<<

Cumulative and Comprehensive Subject Matter Index Volumes 171–180

Abamectin, avermectin B1, 171:112 Acanthamoeba, human infections caused, 1 Aaetnefcson crop pests/benefi- 180:116Abamectin,effects cial insects, 171:115 Acanthamoeba, in air, dust & soil, 180: 0 Aaetnevrnetleffects, 171: 103Abamectin,environmental 115 Acanthamoeba, in animal wastes, 180:102 Abamectin, non-target insect effects, 171: Acanthamoeba, in sewage & biosolids, 116 180:102 Abamectin, resistance induction insect Acanthamoeba, in surface waters, 180: pests, 171:116 100 Abbreviations, scientific organizations, Acanthamoeba, in swimming pools, spas, 172:119 180:102 Abbreviations, toxicological, 176:4 Acanthamoeba, in tapwater & bottled wa- Abiotic coupling, manganese oxidation of ter, 180:101 Cr(III), 178:121 Acanthamoeba infection in AIDS patients, Abiotic hydrolysis, pesticides aquatic envi- 180:114 ronment, 175:79 ff. Acanthamoeba, interactions with Legio- Abiotic pesticide hydrolysis, adsorption ef- nella pneumophila, 180:114 fects, 175:85 Acanthamoeba keratitis, contact lenses as- Abiotic pesticide hydrolysis, clay effects, sociation, 180:119 175:88 Acanthamoeba keratitis, diagnosis, 180: Abiotic pesticide hydrolysis, cosolvent ef- 106 fects, 175:85 Acanthamoeba keratitis, eye infections, Abiotic pesticide hydrolysis, dissolved or- 180:104 ganic matter effects, 175:86 Acanthamoeba keratitis, immunity, 180: Abiotic pesticide hydrolysis, metal ions/ 110 175:88 Acanthamoeba keratitis, incidence &oxideseffects, Abiotic pesticide hydrolysis, micelle ef- pathogenicity, 180:109 fects, 175:89 Acanthamoeba keratitis, mechanisms in- Abiotic pesticide hydrolysis, modifying volved in, 180:118 environmental factors, 175:83 Acanthamoeba keratitis, risk factors, 180: Abiotic pesticide hydrolysis, pH rate pro- 121 files, 175:82 Acanthamoeba keratitis, symptoms in pa- Absorption coefficients (photochemical), tients, 180:105 organophosphates (table), 172:149 Acanthamoeba keratitis, treatment, 180:108 Acanthamoeba, bacterial endosymbionts, Acanthamoeba, life cycle (diag.), 180:97 180:98 Acanthamoeba, methods of identification, Acanthamoeba, currently identified spe- 180:96 cies (table), 180:95 Acanthamoeba, previously genus Hartma- Acanthamoeba eye infections, dose re- nella, 180:95 sponse, 180:17 Acanthamoeba resistance to water treat- Acanthamoeba, health effects, 180:103 ments, 180:117

167 168 Cumulative and Comprehensive Subject Matter Index Volumes 171–180

Acanthamoeba species group classifica- Acute toxicity, fipronil, 176:34 tion, 180:96 Acute toxicity, fipronil mammals, 176:34 Acanthamoeba spp. health effects, 180:93 ADI, fipronil, 176:46 ff. Adonis®, fipronil proprietary name, Acanthamoeba spp. potential waterborne 176:6 transmission, 180:93 ff. Adsorption, abiotic pesticide hydrolysis, Acanthamoeba, where found, 180: 99, 175:85

100 Adsorption coefficient (Kd), methyl bro- Acenaphthylene, PAH, 179:75 mide, 177:68 Acenapthene, PAH, 179:75 Adsorption/desorption coefficients soil, , hydrolysis pathways, 175:140 pyrethroids, 174:56 Acephate, sublethal AChE inhibition, Advisory Committee on Crop Protection aquatic organisms, 172:45 Chemistry, 177:125 (ACh), synapse neurotrans- a.e. (acid equivalent) defined, 174:20 mitter, 172:150 Aerodynamic method, methyl bromide (AChE), function in volatilization, 177:85 nervous system, 172:22 Aflatoxin, ammoniation decontamination Acetylcholinesterase (AChE) inhibition, safety, 171:157

organophosphates, 172:2 Aflatoxin B1, conversion to aflatoxin M1 Acetylcholinesterase (AChE), insecticidal in cow’s milk, 171:157

activity role, 172:150 Aflatoxin B1, most potent of the four afla- Acetylcholinesterase inhibitors, tissue resi- toxins, 171:140 dues, 173:17 Aflatoxin hazard reduction, using ammoni- AChE (acetylcholinesterase), function in ation, 171:139 ff.

nervous system, 172:22 Aflatoxin M1, conversion from aflatoxin

AChE (acetylcholinesterase) inhibition, or- B1 in cow’s milk, 171:157

ganophosphates, 172:2 Aflatoxin M1, residues in Arizona milk, AChE (acetylcholinesterase), insecticidal 171:159 activity role, 172:150 Aflatoxin, reduction using ammonia-re- AChE inhibition, by non-OP or non-carba- lated procedures, 171:167 mate pesticides, 172:52 Aflatoxin, trout feeding studies, 171:163 AChE inhibition, organophosphate insecti- Aflatoxin-ammonia reaction products, cidal mode of action, 172:150 feed concentrations, 171:155 AChE inhibition, sublethal OP levels Aflatoxin-ammonia reaction products, aquatic organisms, 172:44 toxic potential, 171:156, 160 AChE inhibitors, CBRs, 173:5 Aflatoxin-ammonia reaction products, tox- AChE inhibitors, mode of action, 173:8 icity, 171:153, 160 AChE inhibitors, tissue residues, 173:17 Aflatoxin-ammonia reaction products, tox- Acid equivalent (a.e.), defined, 174:20 icological properties, 171:160 Acridine & its homocyclic analog anthra- Aflatoxin-ammoniation, feeding studies of cene (illus.), 173:41 contaminated feeds, 171:160 Acridine, anaerobic degradation pathway, Aflatoxin-contaminated feeds, mutagenic 173:45 potentials, 171:167 Acridine, photoenhanced toxicity different Aflatoxin-contaminated peanut meal, rat species (table), 173:60 feeding studies, 171:163 Acridine toxicity, species groups, 173:50 Aflatoxin-related ammonia decontamina- Acrolein, hydrolytic profile, 175:232 tion pathway (fig.), 171:152 Actinometry, light source intensity, 172: Aflatoxins, ammonia decontamination 142 efficacy, 171:149, 150 Cumulative and Comprehensive Subject Matter Index Volumes 171–180 169

Aflatoxins, ammonia treatment of contam- Air, proposed arsenic criteria, 180:156 inated cottonseed, 171:148 Air sampling adsorbents, methyl bromide, Aflatoxins, ammoniation chemistry effect, 177:56 171:151 Air sampling, methyl bromide, 177:54, 55 Aflatoxins, ammoniation decontamination Alachlor, degradation by photo-Fenton methods, 171:147 process, 177:160 Aflatoxins, animal feed levels edible Alachlor, hydrolytic profile, 175:194 tissue levels, 171:142, 143 Alcohol drinking, hair trace element con- Aflatoxins, Arizona cottonseed monitor- tamination, 175:55 ing results, 171:146 , catalysis by metal ions, 175:184 Aflatoxins, breakdown products from am- Aldicarb, hydrolysis pathways, 175:116 moniation (fig.), 171:152 Aldicarb, hydrolytic profile, 175:200 Aflatoxins, carcinogenicity, 171:140 Aldicarb sulfoxide, hydrolytic profile, Aflatoxins chemistry, ammoniation effect, 175:200 171:151 Aldoxycarb, hydrolytic profile, 175:200 Aflatoxins, FDA action levels animal Aldrin, hydrolytic profile, 175:206 feeds, 171:143 Alfalfa leafcutter bee, spinosad toxicity, Aflatoxins, FDA action levels cow’s milk, 179:42 171:144 Algae, chromium toxicity, 178:128 Aflatoxins, FDA feedstuffs surveillance Algae, environmental metals risk monitor, results, 171:146 178:23 ff. Aflatoxins, feed blending to reduce levels, Algae test protocols for toxicity, 178:26 171:144 Algal Assay Procedure Bottle Test (EPA), Aflatoxins, hepatotoxicity, 171:139 178:23 Aflatoxins, human liver cancer risk, 171: Algal culture techniques, toxicity tests, 141 178:27 Aflatoxins, legal history/action levels, Algal metal toxicity, effects measure- 171:142 ments, 178:37 Aflatoxins, list of contaminated feed- Algal metal toxicity, regulatory context, stuffs, 171:146 178:25 Age effect, hair trace element contamina- Algal metal toxicity testing, 178:23 ff. tion, 175:52 Algal metal toxicity testing, acclimation/ Aging effect on metal availability in soils, adaptation laboratory, 178:41 178:1 ff. Algal metal toxicity testing, adsorption, Aging, increases in metal availability, 178:39 soils, 178:9 Algal metal toxicity testing, inoculum Aging metals, bioavailability to inverte- rate, 178:38 brates, 178:11 Algal metal toxicity testing, lab/field ex- Aging metals, soil availability, 178:2 trapolation, 178:42 Ah-receptor agonists, CBRs, 173:5 Algal metal toxicity testing, toxicity mech- Ah-receptor agonists, defined, 173:2 anisms, 178:39 Ah-receptor agonists, mode of action, Algal metal toxicity testing, uptake, 178: 173:839 Ah-receptor agonists, tissue residues, 173: Algal metal toxicity testing, variables af- 20 fecting results, 178:43 AIDS patients, Acanthamoeba effects, Algal sensitivity, toxicants, interspecific 180:114 differences, 178:35 Air pollution, hair trace element contami- Algal sensitivity, toxicants, intraspecies nation, 175:61 variability, 178:36 170 Cumulative and Comprehensive Subject Matter Index Volumes 171–180

Algal species used in standard toxicity Ammoniation, aflatoxin hazard reduction, testing, 178:34 171:139 ff. Algal toxicity testing, test media, 178:28 Ammoniation, aflatoxin-related break- Aliphatic dithiophosphates, photochemis- down products (fig.), 171:152 try, 172:195 Ammoniation, aflatoxins reduction meth- Aliphatic thiophosphates, photochemistry, ods, 171:147 172:156 Ammoniation, corn aflatoxin decontami- Alkyl N-arylcarbamate hydrolysis, 175: nation efficacy, 171:150 112 Ammoniation, effect on aflatoxin chemis- Allethrin, dimer formation in alkaline hy- try, 171:151 drolysis, 175:94 Ammoniation, feeding studies of afla- Allethrin, hydrolytic profile, 175:192 toxin-contaminated feeds, 171:160 Alloxidim sodium, Beckmann rearrange- Amphibians, arsenic effects, 180:144 ment, 175:154 Ampicillin resistant bacteria, 171:23 Alumina aging in soils, 178:4 Anabaena flos-aquau (alga), toxicity test- Amide herbicides, structures & hydrolytic ing, 178:34 profiles, 175:194 Anaerobic degradation pathway, acridine, Amide hydrolysis mechanisms, 175:100 173:45 Amide pesticide hydrolysis, kinetics mech- Anaerobic packed-bed bioreactor, Cr(VI) anisms, 175:99 water remediation, 178:145 Amide pesticides, Classes 1, 2, and 3 hy- Analytical methods, hair trace element drolysis, 175:101 contamination, 175:63, 65 Amidosulfuron, hydrolytic profile, 175: Analytical methods, house dust contami- 224 nants, 175:13 Amino acids, chlorine effects, 171:6 Analytical methods, pesticide trace Aminoglycosides, mechanisms of action, amounts, 175:80 171:39 Animal growth promoters, arsenic, 180:2 Amitraz, hydrolytic profile, 175:232 Animal nutrition, essential elements de- Ammonia, effect on feed composition/ani- fined, 177:2 mal performance, 171:157 Anodic stripping, hair trace element analy- Ammonia treatment of aflatoxin-contami- sis, 175:65 nated cottonseed, 171:148 Antagonism, fipronil , 176:5 Ammonia-aflatoxin reaction products, Antarctic coast, anthropogenic metal pol- feed concentrations, 171:155 lutant biomonitoring, 171:80 Ammonia-aflatoxin reaction products, Antarctic cold waters, salinity, 171:58 toxic potential, 171:156, 160 Antarctic freshwater ecosystems, trace Ammonia-aflatoxin reaction products, tox- metals, 171:93 icity, 171:153, 160 Antarctic lichens, baseline trace metal lev- Ammonia-aflatoxin reaction products, tox- els, 171:87, 92 icological properties, 171:160 Antarctic marine ecosystems, 171:57 Ammonia-treated aflatoxin-contaminated Antarctic mosses, elemental compositions, feeds, mutagenic potentials, 171:167 171:89, 92 Ammoniated cottonseed, interstate ship- Antarctic organisms, trace metals, 171:53 ment illegal, 171:149 ff. Ammoniated cottonseed, states permitting Antarctic terrestrial ecosystems, trace met- use, 171:149 als, 171:85 Ammoniation, aflatoxin decontamination Antarctic terrestrial fauna, identified, 171: safety, 171:157 86 Cumulative and Comprehensive Subject Matter Index Volumes 171–180 171

Antarctic terrestrial flora, identified, 171: Aquatic invertebrates, ChE biomarker OP 86 exposure, 172:23 Antarctic trace metals in circumpolar bio- Aquatic organisms, avermectin effects, monitoring, 171:53 ff. 171:125 Anthelmintics, veterinary soil contami- Aquatic organisms, CBRs, 173:2 nants, 180:29 Aquatic organisms, contaminant residues, Anthracene, PAH, 179:75 173:1 ff. Anthropogenic metal pollutants, biomoni- Aquatic organisms, exposure vs toxicolog- toring Antarctic coast, 171:80 ical effects, 173:4 Anthropogenic processes, heavy metals in Aquatic toxicity, veterinary medicines, soils, 177:4 180:44 ff. Antibacterials, toxicity Daphnia magna, Aquatic toxicity, veterinary pesticides, 180:71 180:44 ff. Antibacterials, veterinary soil contamina- AQUIRE database, website address, 173: nats, 180:29 48 Antibiotic/chlorine interaction, resistant Archeaobacteria, dominant in extreme en- bacteria, 171:21 vironments, 173:137 Antibiotic resistance, bacteria, 171:19 Aromatic phosphates, organophosphate Antibiotic resistance in bacteria, 171:1 ff. photochemistry, 172:152 Antibiotic resistance in bacteria, UV use, Aromatic thiophosphates, photochemistry, 171:34 172:156 Antibiotic-resistant coliforms, sewage ef- Arsenic contamination, phytoremediation fluent, 171:23, 24, 36 gold site, 180:141 Antibiotic-resistant fecal coliforms, sew- Arsenic, effects amphibians, 180:144 age plant, 171:25, 37 Arsenic, effects birds, 180:146 Antibiotics, mechanisms of action in bac- Arsenic, effects domestic animals, 180: teria, 171:39 143 Antimony, house dust concentrations, Arsenic, effects domestic animals, 180: 175:30 148 Apatite, adsorption of heavy metals, 177: Arsenic, effects freshwater fishes, 180: 21 144 APHA, American Public Health Associa- Arsenic, effects freshwater invertebrates, tion, 178:34 180:143 Aquaculture medicines, environmental Arsenic, effects human health, 180:152 pathways, 180:13 Arsenic, effects mammals, 180:148 Aquaculture medicines, veterinary, 180: Arsenic, effects marine fish, 180:145 12 Arsenic effects, sensitive species, 180:142 Aquatic biota, proposed arsenic criteria, Arsenic, effects terrestrial invertebrates, 180:157 180:146 Aquatic ecosystems, contaminated sedi- Arsenic, effects terrestrial plants, 180:145 ment effects, 174:4 Arsenic, environmental contamination, Aquatic environment, abiotic pesticide hy- 180:133 ff. drolysis, 175:79 ff. Arsenic, feed additives for livestock, 180: Aquatic half-lives, pesticides, 175: 158 190–233 Arsenic, gold mining sources, 180:133 Aquatic half-lives, pyrethroids, 174:52 Arsenic, groundwater contamination, gold Aquatic invertebrates, bioindicators of en- mining, 180: 134 vironmental pollution, 172:23 Arsenic hazards to humans, 180:133 ff. 172 Cumulative and Comprehensive Subject Matter Index Volumes 171–180

Arsenic, health effects humans, 180:143 Atomic absorption spectrometry, hair Arsenic, historical human disease treat- trace element analysis, 175:65 ments, 180:135 Atomic absorption spectrometry, house Arsenic, house dust concentrations, 175: dust contaminant analysis, 175:14 29 ATP formation, chlorine effects, 171:8 Arsenic, human diseases caused, 180:136 Atrazine, hydrolytic profile, 175:230 Arsenic, in biota near gold extraction, Atropisomer of methylsulfonyl-PCBs, 180:137 173:91 Arsenic, lethal/sublethal effects various Atropisomers of PCBs, chiral PCBs, 173: plants, 180:143 91

Arsenic levels, biota & abiota near gold Avermectin B1, known as abamectin, 171: mining (table), 180:138 112 Arsenic levels, international gold mining, Avermectin complex, four major compo- 180:138 nents, 171:112 Arsenic, occurrence in gold ore, 180:133 Avermectin, earthworm effects, 171:121, Arsenic poisoning, acute episodes de- 123 scribed, 180:154 Avermectin, environmental breakdown/ Arsenic poisoning, mammals (detailed ta- fate, 171:113 ble), 180:154 Avermectin, physicochemical properties, Arsenic poisoning, subacute episodes, 171:113 180:154 Avermectin, soil-inhabiting invertebrate Arsenic, proposed criteria environmental effects, 171:120 protection, 180:156 Avermectins, aquatic organisms effects, Arsenic, proposed criteria human protec- 171:125 tion, 180:156 Avermectins, bird toxicity, 171:126 Arsenic, risks to human health, 180:135 Avermectins, chemistry and fate, 171:112 Arsenic, soil contaminant sources, 177:3 Avermectins, effects on dung/organic mat- Arsenic tailings, fish avoidance, 180:153 ter breakdown, 171:122 Arsenic trioxide, atmospheric from gold Avermectins, effects on plants, 171:125 ore roasting, 180:134 Avermectins, environmental impact, 171: Arsenic, various valences from gold min- 111 ff.. ing, 180:134 Avermectins, environmental risk assess- Arsenopyrite, arsenic source in gold ore, ment, 171:127 180:133 Avermectins, mammalian toxicity, 171: Aryl N-alkylcarbamate hydrolysis, 175: 126 113 Avermectins, mode of action, 171:112 Aryloxyalkanoate herbicides, hydrolysis, Avermectins, sediment-inhabiting organ- 175:91 isms effects, 171:125 Aryloxyalkanoate herbicides, structures & Avermectins, soil antimicrobial effects, hydrolytic profiles, 175:190 171:124 Asana®, esfenvalerate, 174:117 Avermectins, uses, 171:112 Aspergillus flavus, source of aflatoxins, Avermectins, vertebrate toxicity, 171:126 171:139 Avermectins, wildlife effects, 171:126 Aspergillus parasiticus, source of aflatox- Azaarene toxicity, 173:39 ff. ins, 171:139 Azaarenes, biotransformation and toxicity, ASTM, American Society for Testing and 173:52 Materials, 178:34 Azaarenes, carcinogenicity, 173:62 Atmospheric arsenic trioxide, gold ore Azaarenes, chronic effect different species roasting, 180:134 (graph), 173:54 Cumulative and Comprehensive Subject Matter Index Volumes 171–180 173

Azaarenes, chronic toxicity, 173:52 Bacterial chlorine tolerance, previous chlo- Azaarenes, defined, 173:40, 42 rination effect, 171:17 Azaarenes, direct toxicity, 173:48 Bacterial endosymbionts, Acanthamoeba, Azaarenes, genotoxicity, 173:62 180:98

