small Modular Reactor Technology Developments
    Advances in Small Modular Reactor Technology Developments Advances in Small Modular Reactor Technology Developments Technology in Small Modular Reactor Advances A Supplement to: IAEA Advanced Reactors Information System (ARIS) 2018 Edition For further information: Nuclear Power Technology Development Section (NPTDS) Division of Nuclear Power IAEA Department of Nuclear Energy International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria Telephone: +43 1 2600-0 Fax: +43 1 2600-7 Email: [email protected] Internet: http://www.iaea.org Printed by IAEA in Austria September 2018 18-02989E ADVANCES IN SMALL MODULAR REACTOR TECHNOLOGY DEVELOPMENTS 2018 Edition A Supplement to: IAEA Advanced Reactors Information System (ARIS) http://aris.iaea.org DISCLAIMER This is not an official IAEA publication. The material has not undergone an official review by the IAEA. The views expressed do not necessarily reflect those of the International Atomic Energy Agency or its Member States and remain the responsibility of the contributors. Although great care has been taken to maintain the accuracy of information contained in this publication, neither the IAEA nor its Member States assume any responsibility for consequences which may arise from its use. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA.
    [Show full text]
  • AIEA D”Pliant 2013
    The CEA is a leading IRSN is the public AREVA supplies ever DCNS designs, builds The EDF group is ASSYSTEM is an ANDRA (National AFNI (France I2EN: The mission of The INSTN stands public body in research, expert in nuclear and safer and more and supports French an integrated energy international Agency for Radioactive International Nuclear the International out as a specifically development and radiological risks for economical solutions Navy nuclear company with a Engineering and Waste Management) Agency) is your Institute of Nuclear nuclear oriented innovation. The CEA is all nuclear facilities. for power generation powered vessels for presence in a wide Innovation Consultancy ensures the sustainable partner to benefit from Energy (I2EN) is to higher education active in four main As a research and with less carbon: more than 50 years. range of electricity- representing 10,200 management of the experience and provide the best institution. As part of areas: low-carbon expert appraisal nuclear and With a large offer related businesses: people worldwide. radioactive waste know-how of France in training solutions for the CEA, the INSTN energies, defence and organisation, IRSN renewables. Ranked covering engineering, nuclear, renewable As a key participant produced in France the preparation of human resources draws on the scientific security, information works together with all first in the global manufacturing and and fossil-fuel fired in the nuclear industry and provides surface your nuclear project. development in potential of this technology and health the parties concerned nuclear power services, DCNS energy production; for 45 years, disposal solutions for AFNI will assist you to nuclear energy to leading institution in technology.
    [Show full text]