Azaarenes, Kow related to baseline toxic- Bacterial mechanisms of resistance to anti- ity, 173:48 biotics, 171:40 Azaarenes, metabolites in the environ- Bacterial resistance, antibiotics vs disin- ment, 173:47 fectants, 171:38 Azaarenes, photo-products affect photo- Bacterial resistance, chlorine, 171:9 synthesis of marine diatom, 173:61 Bacterial resistance to antibiotics, UV Azaarenes, photochemical reactions, use, 171:34 mechanisms & kinetics, 173:53 Bacterial resistance to chlorine and antibi- Azaarenes, photochemical transformation, otics, 171:19 173:53 Bacterial tolerance, chlorine, 171:9 Azaarenes, photoenhanced toxicity, 173: Bacterial tolerance to UV light, 171:30 59 Baltic Sea (southern), ecosystem changes, Azaarenes, phototoxic effects, 173:53 179:1 ff. Azaarenes, risk assessment, 173:69 Baltic Sea, a brackish water sea, 179:2 Azaarenes, teratogenicity, 173:66 Baltic Sea drainage area (map), 179:3 Azaarenes, toxic effects several to differ- Baltic Sea, heavy metal input sources, ent species (graph), 173:51 179:17 Azaarenes vs homocyclic PAHs, compara- Baltic Sea, oxygen content changes, 179: tive toxicity, 173:67 10 Azaarenes with more than three aromatic Baltic Sea, PCB sediment levels, 179:22 rings, microbial degradation, 173:46 Baltic Sea, persistent organic pollutants, Azimsulfuron, hydrolytic profile, 175:224 179:17 Azinphos-ethyl photoproducts, 172:212 Baltic Sea, salinity changes, 179:10 Azinphos-methyl photoproducts, 172:210 Baltic Sea, salt content variations, 179:2 Azinphos-methyl, sublethal AChE inhibi- Baltic Sea, sea level increases, 179:9 tion aquatic organisms, 172:46 Baltic Sea vs Gulf of Gdan´sk, compari- Azoxystrobin, hydrolytic profile, 175:232 sons, 179:6 Baltic Sea water residence time, 179:2 Bacteria, capsule-producing, chlorine tol- BARTTM (Biological Activity Reaction erance, 171:11 Tests), 173:124, 131 Bacteria, chlorine tolerance by surface at- Bathochromic effect, photochemistry de- tachment, 171:12 fined, 172:134 Bacteria, increasing resistance via UV/ Bayonet high-pressure mercury arc, de- chlorination, 171:1 ff. scribed, 172:145, 146 Bacteria, methyl bromide biodegradation, Baythroid®, cyfluthrin, 174:73 177:61 BCFs (bioconcentration factors), defined, Bacteria, slime layer-producing, chlorine 174:3 tolerance, 171:11 BCFs, pyrethroids, 174:52, 54 Bacterial aggregation, chlorine exposure, BChE (), biomarker 171:12 of OP exposure, 172:22 Bacterial chlorine resistance, 171:2 BChE activity, -exposed lizards, Bacterial chlorine tolerance, intracellular 172:43 defenses, 171:19 Beckmann rearrangement, alloxidim so- Bacterial chlorine tolerance, lab precau- dium, 175:154 tions, 171:13 Benomyl, hydrolysis pathway, 175:118 174 Cumulative and Comprehensive Subject Matter Index Volumes 171–180

Benomyl, hydrolytic profile, 175:200 Bioaccumulation, cadmium in Antarctic Bensulfuron methyl, hydrolytic profile, food webs, 171:64 175:224 Bioaccumulation, fipronil, 176:17 Benzacridines, mutagenicity, 173:65 Bioaccumulation, mercury in pelagic sea- Benzenehexachloride (BHC)(HCH), world birds/marine mammals, 171:69 emission, 173:93 Bioaccumulation, PFOS (perfluorooctyl Benzoin ester formation, pyrethroid hydro- sulfonate) in fish, 179:109 lysis, 175:97 Bioaccumulation, sediment contaminants, Benzoquinoline (illus.), 173: 174:3 47 Bioaugmentation, pesticide contaminated Benzoquinolines & metabolites, mutage- soils, 177:170 nicity, 173:64, 65 Bioavailability, metals in soils, defined, Benzoquinolines, genotoxicity, 173:63 178:1 Benzoquinolines, metabolic routes, 173: Biobeds, disposal pesticide spray spills, 44 177:149 Benzoylprop-ethyl, hydrolytic profile, Bioconcentration factors (BCFs), defined, 175:194 174:3 Benzoylurea herbicides, structures & hy- Bioconcentration factors (BCFs), fenvaler- drolytic profiles, 175:198 ate, 176:148 Benzoylurea , hydrolysis, 175: Bioconcentration factors (BCFs), pyre- 107 throids, 174:52, 54 Benzo[a]anthracene (PAH), from coke Bioconcentration factors, PFOS/PFOA, production, 174:13 179:115 Benzo[a]pyrene (BaP), house dust concen- Bioconcentration, PFOS (perfluorooctyl trations, 175:24 sulfonate) in fish, 179:111 Benzo[a]pyrene (PAH), from coke produc- Biofilms, chromium remediation in waste- tion, 174:13 water, 178:142 Benzo[a]pyrene, PAH, 179:75 Biological Activity Reaction Tests Benzo[b]fluoranthene, PAH, 179:75 (BARTTM), 173:124, 131 Benzo[k]fluoranthene, PAH, 179:75 Biomonitor vertebrates, ranked for utility, Benz[a]anthracene, PAH, 179:75 176:113 Beryllium, house dust concentrations, Biomonitor vertebrates, ranked for vulner- 175:30 ability to contaminants, 176:115 BHC (HCH), world emission, 173:93 Biomonitoring OP exposure, aquatic envi- Bifenazate, hydrolytic profile, 175:232 ronments, 172:42 Bifenthren, physicochemical properties, Bioremediation technology, Cr(VI) in 174:52 soils, 178:144 Bifenthrin, abiotic chemical properties, Biostimulation, pesticide contaminated 174:68 soils, 177:178 Bifenthrin, aerobic soil degradation, 174: Biosuper effect, sulfur microbial oxida- 73 tion effect soil, 177:12 Bifenthrin, biotic chemical properties, Biotic coupling, manganese oxidation of 174:72 Cr(III), 178:121 Bifenthrin, hydrolysis in water, 174:71 Biotransformation, PFAS, 179:111 Bifenthrin, hydrolytic profile, 175:192 Bird toxicity, avermectins, 171:126 Bifenthrin, photolysis on soil, 174:71 Birds, arsenic effects, 180:146 Bifenthrin, physicochemical properties, Birds, behavioral disturbances OP expo- 174:52, 66 sure, 172:37 Bifenthrin, soil sorption partition coeffi- Birds, blood ChE & CbE biomarkers OP cients, 174:69 exposure, 172:37 Cumulative and Comprehensive Subject Matter Index Volumes 171–180 175

Birds, ChE recovery times OP exposure, Bumblebee larvae, spinosad toxicity, 179: 172:26 51 Birds, fipronil toxicity, 176:32 Butamifos, hydrolytic profile, 175:220 Birds, proposed arsenic criteria, 180:157 Butox®, deltamethrin, 174:95 Birds, range of OP toxicity studies, 172: Butyrylcholinesterase (BChE), biomarker 36 of OP exposure, 172:22 Bismuth, house dust concentrations, 175: 30 Cadmium, algal toxicity (table) , 178:38 Black plug layering consortium (micro- Cadmium, bioaccumulation field crops, bial), 173:137 177:2 Black River, brown bullheads liver le- Cadmium, bioaccumulation in Antarctic sions, 174:13 food webs, 171:64 Black River, PAH-sediment remediation, Cadmium, concentration in fertilized/un- 174:12 fertilized soils Australia, 177:19 Blood cholinesterases (ChE), biomarker Cadmium concentrations, Antarctic fish, OP exposure, 172:22 171:53 ff., 63 Boiling points, indoor pollutants (table), Cadmium concentrations, seabirds South- 175:2 ern Ocean, 171:67 Boltzmann’s constant, abiotic pesticide hy- Cadmium fixation in soils, 178:5 drolysis, 175:83 Cadmium, house dust concentrations, Bone formation, teleosts, 172:10 175:29 Bone tissue, composition, 172:10 Cadmium, occupational hair levels, 175: Boranes, polychlorinated, chiral insecti- 58 cide, 173:91 Cadmium, soil accumulation from fertiliz- Boron, house dust concentrations, 175: ers, 177:14 29 Cadmium, soil contaminant sources, 177:3 Brackish water, Baltic Sea, 179:2 Cadmium transfer to birds/seals breeding Brain AChE vs serum ChE activity, liz- in Antarctica, 171:77 ards OP-exposed, 172:51 Calcitonin, teleost-secreted, 172:5 Bromine residues, above-ground plant tis- Calcium dihydrogen phosphate, fertilizer, sues, methyl bromide, 177:66 177:11 Bromine residues, edible plant parts, Calcium monohydrogen phosphate, fertil- methyl bromide, 177:67 izer, 177:11 Bromine residues, plant seedlings, methyl Calcium/phosphate regulation, pesticide bromide, 177:66 effects teleosts, 172:8 Bromine residues, soils/plants from Cancer, various forms arsenic-related, methyl bromide fumigation, 177:62, 180:136 64 Capsule-producing bacteria, chlorine toler- Bromine vs chlorine, ozone breakdown ef- ance, 171:11 ficiency, 177:47 Captafol, hydrolytic profile, 175:204 Bromocyclen, chiral insecticide, 173:91 Captan, hydrolytic profile, 175:204 Bromomethane, see methyl bromide, 177: Carassius auratus, chlorinated tissue resi- 46 dues, 173:12 Bromophos, hydrolytic profile, 175:208 pesticides, hydrolysis kinetics Buffer, abiotic pesticide hydrolysis, 175: mechanisms, 175:108 84 Carbamate pesticides, structures & hydro- Buffer catalysis, pesticide hydrolysis in lytic profiles, 175:200 aquatic systems, 175:164 Carbamate potentiation, by OPs, 172:39 Bumblebee adults, spinosad toxicity, 179: , acid and alkaline hydrolysis 43 mechanisms, 175:110 176 Cumulative and Comprehensive Subject Matter Index Volumes 171–180

Carbaryl, hydrolytic profile, 175:200 Cellular oxygen uptake, chlorine effects, Carbazole & homocyclic analog fluorene 171:7 (illus.), 173:41 Cellular uptake, chlorine effects, 171:6 , degradation by photo-Fenton Cephalosporins, mechanisms of action, process, 177:160 171:39 Carbofuran, hydrolytic profile, 175:200 Chamber methods, methyl bromide volatil- Carbonate apatite, phosphate fertilizer, ization, 177:83 177:11 Charcoal tubes, methyl bromide adsor- Carboxin, hydrolytic profile, 175:196 bent, 177:57 Carboxylesterase (CbE), role in OP toxic- ChE (blood cholinesterases), biomarker of ity, 172:31 OP exposure, 172:22 Carboxylic esters, hydrolysis, 175:90 ChE, biomarker of OP exposure, aquatic Carcinogenicity, azaarenes, 173:62 invertebrates, 172:23

Carcinogenicity, chromium, 178:59 ChE I50s, OP concentrations various wild- Carcinogenicity, DINP, 172:108 life (table), 172:28 Carcinogenicity, fipronil, 176:35, 45 ChE inhibition, sublethal OP levels Carfentrazone hydrolysis, 175:162 aquatic organisms, 172:44 Carfentrazone, hydrolytic profile, 175:232 ChE measurements, aquatic invertebrates Cartap, hydrolysis pathway, 175:119 (table), 172:24 Cartap, hydrolytic profile, 175:200 ChE recovery times, OP exposure aquatic CAS chemical registration numbers, see invertebrates, 172:25 Chemical Abstract regis nos, 174:66 ChE recovery times, OP exposure birds, CAS numbers, chiral pesticides, 173:107 172:26 CAS numbers, drugs (table), 180:76 ChE recovery times, OP exposure fish, CAS numbers, organophosphate insecti- 172:25 cides, 172:215 ChE recovery times, OP exposure non- CAS numbers, pesticide list, 177:183 mammalian vertebrates , 172:25 CAS numbers, pesticides veterinary use ChE recovery times, OP exposure rep- (table), 180:76 tiles, 172:26 CAS numbers, veterinary medicines (ta- Chelators, effect in algal toxicity testing, ble), 180:76 178:30 Cation exchange capacities (CECs), soils, Chemical Abstracts registration numbers, 178:4 pyrethroids, 174:66, 73, 82, 95, 117, CbE (carboxylesterase), role in OP toxic- 125, 139, 151 ity, 172:31 Chemical Abstracts Service Registery CbE activity, parathion-exposed lizards, numbers, OP insecticides, 172:215 172:43 Chemical classes, modes of action, 173:8 CBR approach, uncertainties, 173:6 Chemical names, drugs (table), 180:76 CBR defined, 173:2 Chemical names, organophosphate insecti- CBR determinants, 173:10 cides, 172:215 CBR evaluation, methodology, 173:6 Chemical names, pyrethroids, 174:66, 73, CBR variability, 173:9 82, 95,117, 125, 139, 151 CBRs (Critical Body Residues), 173:2 Chemical names, veterinary medicines (ta- CBRs, acute/chronic toxicity of chemical ble), 180:76 classes, aquat organ, 173:5 Chemical properties, pyrethroids, 174:49 CBRs, ranges affecting survival, 173:27 ff. CCU (urea herbicide), hydrolytic profile, Chemical reactivity, chromate ion, 178:57 175:198 Chemical structure, triclopyr, 174:20 CECs (See cation exchange capacities, Chemical structures, fenvalerate & esfen- 178:4 valerate, 176:139 Cumulative and Comprehensive Subject Matter Index Volumes 171–180 177

Chemical warfare agents, National Re- trans-Chlordane, IUPAC chemical name, search Council (NRC) Review, 172: 173:107 71 Chlordane compounds, chiral insecticides, Chemical warfare agents, oral reference 173:90, 94 doses, 172:65 ff. Chlordane compounds, stereochemical Chemical warfare agents, RfDs & total un- recognition, 173:103 certainty factors (UFs), 172:68 Chlordane, house dust concentrations, Chemical warfare agents, toxicological cri- 175:19 teria for RfDs, 172:80 Chlordane-cis, chiral insecticide, 173:90, Childhood exposure, diisononyl phthalate, 97, 104 172:111 Chlordane-trans, chiral insecticide, 173: Chiral compounds, enrichment processes, 90, 98, 104 173:105 Chlordimeform, hydrolytic profile, 175: Chiral compounds, ERs in different com- 232 partments, 173:93 Chlorella pyrenoidosa (alga), Cu & Pb Chiral compounds, mirror image struc- testing, 178:28 tures, 173:92 Chlorella vulgaris (alga), toxicity testing, Chiral compounds, shielding from the ra- 178:34, 37 cemate, 173:104 , hydrolytic profile, 175: Chiral PCBs, 173:91 212 Chiral pesticides, constant enantiomer Chlorfenvinphos photoproducts, 172:153 fraction, 173:101 Chlorimuron ethyl, hydrolytic profile, Chiral pesticides, enantiomeric enrich- 175:224 ment in environ, 173:85 ff. Chlorinated pesticides, fish, 179:27 Chiral pesticides, enrichment processes, Chlorination, increasing resistance in bac- 173:105 teria, 171:1 ff. Chiral pesticides, list, 173:90 Chlorine/antibiotic resistance in bacteria, Chiral pesticides, racemic mixture devia- 171:19 tions, 173:100 Chlorine, bacterial resistance, 171:2 Chiral pesticides, shielding from the race- Chlorine, bacterial tolerance or resis- mate, 173:104 tance?, 171:9 Chiral pesticides, worldwide use, 173:86 Chlorine disinfection today, 171:25 Chlamydomonas reinhardii (alga), pH ef- Chlorine, dosages used for various appli- fects Cu toxicity, 178:30 cations (table), 171:3 Chloramphenicol, mechanisms of action, Chlorine, effect on amino acids, 171:6 171:39 Chlorine, effect on ATP formation, 171:8 Chloramphenicol resistant bacteria, 171: Chlorine, effect on cellular uptake, 171:6 21, 23 Chlorine, effect on DNA, 171:8 cis-Chlordane, CAS number, 173:107 Chlorine, effect on membrane permeabil- cis-Chlordane, chiral insecticide, 173:90, ity, 171:6 97, 104 Chlorine, effect on sulfhydryl enzymes, cis-Chlordane, enantiomer structures, 173: 171:6 92 Chlorine, history in water disinfection, cis-Chlordane, IUPAC chemical name, 171:2 173:107 Chlorine, mechanisms of action, 171:4, 5 trans-Chlordane, CAS number, 173:107 Chlorine, mechanisms of tolerance bacte- trans-Chlordane, chiral insecticide, 173: ria, 171:10 90, 98, 104 Chlorine, promotes bacterial aggregation, trans-Chlordane, enantiomer structures, 171:12 173:92 Chlorine resistance, bacteria, 171:19 178 Cumulative and Comprehensive Subject Matter Index Volumes 171–180

Chlorine tolerance, bacteria attach to sur- Chromium (III), chemistry, 178:57 faces, 171:13 Chromium (III), oxidation rate by γ- Chlorine tolerance, bacterial antecedent MnOOH, 178:102 growth, 171:14 Chromium (III), threshold permissible lev- Chlorine tolerance, encapsulated bacteria, els in soils, 178:78 171:11 Chromium (V), accumulation in Cr(VI) re- Chlorine tolerance, previous exposure ef- duction to Cr(III), 178:119 fects, 171:17 Chromium (VI), bioremediation technol- Chlorine, use as disinfectant, 171:4 ogy, 178:144 Chlorine, used as disinfectant by nature, Chromium (VI), chemistry, 178:57 171:3 Chromium (VI) direct reduction, micro- Chlorine-resistant bacteria, mechanisms of bial, 178:104 tolerance, 171:10 Chromium (VI), factors affecting soil solu- Chlormephos photoproducts, 172:196 tion, 178:72 Chloropicrin, added warning agent in Chromium (VI) reductases, bacteria, 178: methyl bromide, 177:49 118 Chloropicrin, methyl bromide replace- Chromium (VI) reduction, list of capable ment, 177:107 microbes, 178:106 Chloroxuron, hydrolytic profile, 175:198 Chromium (VI) reduction microbes, list, Chlorpropham, hydrolytic profile, 175:200 178:106 , house dust concentrations, Chromium (VI) reduction, microbial aero- 175:19, 21 bically, 178:106 Chlorpyrifos, hydrolytic profile, 175:212 Chromium (VI) reduction, microbial an- Chlorpyrifos, metabolic pathway (diag.), aerobically, 178:106 172:3 Chromium (VI), soil adsorption, 178:74 Chlorpyrifos, metabolite chemical struc- Chromium (VI), threshold permissible lev- tures, 172:3 els in soils, 178:78 Chlorpyrifos methyl, hydrolytic profile, Chromium (VI) tolerance, microbes, 178: 175:212 103 Chlorpyrifos oxon, 172:3 Chromium (VI) transformation to non- Chlorpyrifos photoproducts, 172:185 toxic Cr(III), 178:94 Chlorpyrifos, sublethal AChE inhibition Chromium (VI)-tolerant bacteria, 178:125 aquatic organisms, 172:44 Chromium, adsorption/desorption, soils,

Chlorpyrifos-oxon I50s, ChE fish, 172:29 178:70 Chlorsulfuron, hydrolytic profile, 175:224 Chromium, anthropogenic sources, 178: Chlorthion, hydrolytic profile, 175:208 95 Chlozolinate, hydrolytic profile, 175:204 Chromium, carcinogenicity, 178:59 Cholinesterase-inhibiting pesticides, utility Chromium chemistry, soils, 178:53 ff. index & score, 176:82, 86 Chromium, commercial uses, 178:54 Cholinesterase-inhibiting pesticides, verte- Chromium cycle in soil and water (dia- brate vulnerability index, 176:81, 83, gram), 178:60 87 Chromium, effects on enzymes in soils, Chromate ion, chemical reactivity, 178:57 178:138 Chromate-contaminated soil/water, reme- Chromium, effects on microbial processes diation, 178:77 in soils (table), 178:133 Chromate-contaminated soils, remediation Chromium, effects on nitrogen fixation in technologies, 178:79 soil, 178:139 Chromite, only major commercial prod- Chromium, effects on pure cultures, mi- uct, 178:95 croorgs (table), 178:133 Cumulative and Comprehensive Subject Matter Index Volumes 171–180 179

Chromium, effects on reductive dechlori- Chromium sequential extraction scheme, nation in soil, 178:140 Chinese soils, 178:63 Chromium, effects on soil dehydrogenase Chromium, soil contaminant sources, activity, 178:132 177:3 Chromium, effects on soil microbial com- Chromium, soil mobility, water solubility, munities, 178:130 178:97 Chromium, effects on soil respiration, Chromium, soil organic matter effects, 178:139 178:97 Chromium extraction, serpentine soils, Chromium, soil solution chemistry, 178: 178:62 67 Chromium extraction, sludge, 178:62 Chromium, solid-phase speciation, 178:61 Chromium genotoxicity, 178:59 Chromium, stable oxidation states, 178:55 Chromium, house dust concentrations, Chromium, thermodyn stability, aqueous 175:29 species (diag), 178:68 Chromium, in soil solution, 178:67 Chromium toxicity, algae, 178:129 Chromium, in tannery waste sites, 178:53 Chromium toxicity, animals, humans, ff. 178:58 Chromium, industrial consumption, 178: Chromium toxicity, fungi, 178:127 96 Chromium toxicity, general, 178:58 Chromium, inhibitory effects on soil nitri- Chromium toxicity, microorganisms, 178: fication, 178:139 126, 128 Chromium, iron effects on oxidation, Chromium toxicity, mycorrhizal fungi, 178:98 178:127 Chromium, irreversible reduction, Cr(VI) Chromium toxicity, plants, microorgan- to Cr(III), 178:78 isms, 178:58 Chromium, manganese effects on oxida- Chromium transformation in soil, factors tion, 178:99 governing, 178:97 Chromium, natural sources, 178:95 Chromium transformation in soil, microbe Chromium, occupational hair levels, 175: factors, 178:103 58 Chromium, various forms, 178:95 Chromium, organically complexed solubil- Chromium, water solubility, 178:97 ity, 178:69 Chromium-contaminated soils, microor- Chromium, oxidation of Cr(III) to Cr(VI), ganism remediation, 178:93 ff. 178:71 Chromium-contaminated soils, sources, Chromium oxidation reactions, soil, 178: 178:94 98 Chromium-contaminated water & soils, re- Chromium oxidation, soil type effects, mediation, 178:141 178:100 Chromium-microorganism interactions, Chromium, partitioning & mobility, 178: soil, 178:93 ff. 66 Chromophores, spectral absorption max- Chromium partitioning, sludge/soils, 178: ima (table), 172:136 63 Chromosome aberrations, DINP, 172:108 Chromium, priority pollutant, 178:94 Chronic toxicity, fipronil mammals, 176: Chromium, reduction potential diagram, 34 178:56 Chrysene, PAH, 179:75 Chromium remediation in soils, 178:143 CIRAD-GERDAT-PRIFAS, fipronil tests, Chromium remediation in wastewater, 176:40 178:141 Circumpolar biomonitoring networks, Chromium salts, 178:54 171:53 ff. 180 Cumulative and Comprehensive Subject Matter Index Volumes 171–180

Cislin®, deltamethrin, 174:95 Contact lenses, history of development, Clams, trace metals Antarctica, 171:83 180:119 Class 1 and 2 pyrethroids, hydrolysis, Contact lenses, types, 180:120 175:95 Container and packaging (pesticide) dis- Cleanup of pesticide contaminated soils, posal, 177:142 177:161 Contaminant effects, aquatic organisms, CNS seizure agents, CBRs, 173:5 173:1 ff. CNS seizure agents, defined, 173:2 Contaminated sediment, aquatic environ- CNS seizure agents, mode of action, 173: ment effects, 174:2 8 Contaminated sediment remediation, 174: CNS seizure agents, tissue residues, 173: 1 ff. 19 Contaminated sediment removal, dredg- Coastal benthic invertebrates, trace metal ing, 174:10 levels (Ross Sea), 171:75 Contaminated sediments, aquatic ecosys- Coastal benthic organisms, trace metal lev- tem effects, 174:4 els, 171:73 Cooking ware, hair trace element contami- Cobalt fixation in soils, 178:6 nation, 175:55 Cobalt, house dust concentrations, 175: Copper concentrations, Antarctic fish, 30 171:53 ff., 63 Cobalt, occupational hair levels, 175:58 Copper fixation in soils, 178:5 Coke production, PAH source, 174:12 Copper, occupational hair levels, 175:58 Collagen content, fish response to pesti- Copper, soil contaminant sources, 177:3 cides, 172:12 Copper toxicity, earthworms, 178:10 Commission on Agrochemicals and the Cosmetics, hair trace element contamina- Environment, 177:125 tion, 175:59 Common names, terrestrial vertebrates, Cotton glove, house dust press sampling, 176:70 175:10 Common names,organophosphate insecti- Cottonseed, aflatoxins Arizona monitoring cides, 172:215 results, 171:146 Comparative toxicity, azaarenes vs homo- Cottonseed, ammonia treatment of afla- cyclic PAHs, 173:67 toxin-contaminated, 171:148 Complexation affinity, metal cations by , hydrolytic profile, 175:212 organic matter (diagram), 177:7 Coumaphos photoproducts, 172:192 Composting, pesticide contaminated soils, Crayfish, bioindicators of water pollution, 177:166 172:23 Consortial microbial events, deep sea rus- Critical Body Residues (CBRs), 173:2 ticles, 173:117 ff. Croococcus paris (alga), zinc toxicity test- Consortial nature of microbial events, Ti- ing, 178:37 tanic, 173:117 ff. Cross-resistance (insect), fipronil, 176:3, Contact lens wearers, risk factors kerati- 52 tis, 180:122 Culture media, algal toxicity testing, 178: Contact lenses, Acanthamoeba keratitis as- 28 sociation, 180:119 Cyanazine, hydrolytic profile, 175:230 Contact lenses, age distribution of users, Cyanofenphos, hydrolytic profile, 175: 180:120 220 Contact lenses, demographics of use, 180: Cyanogen chloride, RfDs & UFs, 172:68 119 photoproducts, 172:180 Contact lenses, eye disease association, Cyclic dicarboximide fungicides, hydroly- 180:119 sis pathways, 175:122 Cumulative and Comprehensive Subject Matter Index Volumes 171–180 181

Cyclic dicarboximide fungicides, struc- 2,4’-DDD, chiral insecticide, 173:91 tures & hydrolytic profiles, 175:204 p,p’-DDT, hydrolytic profile, 175:206 Cyclic dicarboximide pesticides, hydroly- DDT, herring, Baltic Sea, 179:28 sis mechanisms, 175:120 DDT, house dust concentrations, 175:19 Cyclotella sp. (alga), toxicity testing, 178: DDT residues, mummichogs, 173:21 34 DDT-contaminated sediment, Great Cyfluthrin, abiotic chemical properties, Lakes, 174:12 174:77 Decis®, deltamethrin, 174:95 Cyfluthrin, aerobic soil degradation, 174: Deet, hydrolytic profile, 175:196 80 Degradation pathway (diagram), triclopyr, Cyfluthrin, Baythroid®, 174:73 174:25 Cyfluthrin, biotic chemical properties, Degradation pathways, fenvalerate soils, 174:80 176:145 Cyfluthrin, hydrolysis, 174:77, 79 Degradation pathways, fipronil, 176:12, Cyfluthrin, hydrolytic profile, 175:192 13 Cyfluthrin, photolysis in water, 174:77, Dehalogenation, pesticide waste disposal, 80 177:151 Cyfluthrin, physicochemical properties, Dehydrogenases, chromium effects in 174:52, 73 soil, 178:132 Cyfluthrin, soil sorption partition coeffi- Deinococcus spp., radiation-resistant bac- cients, 174:78 teria, 173:134 Cyhalothrin, degradation in soil (chart), Deltamethrin, abiotic chemical properties, 174:59, 60 174:104 Cyhalothrin, hydrolytic profile, 175:192 Deltamethrin, aerobic aquatic degradation, Cypermethrin, abiotic chemical proper- 174:113, 116 ties, 174:87 Deltamethrin, aerobic soil degradation, Cypermethrin, aerobic soil degradation, 174:112 174:92 Deltamethrin, biotic chemical properties, Cypermethrin, aquatic degradation, 174: 174:111 92, 94 Deltamethrin, Butox®, Cislin®, Decis®,K- Cypermethrin, hydrolysis, 174:87, 90 Othrin®, 174:95 Cypermethrin, hydrolytic profile, 175:192 Deltamethrin, hydrolysis, 174:104, 108 Cypermethrin, photolysis in water, 174: Deltamethrin, hydrolytic profile, 175:192 87, 91 Deltamethrin, photolysis in water, 174: Cypermethrin, photolysis on soil, 174:90 106, 109 Cypermethrin, physicochemical proper- Deltamethrin, photolysis on soil, 174:110 ties, 174:52, 82 Deltamethrin, physicochemical properties, Cypermethrin, soil sorption partition coef- 174:52, 95 ficients, 174:86, 88 Deltamethrin, soil sorption partition coeffi- cients, 174:100, 103 2,4-D, house dust contaminant, 175:16 -S, hydrolytic profile, 175:212 2,4-D, hydrolytic profile, 175:190 Demeton-S sulphone, hydrolytic profile, 2,4-D, soil leaching qualities, 174:30 175:212 DANIDA report, fipronil, 176:42 Demeton-S sulphoxide, hydrolytic profile, Daphnia magna, antibacterials toxicity, 175:212 180:71 Demeton-S-methyl, hydrolytic profile, Daphnia magna, narcotic tissue residues, 175:212 173:11 Demeton-S-methyl sulphone, hydrolytic 2,4’-DDT, chiral insecticide, 173:91 profile, 175:212 182 Cumulative and Comprehensive Subject Matter Index Volumes 171–180

Denitration, new photochemical behavior, Diisononyl phthalate, environmental con- 172:173 cerns, 172:93 Dermal toxicity, fipronil, 176:35 Diisononyl phthalate, environmental lev- Des-ethyl chlorpyrifos, metabolite, 172:3 els, 172:95 Developmental toxicity, DINP, 172:106 Diisononyl phthalate, health concerns, Dialkyl phthalate (DAPs), plastic softener 172:88 uses, 172:87 Diisononyl phthalate, mode of action, , hydrolytic profile, 175:208 172:109

Diazinon I50s, ChE fish, 172:29 Diisononyl phthalate, physicochemical Diazinon photoproducts, 172:189 properties, 172:89

Diazoxon I50s, ChE fish, 172:29 Diisononyl phthalate, production & use, Dibenzacridines, mutagenicity, 173:66 172:89 Dibenz[a,h]anthracene, PAH, 179:75 Diisononyl phthalate, sources, 172:88 Dicamba, soil leaching index, 174:33 Dimer formation, allethrin alkaline hydro- Dicapthon, hydrolytic profile, 175:208 lysis, 175:94 Dicarboximide fungicides, hydrolysis , sublethal AChE inhibition pathways, 175:122 aquatic organisms, 172:45 Dicarboximide fungicides, structures & , hydrolytic profile, 175:200 hydrolytic profiles, 175:204 Dinitroaniline herbicides, chemical struc- Dicarboximide pesticides, hydrolysis tures, 175:168 mechanisms, 175:120 DINP (diisononyl phthalate), environmen- Dichloropropene (1,3-D), methyl bromide tal fate, 172:87 ff. replacement, 177:107 DINP, acute toxicity mammals, 172:101 Dichlorprop, chiral herbicide, 173:90 DINP, analytical methods, 172:93 , hydrolytic profile, 175:212 DINP, biological effects, 172:97

Dichlorvos I50s, ChE fish, 172:28 DINP, carcinogenicity, 172:108

Dichlorvos I50s, ChE fish, 172:28 DINP, childhood exposure, 172:111 Diclofop-methyl, hydrolytic profile, 175: DINP, developmental toxicity, 172:106 190 DINP, end uses (table), 172:91 Dicofol, hydrolytic profile, 175:206 DINP, endocrine modulation, 172:110 , hydrolytic profile, 175:212 DINP, environmental concerns, 172:93 Diet effect, hair trace element contamina- DINP, environmental levels, 172:95 tion, 175:54 DINP, environmental sampling tech- Diethanyl-ethyl, hydrolytic profile, 175: niques, 172:94 194 DINP, environmental transformations/fate, Diflubenzuron, hydrolysis pathways, 175: 172:96 109 DINP, exposure assessment, 172:115 Diflubenzuron, hydrolytic profile, 175: DINP, flexible PVC plasticizer, 172:91 198 DINP, hazard characterization, 172:113 Diflufenican, hydrolytic profile, 175:232 DINP, human exposure, 172:111 Diisononyl phthalate (DINP), chemistry, DINP, human health risk assessment, 172:87 ff. 172:111 Diisononyl phthalate (DINP), environmen- DINP, mammalian toxicity, 172:99 tal fate, 172:87 ff. DINP, metabolism mammals, 172:99 Diisononyl phthalate (DINP), toxicology, DINP, mode of action, 172:109 172:87 ff. DINP, mutagenicity/genotoxicity, 172: Diisononyl phthalate, analytical methods, 107 172:93 DINP, occupational exposure, 172:111 Diisononyl phthalate, end uses (table), DINP, release to environment, 172:93 172:91 DINP, reproductive effects, 172:103 Cumulative and Comprehensive Subject Matter Index Volumes 171–180 183

DINP, tolerable daily intake, 172:114 Earthworms, avermectin effects, 171:121, DINP, toxicity aquatic organisms, 172: 123 98 EBI (ergosterol biosynthesis inhibiting) DINP, toxicology, 172:97 fungicides, 172:39 DINP, toy manufacturing, 172:92 Economic impact, methyl bromide phase- DINP, uses in plastics industry, 172:87 out, 177:47 Dioxabenzophos photoproducts, 172:195 Ecosystem changes, Gulf of Gdan´sk, 179: Dioxins (PCDDs), house dust contami- 1 ff. nants, 175:27 EDTA (See ethylenediaminetetraacetic Dislodgeable residues, spinosad toxicity, acid), 178:7 179:44 EDTA, metal extraction, soils, 178:7 Disposal of unused pesticide stocks, 177: Eels, euryhaline, 172:6 134 EF (enantiomer fractions), defined, 173: Dissolved organic carbon, effects on 88 metal aging, soils, 178:5 Egyptian phosphate rock, fertilizer, 177: Dissolved organic matter, abiotic pesti- 20 cide hydrolysis, 175:86 Electrochemical fluorination, reaction de- Dithiophosphates, organophosphates pho- scribed, 179:100 tochemistry, 172:195 Electromagnetic radiation spectrum Diuron, hydrolytic profile, 175:198 (diag.), 172:130 DMPA (Zytron®), hydrolytic profile, 175: Electron transport chain, chlorine effects, 220 171:7 DNA, chlorine effects, 171:8 ELISAs (enzyme-linked immunosorbent DOC (See dissolved organic carbon), assays), house dust, 175:15 178:5 Emamectin benzoate, environmental me- Domestic animals, arsenic effects, 180: tabolites, 180:17 148 Emission comparisons, photochemical Domestic livestock, proposed arsenic crite- lamps, 172:143 ria, 180:157 Emission spectrometry, house dust con- DPSIR, identified, 179:30 taminant analysis, 175:14 DPSIR, illustrated, 179:33 Enantiomer fractions (EF), defined, 173: Dredging, removal of contaminated sedi- 88 ments, 174:10 Enantiomer fractions (EFs), chiral com- Drinking water, proposed arsenic criteria, pounds, 173:102 180:156 Enantiomeric enrichment, chiral pesticides Drinking water residues, fipronil, 176:19 in environment, 173:85 ff. Drug aquatic toxicity, 180:44 ff. Enantiomeric enrichment, methodology, Drug degradation, veterinary different sce- 173:88 narios (data), 180:37 Enantiomeric ratio (ER), defined, 173:86, Drug disposal, veterinary unwanted, 180: 88 16 Encapsulated bacteria, chlorine tolerance, Drug terrestrial toxicity, 180:63 ff. 171:11 Drugs, CAS numbers (table), 180:76 Endocrine disruption, pyrethroids, 176: Drugs, chemical names (table), 180:76 152 DTPA (See diethylenetriaminepentaacetic Endocrine modulation, DINP, 172:110 acid), 178:7 Endocrine-disrupting agents, house dust DTPA, metal extraction, soils, 178:7 contaminants, 175:26 Dung fauna, ivermectin effects, 171:117 Endocrine-disrupting effects, veterinary Dye-sensitized photooxidation, organo- medicines, 180:73 phosphate photochemistry, 172:199 Endosulfan, hydrolytic profile, 175:206 184 Cumulative and Comprehensive Subject Matter Index Volumes 171–180

Ene-type reaction, UV affects nitroaryl Esfenvalerate, chemistry & fate, 176:137 compounds , 172:162 ff. Environmental bioavailability, metals in Esfenvalerate, hydrolysis, 174:121 soils, 178:9 Esfenvalerate hydrolytic profile, 175:192 Environmental contaminants, vertebrates Esfenvalerate, photolysis in water, 174: ranked as biomonitors, 176:67 ff. 121 Environmental contamination, veterinary Esfenvalerate, photolysis on soil, 174:122 medicines data, 180:18 ff. Esfenvalerate, physicochemical properties, Environmental effects, hair trace element 174:52, 117 contamination, 175:60 Esfenvalerate, physicochemical properties, Environmental effects, perfluoroalkylated 176:138, 140 substances (PFAS), 179:99 ff. Esfenvalerate, uses, 176:141 Environmental fate, methyl bromide fumi- Essential elements, plant/animal nutrition, gant, 177:45 ff. defined, 177:2 Environmental fate processes, methyl bro- Ethametsulfuron methyl, hydrolytic pro- mide, 177:58 file, 175:224 Environmental metals risk testing, algae, Ethiofencarb, hydrolytic profile, 175:200 178:23 ff. , hydrolytic profile, 175:220 Environmental monitoring, veterinary Ethyl parathion, hydrolytic profile, 175: medicines, 180:18 ff. 208 Environmental no effect concentration, Ethylenebiscarbamate, hydrolytic profile, PAHs, 179:83 175:200 Environmental pollutants, vertebrate vul- ETox model, veterinary medicines, 180:7 nerability indices, 176:72 Euphausia superba, trace metal concentra- Environmental risk assessment, avermec- tions Southern Ocean, 171:63 tins, 171:127 EUROCAT project, marine pollution con- Enzyme-linked immunosorbent assays trol, 179:30 (ELISAs), house dust analysis, 175: Eutrophication, Baltic’s major ecological 15 problem, 179:2 EPA pesticide honeybee toxicity groups, Eutrophication, Gulf of Gdan´sk, 179:1 ff. 179:66 Excitatory agents, CBRs, 173:5 Epicuticular waxes, effects on OP photo- Excitatory agents, mode of action, 173:8 degradation, 172:182 Excitatory agents, tissue residues, 173:15 EPN, hydrolytic profile, 175:220 Excited state, photon absorption, defined, ER (enantiomeric ratio), defined, 173:86, 172:131 88 Exposure assessment, diisononyl phthal- ER, as a tracer tool in environmental stud- ate, 172:115 ies, 173:87 Exposure assessment models, veterinary Ergosterol biosynthesis inhibiting (EBI) medicines, 180:8 fungicides, procloraz & penconazole, EXTOXNET website, 172:48 172:39 Extraction methods, chromium in soil, Esfenvalerate, abiotic chemical properties, 178:62 174:121 Extrapolation, laboratory to field, OP ex- Esfenvalerate, aerobic aquatic degrada- posure, 172:39 tion, 174:127 Eye infections, Acanthamoeba keratitis, Esfenvalerate, aerobic soil degradation, 180:104 174:123, 126 Esfenvalerate, Asana®, 174:117 Famoxadone, hydrolytic profile, 175:204 Esfenvalerate, biotic chemical properties, FDA action levels, aflatoxins in animal 174:123 feeds, 171:143 Cumulative and Comprehensive Subject Matter Index Volumes 171–180 185

FDA action levels, aflatoxins in milk, Fenvalerate, photodegradation pathways, 171:144 176:147, 149 FDA, aflatoxins feedstuffs surveillance re- Fenvalerate, photolysis to decarboxyfen- sults, 171:146 valerate, 176:146 Feces contamination, veterinary medi- Fenvalerate, physicochemical properties, cines, 180:22 176:138, 140 Feeding studies, aflatoxin-ammoniation of Fenvalerate, Pydrin®, 174:117 contaminated feeds, 171:160 Fenvalerate residues, rainbow trout, 173:

Fenitrooxon I50s, ChE fish, 172:28 21 , hydrolytic profile, 175:208 Fenvalerate, sorption to sediments, 176: Fenitrothion photoproducts, 172:170 145 Fenoxaprop-ethyl, hydrolytic pathway, Fenvalerate, synthesis, 176:141, 142 175:93 Fenvalerate, uses, 176:141 Fenoxaprop-ethyl, hydrolytic profile, 175: FETAX (Frog embryo teratogenesis 190 assay–Xenopus), 172:35 Fenpropathrin, abiotic chemical proper- Field experiments, methyl bromide volatil- ties, 174:134 ization, 177:89 Fenpropathrin, aerobic aquatic degrada- Fiprole insecticides, defined, 176:2 tion, 174:138 Fipronil, acute toxicity, 176:34 Fenpropathrin, aerobic soil degradation, Fipronil, ADI, 176:46 174:136 Fipronil, adverse effects in domestic ani- Fenpropathrin, anaerobic aquatic degrada- mals, 176:44 tion, 174:139 Fipronil, aerobic soil metabolism, 176:15 Fenpropathrin, hydrolysis, 174:134 Fipronil amide, 176:14 Fenpropathrin, hydrolytic profile, 175:192 Fipronil, anaerobic aquatic metabolism, Fenpropathrin, photolysis in water, 174: 176:15 134 Fipronil, bioaccumulation, 176:17 Fenpropathrin, photolysis on soil, 174:136 Fipronil, carcinogenicity, 176:35, 45 Fenpropathrin, physicochemical proper- Fipronil, chemical structure, 176:6 ties, 174:52, 125 Fipronil, chronic toxicity, 176:34 Fenpropathrin, soil sorption, 174:129, 132 Fipronil, degradation pathway soil, 176: Fensulfothion, hydrolytic profile, 175:208 13 , hydrolytic profile, 175:208 Fipronil, degradation rates soil, 176:15 Fenthion photoproducts, 172:181 Fipronil, degradation routes rice fields, Fenuron, hydrolytic profile, 175:198 176:12 Fenvalerate, bioconcentration factors Fipronil, dermal toxicity, 176:35 (BCFs), 176:148 Fipronil desulfinyl, 176:14 Fenvalerate, biotransformation pathway, Fipronil desulfinyl, toxic photodegradate, 176:150 176:48 Fenvalerate, chemical structure(s), 176: Fipronil detrifluoromethylsulphinyl, 176: 139 14 Fenvalerate, chemistry & fate, 176:137 ff. Fipronil, developmental toxicity, 176:36 Fenvalerate, degradation pathway in soils, Fipronil, ecotoxicology, 176:1 ff. 176:145 Fipronil, effects aquatic invertebrates, Fenvalerate, fate in aqueous environ- 176:24, 25 ments, 176:144 Fipronil, effects aquatic organisms, 176: Fenvalerate, fate in soils, 176:144 23, 25 Fenvalerate, hydrolytic profile, 175:192 Fipronil, effects birds, 176:31 Fenvalerate, metabolic pathway in ani- Fipronil, effects fish, 176:25 mals, 176:150 Fipronil, effects lizards, 176:30 186 Cumulative and Comprehensive Subject Matter Index Volumes 171–180

Fipronil, effects microorganisms, 176:26 Fipronil, residues in drinking water, 176: Fipronil, effects plants, 176:26 19 Fipronil, effects terrestrial invertebrates, Fipronil, residues in food, 176:19 176:27 Fipronil, risk assessments, 176:52 Fipronil, environmental fate, 176:1 ff., 10 Fipronil, soil residues over time, 176:23 Fipronil, formulations, 176:7 Fipronil, solubility different solvents, Fipronil, genotoxicity, 176:36 176:7 Fipronil, human adverse reactions, 176:44 Fipronil, subchronic neurotoxicity, 176:35 Fipronil, human health concerns, 176:1 ff. Fipronil, subchronic toxicity, 176:35 Fipronil, human health concerns, 176:53 Fipronil sulfide, 176:14 Fipronil hydrolysis, 175:160 Fipronil sulfone, 176:14 Fipronil, hydrolysis, 176:15 Fipronil, termiticide, 176:8 Fipronil, hydrolysis degradation rates, Fipronil toxicity, birds, 176:32 176:16 Fipronil toxicity comparison, with fi- Fipronil, hydrolytic profile, 175:232 pronil-desulfinyl, 176:37 Fipronil, insect cross-resistance, 176:3, 52 Fipronil, usage/application rates, 176:7, 9 Fipronil, insects controlled, 176:8, 9 Fipronil, veterinary risks, 176:43 Fipronil, IPM compatibility, 176:38, 52 Fipronil, water half-life, 176:12 Fipronil, leaching, adsorption, desorption, Fish, arsenic effects, 180:144 176:16 Fish bone properties, xenobiotic effects, Fipronil, leaf residues over time, 176:21, 172:1 ff. 22 Fish, ChE recovery times OP exposure, Fipronil, LOCUSTOX study, 176:29, 30, 172:25 38, 40 Fish contamination, veterinary medicines, Fipronil, LOEL, 176:36 180:24 Fipronil, major degradates common/chem- Fish, monitors of PAH-contaminated sedi- ical names, 176:14 ment, 174:12 Fipronil, major degradates with structures, Fish, pesticide residues, Gulf of Gdan´sk, 176:11 179:27 Fipronil, maximum residue levels in food- Fish skeletal system, organochlorine ef- stuffs, 176:20 fects, 172:15 Fipronil, metabolic pathway in rat, 176:18 Fish skeletal system, organophosphate ef- Fipronil, metabolism rates, 176:33 fects, 172:14 Fipronil, microbial degradation half-lives, Fish, xenobiotic effects on skeletal sys- 176:12 tem, 172:1 ff. Fipronil, mode of action, 176:3 Flame retardants, house dust contami- Fipronil, mutagenic effects, 176:36 nants, 175:27 Fipronil, neurotoxicity, 176:34 Flamprop-isopropyl, hydrolytic profile, Fipronil, NOEL, 176:36 175:194 Fipronil, noninsecticidal effects agricul- Flamprop-methyl, hydrolytic profile, 175: ture, 176:42 194 Fipronil, persistence/mobility in soil, 176: Fluazifop-butyl, hydrolytic profile, 175: 16 190 Fipronil, photodegradation, 176:12 Flucythrinate, hydrolytic profile, 175:192 Fipronil, physicochemical properties, 176: Flumequine, environmental contamina- 3, 6 tion, 180:28 Fipronil, proprietary names, 176:6, 8 Flumethrin, hydrolytic profile, 175:192 Fipronil, reproductive effects, 176:36 Flumichlorac pentyl, hydrolytic profile, Fipronil, residue analysis, 176:21 175:204 Cumulative and Comprehensive Subject Matter Index Volumes 171–180 187

Fluoranthrene (PAH), from coke produc- GD (), RfDs & UFs, 172:68 tion, 174:13 Genotoxicity, azaarenes, 173:62 Flupyrsulfuron methyl, hydrolytic profile, Genotoxicity, DINP, 172:107 175:224 Genotoxicity, fipronil, 176:36 Flupyrsulfuron methyl, sulfonylurea Gentamicin, mechanisms of action, 171: bridge contraction, 175:152 39 Fluroapatite, phosphate fertilizer, 177:11 GIFAP, (International Group of Natl Fluroxypyr, hydrolytic profile, 175:190 Assoc of Mnftrs of Agrochem Fluvalinate, hydrolytic profile, 175:192 Prods), 177:131 Folpet, hydrolytic profile, 175:204 Glycocalyx, “slime”, 173:137 , hydrolytic profile, 175:220 Gold miners, arsenic-caused diseases, Food chain, metals accumulation from 180:136 waste disposal on soils, 177:2 Gold mining, arsenic discharges, 180:133 Formamidine insecticides, hydrolysis, Gold mining, arsenic soil contamination, 175:158 180:141 Formulations, fipronil insecticide, 176:7 Granulomatous amoebic encephalitis, Fosmethilan photoproducts, 172:205 180:104, 111 Frazil ice, 171:60 Grazon® (triclopyr), 174:20 Freshwater contamination, veterinary med- Ground state, photon absorption photo- icines, 180:18 chemistry, defined, 172:131 Freundlich adsorption data, pyrethroids, Groundwater contamination, PFAS, 174:56 PFOS, PFOA, 179:109 Frog embryo teratogenesis assay–Xenopus Groundwater contamination, veterinary (FETAX), 172:35 medicines, 180:20, 30 Fumigants, mass transfer coefficients Groundwater, triclopyr contamination, across plastic films, 177:96, 101 174:38 Fundulus heteroclitus, acellular bone, Gulf of Gdan´sk, annual pollutant load, 172:10 179:6 Fungi, chromium toxicity, 178:127 Gulf of Gdan´sk, annual precipitation, 179:8 GA (), review summary, 172:71, 76 Gulf of Gdan´sk, biomass annual fluctua- GA (tabun), RfDs & UFs, 172:68 tions, 179:28 GABA-gated chloride currents, spinosad Gulf of Gdan´sk, cadmium concentrations, mode of action, 179:40 179:17 GABA-regulated chloride channel, mode Gulf of Gdan´sk, coastal zone climate, of action, 176:3 179:7 Gafsa phosphate rock, fertilizer, 177:20 Gulf of Gdan´sk, copper concentrations, Gallotia galloti (lizard), good OP expo- 179:16 sure bioindicator, 172:51 Gulf of Gdan´sk, dominant algae groups, Garlon® (triclopyr), 174:20 179:24 Gas chromatography detectors, methyl Gulf of Gdan´sk, ecosystem changes, 179: bromide, 177:55 1, 4 Gas chromatography, house dust contami- Gulf of Gdan´sk, eutrophication, 179:1 ff. nant analysis, 175:14 Gulf of Gdan´sk, heavy metal pollutants, Gas-phase photolysis, organophosphate 179:14, 18, 19 photochemistry, 172:199 Gulf of Gdan´sk, important ecosystem GB (), review summary, 172:72, 76 changes, 179:7 GB (sarin), RfDs, & UFs, 172:68 Gulf of Gdan´sk, lead concentrations, 179: GD (soman), review summary, 172:72, 76 16 188 Cumulative and Comprehensive Subject Matter Index Volumes 171–180

Gulf of Gdan´sk, map, 179:5 Half-life, triclopyr in soils, 174:23 Gulf of Gdan´sk, morphological subunits, Half-lives, fipronil, 176:12 179:4 Half-lives, pesticides aquatic environ- Gulf of Gdan´sk, most polluted area of ment, 175:190–233 Baltic, 179:2 Half-lives, pesticides in soil, 177:127 Gulf of Gdan´sk, nitrate/phosphate fluctua- Half-lives, pyrethroids in aerobic aquatic tions, 179:12 systems, 174:66 Gulf of Gdan´sk, PAH annual fluctuations, Half-lives, pyrethroids in aerobic soil, 179:29 174:64 Gulf of Gdan´sk, PCB sediment levels, Half-lives, pyrethroids in anaerobic water, 179:22 174:65 Gulf of Gdan´sk, persistent organic pollut- Half-lives, triclopyr in waters, 174:42 ants, 179:17 Haloxyfop ethotyl, hydrolytic profile, Gulf of Gdan´sk, pesticide pollutants, 179: 175:190 19, 24, 26 Hartmanella, previous genus name of Gulf of Gdan´sk, pesticides in fish, 179:27 Acanthamoeba, 180:95 Gulf of Gdan´sk, physical characteristics, Hazard assessment, house dust contami- 179:4 nants, 175:7 Gulf of Gdan´sk, phytoplankton pigment α-HCH (hexachlorocyclohexane), chiral changes, 179:23, 31 insecticide, 173:90, 93, 95 Gulf of Gdan´sk, phytoplankton species, α-HCH, enantiomer structures, 173:92 179:26 γ-HCH (lindane), chiral insecticide, 173: Gulf of Gdan´sk, seasonal nutrient fluctua- 93 tions, 179:12, 14 HCH (technical), world emission, 173:93 Gulf of Gdan´sk, seasonal oxygen HCH, CAS numbers, 173:107 changes, 179:11 HCH, IUPAC chemical name, 173:107 Gulf of Gdan´sk, silicate fluctuations, 179: HCH-α (hexachlorocyclohexane), chiral 13, 16 insecticide, 173:90, 93, 95 Gulf of Gdan´sk, surface chlorophyll sea- HCH-γ (hexachlorocyclohexane) lindane, sonal changes, 179:31 chiral insecticide, 173:93 Gulf of Gdan´sk vs Baltic Sea, compari- HD (sulfur mustard), review summary, sons, 179:6 172:74, 78 Gulf of Gdan´sk, water temperature, 179:8 HD (sulfur mustard), RfDs & UFs, 172:68 Gulf of Gdan´sk, zinc concentrations, 179: Health effect, hair trace element contami- 17 nation, 175:55 Heavy metal adsorption, phosphate-in- Hair color, effect trace element contamina- duced, 177:22 tion, 175:50 Heavy metal availability in soil-plant sys- Hair, human, trace element concentra- tem, phosphorus role, 177:1 ff. tions, 175:47 ff. Heavy metal immobilization in soils, phos- Hair location, effect trace element contam- phorus role, 177:1 ff. ination, 175:50 Heavy metal mobilization in soils, phos- Hair, trace element contamination, see Hu- phorus role, 177:1 ff. man hair, 175:47 Heavy metal pollutants, Gulf of Gdan´sk, Half-life, methyl bromide, 177:59, 60, 61 179:14, 18, 19 Half-life, methyl bromide in soil, 177:104 Heavy metal precipitation in soils, phos- Half-life, PFOA/PFOS in humans, 179: phate-induced, 177:24 114 Heavy metal precipitation, phosphate lim- Half-life, triclopyr in plants, 174:27 ing action, 177:27 Cumulative and Comprehensive Subject Matter Index Volumes 171–180 189

Heavy metals, adsorption/desorption onto Heptachlor, hydrolytic profile, 175:206 phosphates, 177:21 Heraeus Suntest, photochemical reactor Heavy metals, adsorption in soils, 177:6 described, 172:145 Heavy metals, complexation in soils, 177: Herbicides, aryloxyalkanoate hydrolysis, 7 175:91 Heavy metals, defined, 177:1 Herbicides, leaching indices, 174:33 Heavy metals, fractionation categories in Hexachlorobenzene, vertebrate effects, soils, 177:8 176:74 Heavy metals, house dust contaminants, Hexachlorocyclohexane (α-HCH), chiral 175:28, 30 insecticide, 173:90, 93, 95 Heavy metals in soils, anthropogenic pro- Hexachlorocyclohexane (HCH), nine ste- cesses, 177:4 reoisomers, 173:93 Heavy metals in soils, pedogenic pro- Hexachlorocyclohexane (HCH), seven cesses, 177:4 mesoforms, 173:93 Heavy metals in soils, sources (table), High volume small surface sampler, 177:3 house dust, 175:9 Heavy metals, mode of action, 173:8 HN2, RfDs & UFs, 172:68 Heavy metals, precipitation in soils, 177:8 HOMO-LUMO gap energies, PAHs, 173: Heavy metals, reactions in soils (dia- 59 gram), 177:5 Honeybee larvae, spinosad toxicity, 179: Heavy metals, soil immobilization by 53, 59 phosphate compounds, 177:12, 13 Honeybee pesticide toxicity groups, EPA- Heavy metals, soil immobilization by wa- defined, 179:66 ter-soluble/insoluble phosphates, Honeybee, spinosad foraging toxicity, 177:16 179:45 Heavy metals, soil mobilization by phos- Honeybee, spinosad toxicity, 179:42 phate compounds, 177:12, 13 Horizontal flux method, methyl bromide Heavy metals, soil mobilization by water- volatilization, 177:88 soluble/insoluble phosphates, 177:14 Hormidium rivulare, Cu toxicity testing, Heavy metals, solid-phase speciation, 178:29 177:8 House dust, air concentration calculations, Heavy metals, sources in soil environ- 175:9 ment, 177:4 House dust, as exposure marker, 175:4 Helsinki Commission Baltic Monitoring House dust, composition & properties, Programme, 179:2 175:3 Henry’s law constant, methyl bromide, House dust, contaminant analytical meth- 177:68, 69 ods, 175:13 Henry’s law constants, pyrethroids, 174: House dust, contaminants hazard assess- 52, 54 ment, 175:7 Henry’s law constants, soil fumigants, House dust, dioxin contaminants, 175:27 177:107 House dust, endocrine-disrupting agent Heptachlor exo-epoxide, CAS number, contaminants, 175:26 173:107 House dust, EPA contaminant guidelines, Heptachlor exo-epoxide, chiral insecti- 175:32 cide, 173:90, 99, 104 House dust, EPA definition, 175:3 Heptachlor exo-epoxide, enantiomer struc- House dust, flame retardant contaminants, tures, 173:92 175:27 Heptachlor exo-epoxide, IUPAC chemical House dust, heavy metal contaminants, name, 173:107 175:28, 30 190 Cumulative and Comprehensive Subject Matter Index Volumes 171–180

House dust, indoor pollutants, 175:1 ff. Human hair, occupation effect trace ele- House dust, ingestion with food, 175:6 ment contamination, 175:57 House dust, lead-contaminated, 175:8 Human hair, race effect trace element con- House dust, mean surface deposits, 175:4 tamination, 175:60 House dust, organophosphate pesticide Human hair, sample preparation trace ele- contamination, 175:8, 16 ment contamination, 175:63 House dust, organotin concentrations, Human hair, sex effect trace element con- 175:27 tamination, 175:53 House dust, particle-size distribution, Human hair, trace element concentrations, 175:5 175:47 ff. House dust, PCDF contaminants, 175:27 Human hair, trace element contamination House dust, pollutant sources, 175:15 sources, 175:48 House dust, pollutants contained, 175:1 ff. Human hair, trace element exposure indi- House dust, quantity inhaled, 175:5 cator, 175:49 House dust, sample preparation, 175:13 Human hair, trace element, location on House dust, sampling methods, 175:9 body, 175:50 House dust, seasonal deposits, 175:4 Human health, arsenic effects, 180:152 House dust, skin absorption, 175:6 Human health, proposed arsenic criteria, House dust, suspended air concentrations, 180:155 175:6 Human poisoning, arsenic, 180:154 House dust, trace element contaminants, Human toxicity, methyl bromide, 177:50 175:28, 30 Human toxicity, PFOA, PFOS, 179:114 House dust, xenobiotic benchmark concen- Humic substances, photosensitizing ef- trations, 175:33 fects water, 172:197 HT, RfDs & UFs, 172:68 Hydrogen sulfide, Gulf of Gdan´sk levels, Human adverse reactions, fipronil, 176:44 179:4 Human exposure, diisononyl phthalate, Hydrolysis, bifenthrin, 174:71 172:111 Hydrolysis, cyfluthrin, 174:77, 79 Human hair, age effect trace element con- Hydrolysis, cypermethrin, 174:87, 90 tamination, 175:52 Hydrolysis, deltamethrin, 174:104, 108 Human hair, air pollution effect trace ele- Hydrolysis, esfenvalerate, 174:121 ment contamination, 175:61 Hydrolysis, fenpropathrin, 174:134 Human hair, analytical methods trace ele- Hydrolysis half-lives, pyrethroids, 174:52 ments, 175:63, 65 Hydrolysis, lambda-cyhalothrin, 174:142 Human hair, as trace element exposure in- Hydrolysis, methyl bromide in water, dicator, 175:49 177:59 Human hair, biological factors, 175:49 Hydrolysis, permethrin, 174:154, 160 Human hair, cosmetic use effect trace ele- Hydrolysis, pesticide waste disposal, 177: ment contamination, 175:59 150 Human hair, diet effect trace element con- Hydrolysis, pyrethroids, 174:60 tamination, 175:54 Hydrolysis, tralomethrin, 174:109 Human hair, digestion trace element analy- Hydrolysis, triclopyr products, 174:21 sis, 175:64 Hydroxy apatite, phosphate fertilizer, Human hair, environmental effects trace 177:11 element contamination, 175:61 Hydroxyapatite, bone component, 172:11 Human hair, health effect trace element Hypochlorous acid, catalyzed by myelop- contamination, 175:55 eroxidase, 171:4 Human hair, nationality effect trace ele- Hypochlorous acid, chlorine gas added to ment contamination, 175:60 water, 171:4 Cumulative and Comprehensive Subject Matter Index Volumes 171–180 191

Imidacloprid hydrolysis, 175:159 Irradiation methods, photochemistry, 172: Imidacloprid, hydrolytic profile, 175:232 144 Imiprothrin, hydrolytic profile, 175:192 Irreversible reduction, Cr(VI) to Cr(III), Impurities in electrochemical production 178:78 of POSF, 179:101 ISO, International Organization for Stan- Incineration, pesticide contaminated soils, dardization, 178:34 177:163 Isofenphos, hydrolytic profile, 175:220 Incineration, pesticide disposal method, Isofenphos photoproducts, 172:214 177:136 Isoniazid, mechanisms of action, 171:39 Incineration, pesticide plastic & paper Isoquinoline, microbial degradation path- packaging, 177:143 way, 173:44 Indeno[1,2,3-cd]pyrene, PAH, 179:75 Isoquinoline, toxicity, 173:42 Indoor air, house dust pollution, 175:1 ff. Isoxaben, acid hydrolysis pathway, 175: Indoor pollutants, boiling point range (ta- 104 ble), 175:2 Isoxaben, hydrolytic profile, 175:196 Indoor pollutants, classification (table), Isoxaflutole, hydrolysis pathway, 175:162 175:2 Isoxaflutole, hydrolytic profile, 175:232 Indoor pollutants, house dust, 175:1 ff. IUPAC (International Union of Pure and Indoor residence times, 175:1 ff. Applied Chemistry), 177:125 Inorganic metals, tissue residues, 173:23 IUPAC chemical names, chiral pesticides, Insect resistance, fipronil, 176:3, 52 173:107 Insecticide formulations, fipronil, 176:7 Ivermectin (22,223-dihydroavermectin

Insecticides, house dust quantities, 175:19 B1), synthetic avermectin B1, 171: Integrated pest management (IPM), fi- 112 pronil compatibility, 176:38 Ivermectin, binding in aquatic systems, International Group of Natl Assoc of Mnf- 171:115 trs of Agrochem Prods (GIFAP), Ivermectin, dung fauna effects, 171:117 177:131 Ivermectin, environmental contamination, International Union of Pure and Applied 180:28 Chemistry, (IUPAC), 177:125 Ivermectin, livestock pests effects, 171: Interspecific differences, algal toxicant 117 sensitivity, 178:35 Ivermectin, soil/dung concentrations, 171: Intraspecies variability, algal toxicant sen- 114 sitivity, 178:36 Ivermectin, soil half-life, 171:114, 118 Invertebrates, metal bioavailability in soils, 178:10, 11 K-Othrin®, deltamethrin, 174:95 Invertebrates, PAH toxicity, 179:78 Kanamycin resistant bacteria, 171:21, 23

Iodine number, fruit cuticle parathion pho- Kd (adsorption coefficient), methyl bro- tochemical half-life, 172:165 mide, 177:68

Iodofenphos photoproducts, 172:176 Kd (Partition coefficients), metals in soils, IPM, fipronil compatibility, 176:38, 52 178:15 Iprodione, hydrolytic profile, 175:204 Kepone-induced fish skeletal anomalies, Iron concentrations, Antarctic fish, 171: 172:13

53 ff., 171:63 Kh, pyrethroids, 174:52, 54 Iron, effects on chromium oxidation, 178: Kinetic analyses, pyrethroids, 174:58 98 Kinetics, pesticide hydrolysis, 175:81 Iron fixation in soils, 178:6 Kiwifruit flowers, spinosad honeybee tox- Iron, occupational hair levels, 175:58 icity, 179:47 Iron transformation in soils, 178:4 Koc, pyrethroids, 174:52 192 Cumulative and Comprehensive Subject Matter Index Volumes 171–180

Kow, azaarenes related to baseline toxicity, Legionella pneumophila, Acanthamoeba 173:48 interactions, 180:114

Kow, pyrethroids, 174:52 Legionellae survival, different lab condi-

Kow, pyrethroids, 174:52 tions, 171:16 KPEG, see potassium polyethylene glycol , hydrolytic profile, 175:220 ether, 177:140 Lewisite (L), review summary, 172:75, Kresoxim-methyl, hydrolytic profile, 175: 78 232 Lewisite, environmental fate, 172:79 Krill, high fluorine content, 171:62 Lewisite, RfDs & UFs, 172:68 Krs, pyrethroids, 174:55 Lichens, Antarctic biomonitors, 171:55 Lichens, baseline trace metal levels Ant- L (Lewisite), review summary, 172:75, arctica, 171:87, 92 78 Light, effect in algal toxicity testing, 178: Lambda-cyhalothrin, abiotic chemical 33 properties, 174:142 Light sources, photochemical reactions, Lambda-cyhalothrin, aerobic aquatic deg- 172:141 radation, 174:149, 150 Liming action of phosphate, heavy metal Lambda-cyhalothrin, aerobic soil degrada- precipitation, 177:27 tion, 174:148, 149 Liming, increases metal retention in soils, Lambda-cyhalothrin, biotic chemical prop- 177:8 erties, 174:148 Lindane (γ-HCH), chiral insecticide, 173: Lambda-cyhalothrin, hydrolysis, 174:142 93 Lambda-cyhalothrin, photolysis in water, Lindane, house dust concentrations, 175: 174:142, 147 19 Lambda-cyhalothrin, photolysis on soil, Linuron, hydrolytic profile, 175:198 174:146, 148 Livestock medicines, environmental path- Lambda-cyhalothrin, physicochemical ways, 180:14 properties, 174:52, 139 Lizard (Gallotia galloti), good OP expo- Lambda-cyhalothrin, soil sorption, 174: sure bioindicator, 172:51 143, 145 Lizards, parathion-exposed BChE/CbE ac- Landfarming, pesticide contaminated soil tivity, 172:43 cleanup, 177:169 LOCUSTOX study, fipronil, 176:29, 30, Lead concentrations, Antarctic fish, 171: 38, 40

53 ff., 63 LOEC50 values, PFAS, PFOS, aquatic or- Lead, EPA house dust contaminant guide- ganisms, 179:112 lines, 175:32 LOEL, fipronil, 176:36 Lead fixation in soils, 178:5 LOELs, maternal/developmental DINP, Lead, house dust concentrations, 175:29 172:104 Lead, occupational hair levels, 175:58

Lead shot, vertebrate biomonitor effects, I50s, ChE fish, 172:28 176:103, 105, 106, 109, 111 , hydrolysis pathways, 175:139

Lead, soil contaminant sources, 177:3 Malathion I50s, ChE fish, 172:28 Lead-based paint, house dust lead source, Malathion photoproducts, 172:200 175:16 Mammalian toxicity, avermectins, 171: Lead-phosphate interactions, soils, 177:26 126 Leaded gasoline, atmospheric methyl bro- Manganese (II) oxidation to Mn(IV), mi- mide source, 177:53 crobial, 178:122 Leather tanning with chromium, de- Manganese (II) oxidizing microbes, list, scribed, 178:54 178:123 Cumulative and Comprehensive Subject Matter Index Volumes 171–180 193

Manganese concentrations, Antarctic fish, Mecoprop, IUPAC chemical name, 173: 171:53 ff., 63 107 Manganese effects on chromium oxida- Medicines veterinary, environmental con- tion, 178:99 taminants, 180:1 ff. Manganese fixation in soils, 178:6 Membrane permeability, chlorine effects, Manganese, house dust concentrations, 171:6 175:29 Mephospholan photoproducts, 172:213 Manganese, occupational hair levels, 175: Mercury arc, high-pressure bayonet, de- 58 scribed, 172:145, 146 Manganese oxidation, microbial mecha- Mercury, bioaccumulation in pelagic sea- nism, 178:123 birds/marine mammals, 171:69 Manganese oxides formed by microbes, Mercury, concentrations Antarctic fish, 178:124 171:53 ff., 63 Manganese, soil contaminant sources, Mercury, feather concentrations seabirds 177:3 Southern/Northern hemispheres, 171: MAR (multiple-antibiotic-resistant) bacte- 70 ria, 171:19 Mercury, house dust concentrations, 175: MAR-bacteria selection, wastewater chlo- 30 rination, 171:22 Mercury, human hair concentrations, 175: Marine fish, arsenic effects, 180:145 59 Marine invertebrates, arsenic effects, 180: Mercury pollution, Minamata Bay 145 (Japan), 174:9 Marine mammals, mercury bioaccumula- Mercury, soil contaminant sources, 177:3 tion, 171:69 Mercury, transfer to birds/seals breeding Marine mammals, trace metal concentra- in Antarctica, 171:77 tions, 171:72 Mercury, vertebrate biomonitor effects, Marine phytoplankton pigment shifts, 176:96, 98, 101, 102 179:23, 31 Metabolic pathway, fenvalerate in ani- Marine plants, arsenic effects, 180:144 mals, 176:150 Marine turtles, xenobiotic bioindicators, Metabolic pathway, fipronil in rat, 176:18 172:34 Metal aging in soils, 178:1 ff. Mass spectrometry, house dust contami- Metal aging, natural soils, 178:6 nant analysis, 175:14 Metal availability in soils, aging effects, Maximum residue levels foodstuffs, fi- 178:1 ff. pronil, 176:20 Metal cations, complexation affinity by or- MDPA (chlorodihydroxy pyridinyloxya- ganic matter (diagram), 177:7 cetic acid), triclopyr photoproduct, Metal deposition biomonitoring, Antarctic 174:24 stations, 171:91 MeBr (methyl bromide), 177:46 Metal extraction from soils, 178:6 Mechanisms of action, antibiotics in bacte- Metal phosphate compounds, water solu- ria, 171:39 bility, 177:25 Mechanisms of damage to bacteria, UV Metal phosphate precipitation, primary P- light, 171:29 induced immobilization, 177:8 Mechanisms of resistance (bacterial) to an- Metal phosphates, soil precipitates, 177:24 tibiotics, 171:40 Metal sorption/desorption, soils, 178:3 Mecoprop, CAS number, 173:107 Metal-contaminated soils, risk assessment, Mecoprop, chiral herbicide, 173:90, 94, 178:1 ff. 96 Metal-organic complex formation, factors Mecoprop, enantiomer structures, 173:92 affecting, 177:7 194 Cumulative and Comprehensive Subject Matter Index Volumes 171–180

Metalaxyl, hydrolytic profile, 175:194 Methyl bromide, developing alternatives, Metalloids, defined, 177:2 177:106 Metals, environmental availability, de- Methyl bromide, diffusion in air, 177:78 fined, 178:1 Methyl bromide, diffusion in soils, 177: Metals, environmental bioavailability, de- 77 fined, 178:1 Methyl bromide, effective soil diffusion Metals, toxicological bioavailability, de- coefficient, 177:75 fined, 178:1 Methyl bromide, effects of organic matter Metam sodium, methyl bromide replace- on hydrolysis, 177:60 ment, 177:107 Methyl bromide, elimination economic im- , hydrolysis pathways, pact, 177:47 175:140 Methyl bromide, enhancing soil transfor- Methane-consuming bacteria, rusticle mation rates, 177:62 component, 173:135 Methyl bromide, environmental concerns, photoproducts, 172:206 177:46 Methidathion, sublethal AChE inhibition Methyl bromide, environmental fate, 177: aquatic organisms, 172:47 45 ff. Methodology, enantiomeric enrichment, Methyl bromide, environmental transfor- 173:88 mation, 177:58 , hydrolytic profile, 175:200 Methyl bromide, estimating total loss Methoxychlor, house dust concentrations, from soil, 177:81 175:19 Methyl bromide, fumigation application Methoxychlor, hydrolysis pathways, 175: methods, 177:51 126 Methyl bromide, fumigation Br residues Methoxychlor, hydrolytic profile, 175:206 in soils/plants, 177:62, 64 Methyl bromide (MeBr), 177:46 Methyl bromide, fumigation soil bulk den- Methyl bromide, adsorption coefficient, sity effect, 177:103 177:68 Methyl bromide, fumigation soil water Methyl bromide, air sampling & analysis, content effect, 177:102 177:54, 55 Methyl bromide, fumigation tarp cover- Methyl bromide, air sampling adsorbents, ings, 177:51 177:56 Methyl bromide, fumigation uses, 177:48, Methyl bromide, air sampling containers, 50 177:56 Methyl bromide, gas chromatography de- Methyl bromide, application depth effect, tectors, 177:55 177:100 Methyl bromide, global usage (budget), Methyl bromide, atmospheric oceanic 177:47 emissions, 177:53 Methyl bromide, human toxicity, 177:50 Methyl bromide, bacterial biodegradation, Methyl bromide, hydrolysis in soil, 177: 177:61 60 Methyl bromide, chemical alternatives, Methyl bromide, hydrolysis water effects, 177:47 177:59 Methyl bromide, chloropicrin warning Methyl bromide, injection depth & use of agent, 177:49 plastic film effects, 177:99, 101 Methyl bromide, containment to minimize Methyl bromide, known atmospheric volatilization, 177:94 sources, 177:53 Methyl bromide, degradation rate effect Methyl bromide, methods for minimizing on emissions, 177:104 volatilization, 177:94 Methyl bromide, degraded to bromine ion Methyl bromide, mobility indices, 177: in soil, 177:82 73 Cumulative and Comprehensive Subject Matter Index Volumes 171–180 195

Methyl bromide, natural atmospheric re- Methyl bromide, volatilization from soil, moval, 177:53 177:81 Methyl bromide, ozone depletion poten- Methyl bromide, volatilization horizontal tial, 177:46, 52 flux method, 177:88 Methyl bromide, phase partitioning, 177: Methyl bromide, volatilization micromete- 68 orological methods, 177:85 Methyl bromide phase-out, economic con- Methyl bromide, volatilization theoretical cerns, 177:47 profile shape method, 177:86 Methyl bromide phase-out, major crop Methyl bromide, volatilization trajectory loss estimates, 177:48 simulation, 177:87 Methyl bromide phase-out, Montreal Pro- Methyl isothiocyanate (MITC), methyl tocol agreement, 177:50 bromide replacement, 177:107 Methyl bromide, photohydrolysis, 177:60 Methyl mercury, mercury source in Ant- Methyl bromide, physical/chemical prop- arctic seabirds/marine mammals, erties, 177:49 171:69

Methyl bromide, phytotoxicity, 177:66 Methyl I50s, ChE fish, 172:28 Methyl bromide, plastic film barriers, Methyl parathion, hydrolytic profile, 175: 177:95 208 Methyl bromide, production by growing Methyl parathion, sublethal AChE inhibi- plants, 177:67 tion aquatic organisms, 172:46 Methyl bromide, reactions with ozone, Methylene blue, photooxidation organo- 177:52 phosphates, 172:174 Methyl bromide, replacement fumigants, Methylococcus sp., methyl bromide bio- 177:107 degradation, 177:61 Methyl bromide, simulated environmental Methylomonas sp., methyl bromide bio- fate, 177:70 degradation, 177:61 Methyl bromide, soil fumigant history, Metolachlor, acid hydrolysis pathway, 177:50 175:102 Methyl bromide, soil gas distribution after Metolachlor, hydrolytic profile, 175:194 injection, 177:78 Metsulfuron methyl, hydrolytic profile, Methyl bromide, soil gas partitioning, 175:224 177:79 , hydrolysis pathways, 175:135 Methyl bromide, soil half-life, 177:104 Mevinphos, hydrolytic profile, 175:212 Methyl bromide, solubility vs tempera- Mexacarbate, hydrolytic profile, 175:200 ture, 177:69 MFO (mixed-function oxidase), amphibi- Methyl bromide, transport in dry soils, ans/reptiles, 172:35 177:74 Micelles, abiotic pesticide hydrolysis, Methyl bromide, transport model, 177:70 175:89 Methyl bromide, vapor pressure vs tem- Microbial consortial events, deep sea rus- perature, 177:69 ticles, 173:117 ff. Methyl bromide, volatilization aerody- Microbial consortium, defined, 173:122 namic method, 177:85 Microbial degradation, azaarenes more Methyl bromide, volatilization boundary than three aromatic rings, 173:46 condition, 177:71 Microbial degradation pathway, isoquino- Methyl bromide, volatilization chamber line, 173:44 methods, 177:83 Microbial degradation pathway, quinoline, Methyl bromide, volatilization experi- 173:43 ments & mass balance, 177:90 Microbial oxidation, Mn(II) to Mn(IV), Methyl bromide, volatilization field exper- 178:122 iments, 177:89 Microbial reduction, Cr(VI), 178:106 196 Cumulative and Comprehensive Subject Matter Index Volumes 171–180

Microcystis aeruginosa (alga), toxicity Mosses, biomonitors atmospheric metals, testing, 178:34 171:90, 92 Micrometeorological methods, methyl bro- Mosses, elemental composition Antartica, mide volatilization, 177:85 171:89, 92 Microorganisms, aging metal soil bioavail- Multihit disinfectant, chlorine, 171:5 ability, 178:13 Multiple-antibiotic-resistant (MAR) bacte- Microorganisms, capable of oxidizing ria, 171:19 manganese, 178:123 Mussel Watch program, described, 172:23 Microorganisms, capable of reducing Mussels, as bioindicators water pollution, Cr(VI), list, 178:106 172:23 Microorganisms, PAH toxicity, 179:76 Mutagenic potentials, aflatoxin-contami- Microorganisms, tolerance to Cr(VI), nated feeds, 171:167 178:103 Mutagenicity, benzacridines, 173:65 Milk, aflatoxins FDA action levels, 171: Mutagenicity, benzoquinolines & metabo- 144 lites, 173:64, 65 Minamata Bay (Japan), mercury pollu- Mutagenicity, dibenzacridines, 173:66 tion, 174:9 Mutagenicity, DINP, 172:107 Mirror image structures, chiral com- Mutagenicity, fipronil, 176:36 pounds, 173:92 Mutagenicity, quinoline, 173:63 Mixed-function oxidase (MFO), amphibi- Mutation assay methods, DINP, 172:107 ans/reptiles, 172:35 MutatoxTM, azaarene genotoxicity tests, γ-MnOOH, oxidation rate of Cr(III), 178: 173:62, 64 102 Mycorrhizal fungi, chromium toxicity, Mobam, hydrolytic profile, 175:200 178:127 Mobility indices, methyl bromide, 177:73 Mycorrhizal rhizosphere, effects on metal Mode of action, avermectins, 171:112 tolerance in plants, 177:31 Mode of action, DINP, 172:109 Mycorrihizal fungi colonization of plant Mode of action, fipronil, 176:3 roots, rhizosphere microflora, 177:33 Mode of action, organophosphate insecti- Myeloperoxidase, catalysis to hypochlo- cides, 172:150 rous acid, 171:4 Mode of action, spinosad insects, 179:39 Mode of action, triclopyr herbicide, 174: N-heterocyclic PAHs, 173:40 20 , hydrolytic profile, 175:212 Modes of action, chemical classes, 173:5, Naptalam, hydrolytic profile, 175:196 8 Napthalene, PAH, 179:75 Modes of action, narcotic chemicals, 173: Narcotic chemicals, 173:7 ff. 3, 5 Narcotic chemicals, modes of action, 173:3 Molecular weights, pyrethroids, 174:52 Narcotic chemicals, polar/nonpolar, 173:3 Mollusks, trace metal monitors Southern Narcotics, CBRs, 173:5 Ocean, 171:74, 75 Narcotics, mode of action, 173:8 Molybdenum, house dust concentrations, National Registration Authority, Austra- 175:30 lia, 177:129 Molybdenum, soil contaminant sources, National Research Council (NRC) Re- 177:3 view, chem warfare agents, 172:71 , hydrolytic profile, 175: Nationality effect, hair trace element con- 212 tam, 175:60 Montreal Protocol, methyl bromide phase- Natural soils, metal aging, 178:6 out agreement, 177:50 Navicula pelliculosa (alga), toxicity test- Monuron, hydrolytic profile, 175:198 ing, 178:34 Cumulative and Comprehensive Subject Matter Index Volumes 171–180 197

Neburon, hydrolytic profile, 175:198 Obesity effect, hair trace element contam, Neuropathy target esterase, described, 175:58 172:150 Obsolete pesticide stocks, IUPAC dis- Neurotoxicity, fipronil, 176:34, 35 posal recommendations, 177:180 Nickel concentrations, Antarctic fish, 171: Obsolete pesticides, bulk disposal meth- 53 ff., 63 ods, 177:135 Nickel, occupational hair levels, 175:58 Occupation effect, hair trace element con- Nickel, soil contaminant sources, 177:3 tamination, 175:55 Nickle fixation in soils, 178:6 Occupational exposure, diisononyl phthal- Niclosamide, hydrolytic profile, 175:196 ate, 172:111

Nicosulfuron, hydrolytic profile, 175:224 Octanol-water partition coefficients (Kow), Nicotinic receptors, spinosad mode of ac- pyrethroids, 174:52, 53 tion, 179:40 OECD (See Organization for Economic Nitrification, Cr(III) inhibitory effects in Cooperation & Develop), 178:8 soil, 178:139 OECD, Organization for Economic Coop- Nitrifying bacteria, methyl bromide bio- eration & Develop, 178:34 degradation, 177:61 OECD standard artificial soils, 178:8 Nitroaryl compounds, UV reaction to ni- OP acute toxicity in fish, reasons for dif- trosoaryl derivatives, 172:162 ferences, 172:32

Nitrosococcus sp., methyl bromide biodeg- OP concentrations, ChE I50s various wild- radation, 177:61 life (table), 172:28 Nitrosolobus sp., methyl bromide biodeg- OP exposure, biomonitoring aquatic envi- radation, 177:61 ronments, 172:42 Nitrosomonas sp., methyl bromide biodeg- OP photochemistry, 172:129 ff. radation, 177:61 OP potentiation by ergosterol biosynthesis Nitszchia closterium (marine diatom), inhibit (EBI) fungicides, birds, 172: Cu & Zn tests, 178:28 39 Nitzschia sp. (alga), toxicity tests, 178:34 OP potentiation, carbamate (), NOEL, fipronil, 176:36 172:39 NOELs, maternal/developmental DINP, OPs (organophosphates), photochemistry, 172:104 172:129 ff. Non-target insects, avermectin effects, OPs, photochemical absorption coeffi- 171:116 cients (table), 172:149 Nonessential elements, plant/animal nutri- OPs, sublethal AChE inhibition aquatic or- tion defined, 177:2 ganisms, 172:47 Nontarget toxicity, spinosad, 179:40 Oral reference doses (RfDs), chemical Notothenioids, Antarctic biomonitors, warfare agents, 172:65 ff. 171:54 Organic chemicals, abbreviations, 172: NRC (National Research Council) Re- 119 view, chemical warfare agents, 172: Organic matter, effects on methyl bro- 71 mide hydrolysis, 177:60 NRC Recommendations, chemical war- Organochlorine insecticides, house dust fare agents Army evaluation, 172:76 concentrations, 175:18 Nuclear waste, steel drum deterioration Organochlorine insecticides, hydrolysis on ocean floor, 173:134 mechanisms, 175:124 Nucleophiles, methyl bromide hydrolysis, Organochlorine insecticides, structures & 177:59 hydrolytic profiles, 175:206 Nutrients, effect in algal toxicity tests, Organochlorine insecticides, vertebrate ef- 178:31 fects, 176:74 198 Cumulative and Comprehensive Subject Matter Index Volumes 171–180

Organochlorine residues, fish, 179:27 Oxazoline, alkaline hydrolysis pathway, Organochlorine-induced effects in fish 175:106 skeleton, 172:15 Oxidation, chromium (III) to (VI), 178:71 Organometallic chemicals, tissue residues, Oxidation, pesticide waste disposal, 177: 173:25 152 Organometals, mode of action, 173:8 Oxime ether herbicides, hydrolysis kinet- Organophosphate insecticides, AChE inhi- ics mechanisms, 175:153 bition, 172:2 Oxime ether herbicides, structures & hy- Organophosphate insecticides, CAS num- drolytic profiles, 175:228 bers, 172:215 Oxime N-alkylcarbamate hydrolysis, 175: Organophosphate insecticides, chemical 114 names, 172:215 Oxolinic acid, wild fish contamination, Organophosphate insecticides, common 180:26 names, 172:215 Oxycarboxin, hydrolytic profile, 175:196 Organophosphate insecticides, history, Oxycarboxin, surface-catalyzed hydroly- 172:148 sis, 175:169 Organophosphate insecticides, house dust Oxychlordane, CAS number, 173:107 contamination, 175:8, 16 Oxychlordane, chiral insecticide, 173:90, Organophosphate insecticides, mode of ac- 100, 104 tion, 172:150 Oxychlordane, enantiomer structures, Organophosphate nerve agents, air expo- 173:92 sure limits, 172:66 Oxychlordane, IUPAC chemical name, Organophosphate pesticides, nervous sys- 173:107 tem effects, 172:2 Oxydemeton-methyl, hydrolytic profile, Organophosphate-induced effects in fish 175:212 skeleton, 172:14 Oxytetracycline, marine fish contamina- Organophosphates, hydrolytic half-lives, tion, 180:26 172:151 Ozonation, pesticide waste disposal, 177: Organophosphates, photochemical absorp- 152, 154 tion coefficients (table), 172:149 Ozone “hole” discovery, Antarctica, 171: Organophosphorus (OP) insecticides, 54 wildlife exposure, 172:21 ff. Ozone Assessment Synthesis Panel Organophosphorus ester pesticides, hydro- (U.N.), 177:46 lysis mechanisms, 175:127 Ozone breakdown efficiency, bromine vs Organophosphorus esters, acid and alka- chlorine, 177:47 line hydrolysis mechanisms, 175:128 Ozone depletion, chlorinated compounds, Organophosphorus insecticides, catalytic 177:46 hydrolysis, 175:182 Ozone depletion, methyl bromide, 177: Organophosphorus insecticides, history, 52 172:148 Ozone depletion potential index, 177:46 Organophosphorus insecticides photo- Ozone depletion potential, methyl bro- chemistry, 172:129 ff. mide, 177:46 Organophosphorus insecticides, struc- tures & hydrolytic profiles, 175:208 PAH (see also Polycyclic Aromatic Hy- Organotin compounds, house dust concen- drocarbons), 179:73 ff. trations, 175:27 PAH, chemical reaction in water column Oxamic acid, triclopyr photoproduct, 174: (diagram), 173:55 24 PAH contamination, coke production by- , hydrolytic profile, 175:200 product, 174:12 Cumulative and Comprehensive Subject Matter Index Volumes 171–180 199

PAH ecotoxicity data for soil quality crite- Parathion I50s, ChE fish, 172:28 ria, 179:73 ff. , hydrolytic profile, 175: PAH soil concentrations, Denmark, 179: 208 89 Parathion, paraoxon formation reaction PAH toxicity, species sensitivity distribu- pathway, 172:161 tion method , 179:85 Parathion photochemical half-life, fruit cu- PAH-sediment remediation, Black River, ticle iodine number, 172:165 174:12 Parathion, photodegradation different sol- PAHs (polycyclic aromatic hydrocar- vents, 172:138 bons), 173:40 Parathion photoproducts, 172:157, 159, 164 PAHs (polycyclic aromatic hydrocar- Particle-size distribution, house dust, 175: bons), 174:12 5 PAHs, (Polycyclic Aromatic Hydrocar- Particulate organic matter (POM), 175:2

bons), ecotoxicity data, 179:73 ff. Partition coefficients (Kd), metals in soils, PAHs (see also Polycyclic Aromatic Hy- 178:15 drocarbons), 179:73 ff. Pathogenic protozoa, disease symptoms, PAHs, biotransformation and metabolism, 180:94 173:41 PCBs (polychlorinated biphenyls), house PAHs, from coke production, 174:13 dust contaminants, 175:14, 24 PAHs, HOMO-LUMO gap energies, 173: PCBs, atropisomer of methylsulfonyl- 59 PCBs, chiral PCBs, 173:91 PAHs, house dust contaminants, 175:13, PCBs, carp Waukegan Harbor (graph), 24 174:11 PAHs, levels Gulf of Gdan´sk, 179:29 PCBs, chiral, 173:91 PAHs, list of those tested, 179:75 PCBs, degraded by KPEG, 177:141 PAHs, phototoxic effects on aquatic or- PCBs, Lake Michigan fish, 174:11 ganisms, 173:57 PCBs, levels Gulf of Gdan´sk, 179:19, 20, PAHs, predicted environmental no effect 21 concentation, 179:83 PCBs, sediment levels Baltic Sea, 179:22 PAHs, sediment removal effects, 174:12 PCBs, sediment removal effects, 174:10 PAHs, soil quality criteria calculation, PCBs, tissue residues aquatic organisms, 179:81 173:22 PAHs, soil quality standards, 179:73 ff. PCBs, vertebrate effects, 176:74 PAHs, terrestrial ecotoxicity data, 179:74 PCDDs (dioxins), house dust contami- PAHs, toxicity earthworms, 179:75 nants, 175:27 PAHs, toxicity enchytraeids, 179:75 PCDDs, produced by chlorinated pesti- PAHs, toxicity invertebrates, 179:78 cide incineration, 177:140 PAHs, toxicity microorganisms, 179:76 PCDDs, tissue residues aquatic organ- PAHs, toxicity mustard, red clover, rye- isms, 173:22 grass, 179:74 PCDDs, vertebrate effects, 176:74 PAHs, toxicity plants, 179:76 PCDFs (polychlorinated furans), house PAHs, toxicity soil invertebrates, 179:74 dust contaminants, 175:27 PAHs, toxicity springtails, 179:75 PCDFs, produced by chlorinated pesticide Paraoxon, formation reaction pathway, incineration, 177:140 172:161 PCDFs, tissue residues aquatic organisms,

Paraoxon I50s, ChE fish, 172:28 173:22

Paraoxon I50s, ChE frog, 172:30 PCDFs, vertebrate effects, 176:74 Parathion, catalytic hydrolysis, 175:183 Peanut meal, aflatoxin-contaminated rat Parathion, hydrolytic profile, 175:208 feeding studies, 171:163 200 Cumulative and Comprehensive Subject Matter Index Volumes 171–180

Pedogenic processes, heavy metals in Permethrin, house dust concentrations, soils, 177:4 175:19 Pelagic seabirds, mercury bioaccumula- Permethrin, hydrolysis, 174:154, 160 tion, 171:69 Permethrin, hydrolytic profile, 175:192 Penconazole, ergosterol biosynthesis in- Permethrin, photolysis in water, 174:154, hibiting fungicides, 172:39 160 Penicillins, mechanisms of action, 171:39 Permethrin, photolysis on soil, 174:154, β-pentachlorocyclohexene, chiral PCB, 161 173:91 Permethrin, physicochemical properties, γ-pentachlorocyclohexene, chiral PCB, 174:52, 151 173:91 Permethrin, soil sorption, 174:153, 155, Pentachlorocyclohexene-β, chiral PCB, 158 173:91 Peroxisome proliferator, PFOA, 179:111 Pentachlorocyclohexene-γ, chiral PCB, Persistence, triclopyr in soils, 174:40 173:91 Persistence, triclopyr in water/sediments, Pentachlorophenol (PCP), house dust con- 174:36 centrations, 175:19, 22 Persistent organic pollutants, utility in- Perfluoroalkyl phosphate, chemical struc- dex & scores, 176:76 ture, 179:103 Persistent organic pollutants, vertebrate ef- Perfluoroalkylated substances (PFAS), en- fects, 176:74 viron fate/occurrence, 179:102 Persistent organic pollutants, vertebrate Perfluoroalkylated substances (PFAS), en- vulnerability index, 176:77 viron/toxicity effects, 179:99 ff. Persistent organic pollutants, vertebrates Perfluoroalkylbetaine, fire-fighting foams, rank order index, 176:79 179:104 Perylene, PAH, 179:75

Perfluoroalkylethylates (PFAS), products Pesticide 50% dissipation times (DT50%), of telomerization, 179:101 in soil, 177:127, 158 Perfluoroalkylethylates, degradation prod- Pesticide abiotic hydrolysis, aquatic envi- ucts, 179:99 ronment, 175:79 ff. Perfluoroalkylethylates, uses, 179:100 Pesticide aquatic toxicity, veterinary use, Perfluoroalkylsulfonates, degradation 180:44 ff. products, 179:99 Pesticide candidates for phytoremediation Perfluoroalkylsulfonates, uses, 179:100 cleanup, 177:171 Perfluorooctanoic acid (PFOA), ground- Pesticide CAS numbers list, 177:183 water occurrence, 179:109 Pesticide CAS numbers, veterinary use (ta- Perfluorooctanoic acid, structure, 179:99, ble), 180:76 100 Pesticide chemical names list, 177:183 Perfluorooctyl sulfonate (PFOS), ground- Pesticide Chemical Abstracts Service water occurrence, 179:109 (CAS) numbers list, 177:183 Perfluorooctyl sulfonate, structure, 179: Pesticide common names list, 177:183 99, 100 Pesticide concentrations in waste, user Permethrin, abiotic chemical properties, sites, 177:126 174:154 Pesticide container & rinsewater disposal, Permethrin, aerobic soil degradation, 174: IUPAC recommends, 177:180 157, 162 Pesticide container and packaging dis- Permethrin, anaerobic soil degradation, posal, 177:142 174:157 Pesticide container recycling, 177:142 Permethrin, biotic chemical properties, Pesticide contaminated soils, bioaugmen- 174:157 tation, 177:170 Cumulative and Comprehensive Subject Matter Index Volumes 171–180 201

Pesticide contaminated soils, biological Pesticide hydrolysis, kinetics, 175:81 treatment, 177:165 Pesticide hydrolysis, kinetics mechanisms, Pesticide contaminated soils, biostimula- 175:90 tion, 177:178 Pesticide hydrolysis, metal ion catalysis Pesticide contaminated soils, cleanup mechanisms, 175:178 methods, 177:161 Pesticide incineration efficiency, 177:136 Pesticide contaminated soils, composting, Pesticide incineration, incinerator types, 177:166 177:139 Pesticide contaminated soils, incineration, Pesticide incineration, muffle furnace tem- 177:163 peratures, 177:137 Pesticide contaminated soils, IUPAC Pesticide incineration, products of incom- cleanup recommends, 177:180 plete combustion, 177:138 Pesticide contaminated soils, KPEG treat- Pesticide incineration, temperatures of ment, 177:164 complete combustion, 177:137 Pesticide contaminated soils, landfarming, Pesticide mixtures, disposal problems, 177:169 177:126 Pesticide contaminated soils, phytoremedi- Pesticide persistence at high concentra- ation, 177:169 tions, 177:127 Pesticide contaminated soils, soil separa- Pesticide plastic and paper packaging, in- tion techniques, 177:162 cineration, 177:143 Pesticide contaminated soils, zero-valent Pesticide potentiation, 172:39 iron treatment, 177:164 Pesticide root zone model (PRZM), triclo- Pesticide degradation, veterinary scenarios pyr, 174:34 (data), 180:37 Pesticide terrestrial toxicity, veterinary Pesticide disposal, 177:123 ff. use, 180:63 ff. Pesticide disposal, bulk quantity FAO Pesticide toxicity groups, honeybee, EPA- guidelines, 177:135 defined, 179:66 Pesticide disposal, developing countries, Pesticide trace amounts, analytical meth- FAO guidelines, 177:135 ods, 175:80 Pesticide disposal, incineration, 177:136 Pesticide unused sprays, treatment & dis- Pesticide half-lives, aquatic, 175:190–233 posal, 177:144 Pesticide half-lives, soil concentration ef- Pesticide use (home), house dust contami- fect, 177:127 nants, 175:17 Pesticide hydrolysis, (see also Abiotic pes- Pesticide waste constituents, characteriza- ticide hydrolysis), 175:79, 90 tion, 177:132 Pesticide hydrolysis, environmental ad- Pesticide waste, disposal & degradation, sorption effect, 175:166 177:123 ff. Pesticide hydrolysis, environmental buffer Pesticide waste disposal, Australian regu- catalysis, 175:164 lations, 177:129 Pesticide hydrolysis, environmental cataly- Pesticide waste disposal, dark or photoas- sis metal ions/oxides, 175:178 sisted Fenton’s reagent, 177:158 Pesticide hydrolysis, environmental clay Pesticide waste disposal, dehalogenation, effect, 175:173 177:151 Pesticide hydrolysis, environmental dis- Pesticide waste disposal, hydrolysis, 177: solved organic matter effect, 175:169 150 Pesticide hydrolysis, environmental micel- Pesticide waste disposal, IUPAC recom- lar effects, 175:185 mends, 177:179 Pesticide hydrolysis, environmental sol- Pesticide waste disposal, oxidation, 177: vent effect, 175:165 152 202 Cumulative and Comprehensive Subject Matter Index Volumes 171–180

Pesticide waste disposal, ozonation, 177: Pesticides, half-lives aquatic environment, 152, 154 175:190–233 Pesticide waste disposal, photocatalytic Pesticides, house dust concentrations, oxidation with titanium dioxide, 177: 175:19 160 Pesticides in fish, Gulf of Gdan´sk, 179:27 Pesticide waste disposal, photolysis, 177: Pesticides, levels Gulf of Gdan´sk, 179:19, 150 24, 26 Pesticide waste disposal, recycling, 177: Pesticides, not recommended for incinera- 129 tion, 177:139 Pesticide waste disposal, regulatory con- Pesticides, pure enantiomer advantages of straints, 177:128 using, 173:86 Pesticide waste disposal, selecting op- Pesticides, racemic disadvantages of us- tions, 177:133 ing, 173:86 Pesticide waste disposal, strategy, 177: Pet medicines, environmental pathways, 131 180:16 Pesticide waste disposal, U.S. regulations, Petroleum crude oil, vertebrate biomoni- 177:128 tor effects, 176:88 Pesticide waste management methods, Petroleum crude oil, vertebrate rank or- Australia, 177:132 der & utility index, 176:94 Pesticide waste, unique characteristics, Petroleum crude oil, vertebrate rank or- 177:125 der & vulnerability index, 176:95 Pesticide wastewater, carbon & lignocellu- Petroleum crude oil, vertebrate utility in- losic sorption, 177:146 dex, 176:89 Pesticide wastewater disposal, 177:143 Petroleum crude oil, vulnerability index, Pesticide wastewater, evaporative bed dis- 176:90 posal, 177:145 PFAS (perfluoroalkylated substances), Pesticide wastewater, options for disposal, 179:99 177:145 PFAS, acute toxicity aquatic organisms, Pesticide wastewater, ozonation/bioreactor 179:115 for cleaning, 177:148 PFAS, biotransformation, 179:111 Pesticide wastewater, sorption/composter PFAS, degradation products, 179:105 for cleaning, 177:148 PFAS, ecological risk assessment, 179: Pesticide water solubility, dissolved or- 112 ganic matter, 175:87 PFAS, ecotoxicity, 179:111 Pesticides, abiotic hydrolysis aquatic envi- PFAS emissions, Netherlands, 179:104 ronment, 175:79 ff. PFAS, environmental fate, 179:105 Pesticides, affecting fish vertebrae, 172: PFAS, environmental occurrence, 179: 11 108 Pesticides, aquatic half-lives, 175: PFAS, groundwater occurrence, 179:108

190–233 PFAS, LOEC50 values aquatic organisms, Pesticides, chiral enrichment processes, 179:112 173:105 PFAS, mutagenicity testing, 179:114 Pesticides, chiral list, 173:90 PFAS, occupationally exposed worker lev- Pesticides, chlorinated, destruction by K- els, 179:115 polyethylene glycol ether (KPEG), PFAS, physicochemical properties, 179: 177:140, 142 106 Pesticides, disposal of unused stocks, PFAS soil-repellency illustrated, 179:103 177:134 PFAS, toxicity mechanism, 179:111 Pesticides, effects on teleosts’ calcium/ PFAS, uses & applications, 179:102 phosphate regulation, 172:8 PFOA (perfluorooctanoic acid), 179:100 Cumulative and Comprehensive Subject Matter Index Volumes 171–180 203

PFOA, half-life in humans, 179:114 Phosphate compounds, antagonism effect PFOA, human toxicity, 179:114 on mycorrhizal plant infection, 177: PFOA, peroxisome proliferator, 179:111 34 PFOS (perfluorooctyl sulfonate), 179:100 Phosphate compounds, effects on heavy PFOS, bioaccumulation factor fish, 179: metals in soils, 177:12, 13 110 Phosphate compounds, heavy metal immo- PFOS, bioconcentration factors, 179:115 bilization in soils, 177:18 PFOS, ecological risk assessment, 179:112 Phosphate compounds, heavy metal mobi- PFOS, half-life in humans, 179:114 lization in soils, 177:18 PFOS, human toxicity, 179:114 Phosphate compounds, heavy metals

PFOS, LOEC50 values aquatic organisms, source in soils, 177:12 179:112 Phosphate compounds, liming value in PFOS, marine biota contaminant, 179: soils, 177:28 105, 109 Phosphate effects on heavy metals, rhizo- PFOS, marine mammals, birds, fish con- sphere, 177:29 taminant, 179:109 Phosphate fertilizers, equilibrium dissolu- PFOS, weakly carcinogenic, 179:116 tion reactions, 177:11 pH, chromium redox reaction effects, Phosphate fertilizers, fast-release, 177:10 178:97, 99 Phosphate fertilizers, heavy metal concen- pH, effect in algal toxicity testing, 178:28 trations & sources, 177:18 pH, effect on chromium oxidation, 178:71 Phosphate fertilizers, heavy metal major pH effects, phosphate compounds rhizo- source, 177:5 sphere, 177:29 Phosphate fertilizers, slow-release, 177:10 pH, influences water photochemical trans- Phosphate insecticides, hydrolysis mecha- formations, 172:167 nisms, 175:132 pH rate profiles, abiotic pesticide hydroly- Phosphate, monoammonium fertilizers, sis, 175:82 177:10 Phenanthrene (PAH), from coke produc- Phosphate, monocalcium fertilizers, 177: tion, 174:13 10 Phenanthridine, biotransformation prod- Phosphate rocks, soil fertilizers, 177:10 ucts (illus.), 173:46 Phosphate-induced heavy metal adsorp- Phenolic compounds, house dust contami- tion, 177:22 nants, 175:14, 26 Phosphates, organophosphate photochem- Phenoxypropanoic acids, chiral herbi- istry, 172:151 cides, 173:90 Phosphates, reactions in soils, 177:10 Phenthoate photoproducts, 172:204 Phosphates, water-insoluble compounds, Phenyl pyrazole insecticides, defined, 177:10 176:2 Phosphates, water-insoluble, effects my- , hydrolysis pathways, 175:137 corrihizal plants, 177:32 Phorate photoproducts, 172:198 Phosphates, water-soluble forms, 177:10 photoproducts, 172:208 Phosphonate insecticides, hydrolysis Phosalone, sublethal AChE inhibition mechanisms, 175:142 aquatic organisms, 172:45 Phosphonates, orgnophosphate photo- , hydrolytic profile, 175: chemistry, 172:151 212 Phosphonodithioate insecticides, hydroly- Phosphate amendment, lead-contaminated sis mechanisms, 175:142 soil remediation, 177:4 Phosphonothioate insecticides, hydrolysis Phosphate, ammonium, fertilizers, 177:10 mechanisms, 175:142 Phosphate compounds, acidity equivalent Phosphoramidate insecticides, hydrolysis in soils, 177:28 mechanisms, 175:140 204 Cumulative and Comprehensive Subject Matter Index Volumes 171–180

Phosphoramidothioate insecticides, hydro- Photoenhanced toxicity, aquatic contami- lysis mechanisms, 175:140 nants, 173:13 Phosphorescence, defined, 172:134 Photoenhanced toxicity, azaarenes, 173: Phosphorodithioate insecticides, hydroly- 59 sis mechanisms, 175:136 Photohydrolysis, methyl bromide, 177:60 Phosphorothioate insecticides, hydrolysis Photolysis, bifenthrin, 174:71, 72 mechanisms, 175:129 Photolysis, cyfluthrin, 174:77, 80 Phosphorothiolate insecticides, hydrolysis Photolysis, cypermethrin, 174:87, 90, 91 mechanisms, 175:134 Photolysis, deltamethrin, 174:106, 109, Phosphorus fertilizers, sources of heavy 110 metals in soils, 177:4 Photolysis, esfenvalerate, 174:121, 122 Phosphorus, role in heavy metal avail to Photolysis, fenpropathrin, 174:134, 136 soil-plant system, 177:1 ff. Photolysis, fenvalerate, 176:146 Phosphorus-metal interactions in plants, Photolysis half-lives, pyrethroids, 174:52 177:20 Photolysis, lambda-cyhalothrin, 174:142, Photoassisted Fenton’s reagent, pesticide 147, 146, 148 waste disposal, 177:158 Photolysis, permethrin, 174:154, 160, 161 Photochemical absorption coefficients, or- Photolysis, pesticide waste disposal, 177: ganophosphates (table), 172:149 150 Photochemical lamps, emission compari- Photolysis, pyrethroids, 174:61, 62 sons, 172:143 Photolysis, tralomethrin, 174:110, 114 Photochemical reactions, actinometry, Photolysis, triclopyr, 174:22 172:142 Photoproducts, azinphos-ethyl, 172:212 Photochemical reactions, in atmospheric, Photoproducts, azinphos-methyl, 172:210 172:139 Photoproducts, chlorfenvinphos, 172:153 Photochemical reactions, in water, 172: Photoproducts, chlormephos, 172:196 139, 166 Photoproducts, chlorpyrifos, 172:185 Photochemical reactions, light sources, Photoproducts, coumaphos, 172:192 172:141 Photoproducts, cyanophos, 172:180 Photochemical reactions, on plant sur- Photoproducts, diazinon, 172:189 faces, 172:140 Photoproducts, dioxabenzophos, 172:195 Photochemical sensitization, pesticide Photoproducts, fenitrothion, 172:170 studies, 172:190 Photoproducts, fenthion, 172:181 Photochemistry, defined, 172:132 Photoproducts fosmethilan, 172:205 Photochemistry, effective radiation spec- Photoproducts, iodofenphos, 172:176 trum, 172:137 Photoproducts, isofenphos, 172:24 Photochemistry, irradiation methods, 172: Photoproducts, malathion, 172:200 144 Photoproducts, mephospholan, 172:213 Photochemistry of organophosphorus in- Photoproducts, methidathion, 172:206 secticides, 172:129 ff. Photoproducts, parathion, 172:157, 159, Photochemistry, OPs (organophosphates), 164 172:129 ff. Photoproducts, phenthoate, 172:204 Photochemistry, pesticides general, 172: Photoproducts, phorate, 172:198 136 Photoproducts, phosalone, 172:208 Photochemistry, vapor phase described, Photoproducts, phthalophos, 172:209 172:145, 147, 168 Photoproducts, profenophos, 172:178 Photodecomposition, triclopyr, 174:22 Photoproducts, propaphos, 172:155 Photodegradation, fipronil, 176:12 Photoproducts, prothiophos, 172:202 Photodegradation pathways, fenvalerate, Photoproducts, quinalphos, 172:191 176:147, 149 Photoproducts, sulprofos, 172:201 Cumulative and Comprehensive Subject Matter Index Volumes 171–180 205

Photoproducts, temephos, 172:184 Piperonyl butoxide, house dust concentra- Photoproducts, tetrachlorovinphos, 172: tions, 175:19 154 Pirimiphos methyl, hydrolytic profile, Photosynthesis, azaarene photo-products 175:212 effects on diatom, 173:61 Pirimiphos methyl, sublethal AChE inhibi- Phototoxic effects, azaarenes, 173:53 tion aquat organ, 172:45 Phototoxic effects on aquatic organisms, Planck’s constant, abiotic pesticide hydro- PAHs, 173:57 lysis, 175:83 Phthalate esters, designated toxic pollut- Plant nutrition, essential elements defined, ants, 172:92 177:2 Phthalate plasticizers, uses in plastics in- Plants, arsenic lethal/sublethal effects, dustry, 172:88 180:143 Phthalates, house dust contaminants, 175: Plants, metal bioavailability in soils, 178: 14, 26 9 Phthalates, in plastic consumer products, Plants, metal toxicological bioavailability 172:88 in soils, 178:10 Phthalophos photoproducts, 172:209 Plants, PAH toxicity, 179:76 Physical/chemical properties, methyl bro- Plasticizers, world use, 172:89 mide, 177:49 Plug-forming bacteria, iron accumulating, Physical properties, pyrethroids, 174:49 173:137 ff. Poisoning, arsenic humans, 180:154 Physicochemical properties, avermectin, Pollinators, spinosad toxicity, 179:37 ff. 171:113 Pollutant contamination, indoor house Physicochemical properties, diisononyl dust, 175:1 ff. phthalate, 172:89 Pollutant risk assessment, vertebrate bio- Physicochemical properties, fenvalerate & monitors, 176:67 ff. esfenvalerate, 176:140 Pollutant sources, house dust, 175:15 Physicochemical properties, fipronil, 176: Polychlorinated biphenyls (PCBs), house 3, 6 dust contam, 175:14, 24 Physicochemical properties, PFAS, 179: Polychlorinated boranes, chiral insecti- 106 cide, 173:91 Physicochemical properties, pyrethroids, Polychlorinated furans (PCDFs), house 174:49 ff. dust contam, 175:27 Physicochemical properties, triclopyr, Polycyclic aromatic hydrocarbons 174:20 (PAHs), 173:40 Physiochemical properties, spinosad, 179: Polycyclic aromatic hydrocarbons 38 (PAHs), 174:12 Phytoremediation, gold mine arsenic con- Polycyclic aromatic hydrocarbons tamination, 180:141 (PAHs), ecotoxicity data, 179:73 ff. Phytoremediation, pesticide candidates, POM (particulate organic matter), 175:2 177:171 Pomeranian Bay, most polluted area of Phytoremediation, pesticide contaminated Baltic, 179:4 soils, 177:169 Portable personal air sampler, house dust, Phytotoxicity, methyl bromide, 177:66 175:9 Picloram, soil leaching index, 174:33 Potassium polyethylene glycol ether Picloram, soil leaching qualities, 174:30 (KPEG), destruction of Cl-pesticides, Pimephales promelas, pentachlorophenol 177:140, 142 tissue residues, 173:16 Potentiation, OPs by EBI (ergosterol bio- Piperonyl butoxide, antagonism with fi- synthesis inhibiting) fungicides, pronil, 176:5 birds, 172:39 206 Cumulative and Comprehensive Subject Matter Index Volumes 171–180

Primisulfuron, hydrolytic profile, 175:224 Pyrethroids, abiotic kinetic analyses, 174: Priority pollutants, chromium, 178:94 58 Procloraz, ergosterol biosynthesis inhibit- Pyrethroids, adsorption/desorption soil co- ing fungicide, 172:39 efficients, 174:56 Procymidone, hydrolytic profile, 175:204 Pyrethroids, aerobic soil degradation, Products of incomplete combustion, pesti- 174:63 cides, 177:138 Pyrethroids, anerobic soil degradation, , hydrolytic profile, 175:212 174:64 Profenofos, sublethal AChE inhibition Pyrethroids, aquatic half-lives, 174:52 aquatic organisms, 172:44 Pyrethroids, BCFs, 174:52, 54 Profenophos photoproducts, 172:178 Pyrethroids, bioconcentration factors Prometryn, hydrolytic profile, 175:230 (BCFs), 174:52, 54 Propachlor, hydrolytic profile, 175:194 Pyrethroids, biotic chemical properties, Propanil, hydrolytic profile, 175:196 174:63 Propaphos photoproducts, 172:155 Pyrethroids, biotic kinetic analyses, 174:58 Propazine, hydrolytic profile, 175:230 Pyrethroids, chemical names, 174:66, 73, Propetamphos, hydrolytic profile, 175:220 82, 95, 117, 125, 139, 151 Propham, hydrolytic profile, 175:200 Pyrethroids, Chemical Abstracts (CAS) re- Proposed criteria, arsenic environmental gis Nos., 174:66, 73, 82, 95, 117, protection, 180:156 125, 139, 151 , house dust concentrations, 175: Pyrethroids, Class 5 hydrolysis, 175:99 19 Pyrethroids, Classes1&2hydrolysis, Propoxur, hydrolytic profile, 175:200 175:95 Propyzamide, alkaline hydrolysis path- Pyrethroids, Classes3&4hydrolysis, way, 175:106 175:98 Propyzamide, hydrolytic profile, 175:196 Pyrethroids, enantiomers, 174:50, Prosulfuron, hydrolytic profile, 175:224 Pyrethroids, endocrine disruption, 176: Prothiophos photoproducts, 172:202 152 Protozoa, potential waterborne transmis- Pyrethroids, Freundlich adsorption data, sion, 180:93 174:56 PRZM (pesticide root zone model), triclo- Pyrethroids, generation classes, 176:138 pyr, 174:34 Pyrethroids, half-lives, aerobic aquatic Pseudokirchneriella subcapitata (alga), al- systems, 174:66 gae metal monitoring, 178:23, 30 Pyrethroids, half-lives, soil, 174:65 Pure enantiomer pesticides, advantages of Pyrethroids, Henry’s law constants, 174: using, 173:86 52, 54 Pydrin®, fenvalerate, 174:117 Pyrethroids, hydrolysis, 174:60 Pyrazolate hydrolysis, 175:160 Pyrethroids, hydrolysis half-lives, 174:52

Pyrazolynate, hydrolytic profile, 175:232 Pyrethroids, Kh, 174:52, 54

Pyrethroid chemistry & fate, 176:137 Pyrethroids, Koc, 174:52

Pyrethroid hydrolysis, benzoin ester for- Pyrethroids, Kow, 174:53

mation, 175:97 Pyrethroids, Krs, 174:55 Pyrethroid insecticides, house dust concen- Pyrethroids, mixtures of steroisomers, trations, 175:18, 20 174:50 Pyrethroid insecticides, hydrolysis, 175:92 Pyrethroids, molecular weights, 174:52 Pyrethroid insecticides, structures & hy- Pyrethroids, octanol-water partition coeffi-

drolytic profiles, 175:192 cients (Kow), 174:52, 53 Pyrethroids, abiotic chemical properties, Pyrethroids, photolysis half-lives, 174:52 174:60 Pyrethroids, photolysis, water/soil, 174:61 Cumulative and Comprehensive Subject Matter Index Volumes 171–180 207

Pyrethroids, physicochemical properties, Remediation, contaminated sediments, 174:49 ff. 174:1ff Pyrethroids, soil adsorption partition coef- Remediation, Cr(VI)-contaminated water, ficients, 174:55 178:81 Pyrethroids, soil half-lives, 174:52 Remediation technologies, chromate-con- Pyrethroids, soil sorption, 174:54 taminated soils, 178:79 Pyrethroids, synthesis, 176:141 Remediation technologies, chromium in Pyrethroids, vapor pressures, 174:52, 53 wastewater, 178:141 Pyrethroids, water solubility, 174:52, 54 Reproductive effects, DINP, 172:103 Pyrolan, hydrolytic profile, 175:200 Reproductive effects, fipronil, 176:36 Reptiles, ChE recovery times OP expo- QSARs (Quantitative Structure-Activity sure, 172:26 Relationships), 173:1 ff. Residue analysis, fipronil, 176:21 Quantitative Structure-Activity Relation- Resistance (bacterial) to antibiotics vs dis- ships, (QSARs), 173:1 ff. infectants, 171:38 Quinalophos, hydrolytic profile, 175:212 Resistant bacteria, via UV/chlorination, Quinalphos photoproducts, 172:191 171:1 ff. Quinoline, microbial degradation path- Resonance fluorescence, defined, 172: way, 173:43 134 Quinoline mutagenicity, 173:63 Resonance structures, hydroxylated tri- Quinoline toxicity, 173:42 azine & protonated species, 175:176 Quinoline toxicity, species groups, 173:49 Respiratory disease, arsenic-related, 180: Quinolones, mechanisms of action, 171:39 136 Quizalofop-ethyl, hydrolytic profile, 175: RfDs (oral reference doses), chemical war- 190 fare agents, 172:65 ff. RfDs, house dust contaminant bench- Race, effect on hair trace element contam- marks, 175:32 ination, 175:60 RfDs, interim recommended six warfare Racemic pesticides, disadvantages of us- agents, 172:69 ing, 173:86 Rhizosphere, acidification by phosphate Radiation energies, producing homolytic compounds, 177:29 bond fission (table), 172:138 Rhizosphere, mycorrhizal effects metal Ranking methodology, vertebrate biomon- tolerance in plants, 177:31 itors, 176:71 Rhizosphere, phosphate-heavy metal ef- Ranking vertebrate biomonitors, environ- fects, 177:29 mental contaminants, 176:67 ff. Rimsulfuron, hydrolytic profile, 175:224 Rayonet Photochemical Reactor, de- Rimsulfuron, sulfonylurea bridge contrac- scribed, 172:145 tion, 175:152 Reaction quantum yield, defined, 172:134 Risk assessment, metal-contaminated Reactive chemicals, tissue residues soils, 178:1ff aquatic organisms, 173:18 Risk assessment models, veterinary medi- Reactives/inhibitors, CBRs, 173:5 cines, 180:6 Reactives/inhibitors, mode of action, 173:8 Risk assessment of metals, using algae Recycling, pesticide containers, 177:142 toxicity tests, 178:23 ff. Reductases, Cr(VI) to Cr(III), microbial, RMS Titanic, see Titanic, 173:117 178:118 Rusticle, environmental cost of covert Regent®, fipronil proprietary name, 176:6 growth, 173:133 Remediation, chromate-contaminated soil/ Rusticle, radiographic image (illus.), 173: water, 178:77, 141 130 208 Cumulative and Comprehensive Subject Matter Index Volumes 171–180

Rusticle, typical components of dissected Scout®, tralomethrin, 174:96 rusticle (illus.), 173:125 Seals (Weddell), trace metal levels Antarc- Rusticle, word derivation, 173:123 tica, 171:81 Rusticles, chemical composition, 173:124 Seaweeds, trace metal monitors Southern Rusticles, consortial microbial structures, Ocean, 171:73 173:121 Sechura phosphate rock, fertilizer, 177:20 Rusticles, focused accumulation sites for Sediment, bioaccumulation of contami- iron, 173:129 nants, 174:3 Rusticles, found on Titanic ocean liner, Sediment, contamination remediation, 173:117 ff. 174:1 ff. Rusticles, growth rates, 173:123 Sediment contamination, veterinary medi- Rusticles, in water wells, 173:130 cines, 180:20 Rusticles, injection/extraction wells reme- Sediment removal, ecological response, diation sites, 173:131 174:8 Rusticles, lab eval corrosive processes (il- Sediment removal, metal concentration lus.), 173:124, 131 changes, 174:8 Rusticles, relevance to maritime indus- Sediment removal, nutrient effects, 174:8 tries, 173:126 Sediment removal, PAH declines, 174:12 Rusticles, underwater pipeline problems, Sediment removal, PCB declines, 174:10 173:134 Sediment removal, persistent toxic organ- ics, 174:10 Saccharopolyspora spinosa, spinosad Selenastrum capricornutum (alga), metal source, 179:37 monitoring, 178:23, 34, 37 Salinity, Antarctic cold waters, 171:58 Selenium, house dust concentrations, 175: Sample digestion, hair trace element anal- 30 ysis, 175:64 Semivolatile organic compounds Sample preparation, hair trace element (SVOCs), 175:2 contamination, 175:63 Serum ChE vs brain AChE activity, liz- Sampling methods, house dust, 175:9 ards OP-exposed, 172:51 Sampling methods, human hair, 175:63 Sex, effect on hair trace element contami- Sampling techniques, environmental nation, 175:53 DINP, 172:94 Sheep-dipping chemicals, environmental Sarin (GB), review summary, 172:72, 76 contaminants, 180:28 Sarin (GB), RfDs & UFs, 172:68 Simazine, hydrolytic profile, 175:230 Scallops, trace metals Antarctica, 171:83 Simulated environmental fate, methyl bro- Scenedesmus quadricauda (alga), Cu tox- mide, 177:70 icity testing, 178:29, 34, 37 Skeletal system, xenobiotic effects on tele- Scenedesmus subspicatus (alga), toxicity osts, 172:1 ff. testing, 178:34 Skeletal system, xenobiotic exposure Schrader’s formula, organophosphate in- marker, 172:11 secticides, 172:149 Slime-producing bacteria, chlorine toler- Scientific Committee on Antarctic Re- ance, 171:10 search (SCAR), 171:56 Sludge treatment of soils, shifts metals to Scientific names, terrestrial vertebrates, more mobile forms, 177:9 176:70 Smoking habits, hair trace element con- Scientific organizations, abbreviations, tamination, 175:55 172:119 Soil adsorption capacity, dictated by cat- Scoliosis, fish response to xenobiotics, ion-exchange capacity, 177:6 172:11 Soil chromium, chemistry, 178:59 Cumulative and Comprehensive Subject Matter Index Volumes 171–180 209

Soil contamination, veterinary medicines, Spinosad, formulations, 179:38 180:22 Spinosad, hazard evaluation, 179:40 Soil fumigant, methyl bromide environ- Spinosad, honeybee toxicity, 179:42 mental fate, 177:45 ff. Spinosad, honeybee toxicity alfalfa resi- Soil half-life, spinosad, 179:39 dues, 179:44, 57 Soil half-lives, pyrethroids, 174:52 Spinosad, honeybee toxicity almond resi- Soil half-lives, triclopyr, 174:39 dues, 179:57, 60 Soil invertebrates, avermectin effects, Spinosad, honeybee toxicity avocado resi- 171:120 dues, 179:62, 65 Soil persistence, triclopyr, 174:39 Spinosad, honeybee toxicity citrus resi- Soil quality criteria (SQC), PAHs, 179:81 dues, 179:59, 61, 63 Soil quality criteria, algorithm for deriv- Spinosad, honeybee toxicity kiwifruit resi- ing, 179:84 dues, 179:62, 64 Soil sorption coefficients, pyrethroids, Spinosad, honeybee toxicity strawberry 174:55 residues, 179:50 Soil surfaces, photochemical studies, 172: Spinosad, honeybee toxicity tansy pha- 187 celia, 179:54 Soil-repellence via perfluoroalkylated sub- Spinosad, honeybee toxicity tomato resi- stance (PFAS), illustrated, 179:103 dues, 179:47 Soils, metal extraction methods, 178:6 Spinosad, honeybee toxicity treated crops, Soils, pesticide contaminated cleanup, 179:58 177:161 Spinosad, insect toxicity greenhouse con- Soils, source of heavy metals in food ditions, 179:48 crops, 177:2 Spinosad, mode of action insects, 179:39 Solid-phase speciation, chromium in soils, Spinosad, nontarget toxicity, 179:40 178:62, 64 Spinosad, physiochemical properties, 179: Solvents, used in photochemical studies, 38 172:138 Spinosad, reduced-risk insecticide, 179:38 Soman (GD), review summary, 172:72, 76 Spinosad, soil half-life, 179:39 Soman (GD), RfDs & UFs, 172:68 Spinosad, toxicity bumblebee larvae, 179: SOS system, in bacteria, 171:31 51 SOS system, mutagenesis in bacteria, Spinosad, toxicity honeybee larvae, 179: 171:32 53 Spectrofluorimetry, hair trace element Spinosad, toxicity of weathered residues, analysis, 175:65 179:46 Spectrophotometry, hair trace element Spinosad, toxicity to pollinators, 179:37 analysis, 175:65 ff. Spectrum, electromagnetic radiation Spinosad, vapor pressure, 179:39 (diag.), 172:130 SpinosynsA&D,chemical structures, Spinosad, acute toxicity insects, 179:41 179:39 Spinosad, alfalfa leafcutter bee toxicity, Spinosyns, metabolites of Saccharopo- 179:42 lyspora spinosa, 179:37 Spinosad, bumblebee toxicity, 179:43 Sponges, trace metal monitors Southern Spinosad, chemical structures, 179:39 Ocean, 171:74, 75 Spinosad, commercial trade names, 179: SQC (Soil quality criteria), PAHs, 179:81 38 Standard artificial soils, OECD, 178:8 Spinosad, dislodgeable residue toxicity, Standard test protocols, algae toxicity 179:44 tests (table), 178:26 Spinosad, environmental fate, 179:39 Stanniocalcin, teleost-secreted, 172:4 210 Cumulative and Comprehensive Subject Matter Index Volumes 171–180

Strengite, phosphate fertilizer, 177:11 Surface runoff, triclopyr, 174:35 Streptomyces avertimilis, source of aver- SVOCs (semivolatile organic com- mectins, 171:112 pounds), house dust contam, 175:2 Streptomycin resistant bacteria, 171:21, 23 Synedra sp. (alga), toxicity testing, 178: Strontium, house dust concentrations, 34 175:29 Synergism, fipronil insecticide, 176:5 Subchronic toxicity, DINP, 172:102 Synthesis, fenvalerate & esfenvalerate, Sublethal OP levels, AChE inhibition 176:141 aquatic organisms, 172:44 Success®, spinosad, 179:38 T (sulfur mustard agent), RfDs & UFs, Sulfadiazine, mechanisms of action, 171: 172:68 39 Tabun (GA), review summary, 172:71, 76 Sulfanilamide resistant bacteria, 171:21 Tabun (GA), RfDs & UFs, 172:68 Sulfate-reducing bacteria, rusticle compo- Tannery effluents, source of Cr(VI)-reduc- nent, 173:135 ing microbes, 178:115 Sulfentrazone, hydrolytic profile, 175:232 Tannery sludge composition, 178:75, 76 Sulfhydryl enzymes, chlorine effects, Tannery sludge, sequential chromium ex- 171:6 traction, 178:65 Sulfide, methyl bromide degradation in Tannery waste, major chromium source, soil, 177:59 178:96 Sulfometuron methyl, hydrolytic profile, Tannery waste sites, chromium problems, 175:224 178:53 ff. Sulfonylurea herbicides, chemical struc- Tanning of leather with chromium, de- tures, 175:224 scribed, 178:54 Sulfonylurea herbicides, hydrolysis kinet- TCDD, tissue residues aquatic organisms, ics mechanisms, 175:144 173:22 Sulfonylurea herbicides, hydrolysis path- TCP, triclopyr metabolite soil adsorption, ways, 175:145 174:29 Sulfonylurea herbicides, hydrolytic pro- TCP, triclopyr soil degradate, 174:25 files, 175:226 TDI (tolerable daily intake), DINP, 172: Sulfonylureas, Class 1 hydrolysis, 175: 114 147 Tebutylazine, hydrolytic profile, 175:230 Sulfonylureas, Class 5 hydrolysis, 175:151 Tefluthrin, hydrolytic profile, 175:192 Sulfonylureas, Classes 2,3&4hydroly- Teleosts, bone formation, 172:10 sis, 175:150 Teleosts, calcium/phosphorus regulation, Sulfur mustard (HD), review summary, 172:4 172:74, 78 Teleosts, pesticides effects on calcium/ Sulfur mustard (HD), RfDs & UFs, 172: phosphate regulation, 172:8 68 Teleosts, xenobiotic effects on skeletal Sulfur mustard agents, air exposure limits, system, 172:1 ff. 172:66 Telomerization, perfluoroalkylethylate Sulprofos photoproducts, 172:201 production, 179:101 Supercritical fluid extraction, house dust Temephos, hydrolytic profile, 175:220 contam, 175:14 Temephos photoproducts, 172:184 Superphosphate fertilizers, soil reactions, Temperature, effect in algal toxicity test- 177:10 ing, 178:33 Superphosphate single-, fertilizers, 177:10 Temperatures of complete pesticide com- Superphosphate triple-, fertilizers, 177:10 bustion, 177:137 Surface runoff contaminants, veterinary Teratogenicity, azaarenes, 173:66 medicines, 180:20, 29 Termiticide, fipronil insecticide, 176:8 Cumulative and Comprehensive Subject Matter Index Volumes 171–180 211

Terrestrial toxicity, veterinary medicines, Toxic waste, steel drum deterioration on 180:63 ff. ocean floor, 173:134 Terrestrial toxicity, veterinary pesticides, Toxicity, aflatoxin-ammonia reaction 180:63 ff. products, 171:153, 160 Terrestrial vegetation, proposed arsenic Toxicity, azaarenes, 173:39 ff. criteria, 180:157 Toxicity, chromium, 178:58 Terrestrial vertebrates, common & scien- Toxicity, chromium to microorganisms, tific names, 176:70 178:126, 128 Test media, algal toxicity testing, 178:28 Toxicity comparison, fipronil vs fipronil- Tetrachlorovinphos photoproducts, 172: desulfinyl, 176:37 154 Toxicity, DINP, 172:97 , hydrolytic profile, Toxicity, fipronil mammals, 176:33 175:212 Toxicity mechanism, PFAS, 179:111 Tetracycline, mechanisms of action, 171: Toxicity, photoenhanced aquatic contami- 39 nants, 173:13 Tetracycline resistant bacteria, 171:21, 23 Toxicity tests, algal culture techniques, Tetramethrin, hydrolytic profile, 175:192 178:27 Theoretical photochemistry, organophos- Toxicological abbreviations, 176:4 phates, 172:130 Toxicological bioavailability, metals in Theoretical profile shape method, methyl soils, 178:10 bromide volatilization, 177:86 Toxicological bioavailability, metals in Thifensulfuron methyl, hydrolytic profile, soils, defined, 178:1 175:224 Toxicological criteria for RfDs, chemical Thin-film irradiation, organophosphate warfare agents, 172:80 photochemistry, 172:203 Toys, DINP in manufacturing, 172:92 , hydrolytic profile, 175:200 Trace elements, house dust contaminants, Thiophosphates, organophosphate photo- 175:28, 30 chemistry, 172:156 Trace elements, influencing factors in hu- Tissue residues, contaminants in aquatic man hair, 175:47 ff. organisms, 173:1 ff. Trace metal concentrations, Antarctic fish, Titanic, 173:1985 discovery of shattered 171:63 hull, 173:117 Trace metal concentrations, marine mam- Titanic, microbial rusticle growth, 173: mals Southern Ocean, 171:72 117 ff. Trace metals, Antarctic coastal benthic or- Titanic, rusticle biomass, 173:128 ganisms, 171:73 Titanium dioxide photocatalytic oxidation, Trace metals, Antarctic freshwater ecosys- pesticide waste disposal, 177:160 tems, 171:93 TMP, triclopyr metabolite, soil adsorp- Trace metals, Antarctic krill, 171:59 tion, 174:29 Trace metals, Antarctica clams/scallops, Tolclofos-methyl, hydrolytic profile, 175: 171:83 208 Trace metals, Antarctica terrestrial ecosys- Tolerable daily intake (TDI), defined, tems, 171:85 172:114 Trace metals, coastal benthic invertebrates Tolerable daily intake (TDI), DINP, 172: (Ross Sea), 171:75 114 Trace metals in Antarctic organisms, 171: Total diet, proposed arsenic criteria, 180: 53 ff. 156 Trace metals, seals Antarctica, Irish Sea, Toxaphene, chiral insecticide, 173:91 Finland Gulf, 171:81 Toxic effects, azaarenes range to different Trace metals, Terra Nova Bay fishes species (graph), 173:51 (Ross Sea), 171:78 212 Cumulative and Comprehensive Subject Matter Index Volumes 171–180

Tracer®, spinosad, 179:38 Triclopyr, chemical structure, 174:20 Trajectory simulation, methyl bromide Triclopyr, compliance with EPED guide- volatilization, 177:87 lines (table), 174:43 Tralomethrin, anaerobic soil degradation Triclopyr, degradation pathway (diagram), to deltamethrin, 174:111 174:25 Tralomethrin, biotic chemical properties, Triclopyr, environmental fate, 174:19 ff. 174:111 Triclopyr, formulations, 174:20 Tralomethrin/deltamethrin combination Triclopyr, Garlon®, Grazon®, 174:20 experiments, 174:114, 118 Triclopyr, groundwater contamination, Tralomethrin, hydrolysis, 174:109 174:38 Tralomethrin, hydrolytic profile, 175:192 Triclopyr, half-life groundwater, 174:42 Tralomethrin, photolysis in water, 174:110 Triclopyr, half-life in plants, 174:27 Tralomethrin, photolysis on soil, 174:110, Triclopyr, half-life in soils, 174:39, 42 114 Triclopyr, half-life in surface waters, 174: Tralomethrin, physicochemical properties, 41 174:52, 95 Triclopyr, hydrolysis products, 174:21 Tralomethrin, Scout®, 174:96 Triclopyr, mode of action, 174:20 Tralomethrin, soil sorption partition coeffi- Triclopyr, persistence water/sediments, cients, 174:105, 107 174:36 Transfluthrin, hydrolytic profile, 175:192 Triclopyr, photodecomposition, 174:22 Transport model, methyl bromide, 177: Triclopyr, photolysis half-lives, 174:23 70, 74 Triclopyr photoproduct, MDPA, 174:24 Triasulfuron, hydrolytic profile, 175:224 Triclopyr photoproduct, oxamic acid, Triazine herbicides, hydrolysis kinetics 174:24 mechanisms, 175:155 Triclopyr, physicochemical characteris- Triazine herbicides, structures & hydro- tics, 174:20 lytic profiles, 175:230 Triclopyr, plant metabolism, 174:26 Triazine ring opening to acetyltriuret, Triclopyr, soil adsorption, 174:29 175:148 Triclopyr, soil degradation, 174:24 Triazophos, hydrolytic profile, 175:212 Triclopyr, soil half-lives, 174:42 Tribenuron methyl, hydrolytic profile, Triclopyr, soil leaching, 174:28 175:224 Triclopyr, soil leaching index, 174:33 Tributyltin, house dust concentrations, Triclopyr, soil leaching qualities (table), 175:27 174:31 Tricalcium phosphate, fertilizer, 177:11 Triclopyr, soil organic carbon desorption Trichlorfon, hydrolytic profile, 175:220 effect, 174:28

Trichlorfon I50s, ChE fish, 172:28 Triclopyr, soil persistence, 174:39 Trichlorfon, phosphonate-phosphate re- Triclopyr, surface runoff, 174:35 arrangement, 175:143 Triclopyr, TCP as soil degradate, 174:25 Trichlorfon, sublethal AChE inhibition Triclopyr, TMP as soil degradate, 174: aquatic organisms, 172:47 25 Triclopyr, 2-butoxyethyl ester metabolite Triclopyr, triethylamine salt, 174:21 hydrolysis, 174:21 Triclopyr, Turflon®, 174:20 Triclopyr, 2-butoxyethyl ester metabolite Triclopyr, uses & herbicidal characteris- photodecomposition, 174:23 tics, 174:19 Triclopyr, adsorption/desorption in soils, Triclopyr, volatilization, 174:35 174:28 Triclopyr-butotyl, hydrolytic profile, 175: Triclopyr BEE, see triclopyr 2-butoxye- 190 thyl ester, 174:23 Trifluralin hydrolysis, 175:160 Triclopyr, chemical name, 174:20 Trifluralin, hydrolytic profile, 175:232 Cumulative and Comprehensive Subject Matter Index Volumes 171–180 213

Triflusulfuron methyl, hydrolytic profile, Variscite, phosphate fertilizer, 177:11 175:224 Verbutin, synergism with fipronil, 176:5 Triforine, hydrolysis pathway, 175:161 Vertebrate biomonitors, petroleum crude Triforine, hydrolytic profile, 175:232 oil effects, 176:88 Trout, aflatoxin feeding studies, 171:163 Vertebrate biomonitors, ranked for utility, Turflon®, triclopyr, 174:20 176:113 Vertebrate biomonitors, ranked for vulner- UFs, used estimating warfare agent RfDs, ability to contaminants, 176:115 172:70 Vertebrate biomonitors, ranking methodol- Uncertainty factor, DINP human hazard, ogy, 176:71 172:113 Vertebrate biomonitors, sensitivity rank, Uncertainty factors (Ufs), defined, 172:68 176:85 Uncertainty factors, used estimating war- Vertebrate biomonitors, utility rank, 176: fare agent RfDs, 172:70 85 Universal Waste Rule, pesticide disposal, Vertebrate biomonitors, vulnerability 177:129 rank, 176:85 Unscheduled DNA synthesis, DINP test- Vertebrate rank order, persistent organic ing, 172:108 pollutant effects, 176:79 Uranium, house dust concentrations, 175: Vertebrate toxicity, avermectins, 171:126 30 Vertebrate vulnerability to environmental Urban effect, hair trace element contam, contaminants, 176:67 ff. 175:61 Vertebrates, ease of collection, 176:71 Urea herbicides, hydrolysis, 175:105 Vertebrates, geographic occurrence, 176: Urea herbicides, structures & hydrolytic 71 profiles, 175:198 Vertebrates in biomonitoring environmen- Ureas, alkaline hydrolysis mechanisms, tal contaminants, 176:67 ff. 175:107 Vertebrates, pollutant exposure potential, Urine contamination, veterinary medi- 176:71, 73 cines, 180:22 Vertebrates, pollutant sensitivity, 176:73 UV disinfection today, 171:38 Vertebrates, population resilience, 176:73 UV irradiation, history of use in water Vertebrates, quantity of existing exposure treatment, 171:26 data, 176:72 UV irradiation, increasing resistance in Vertebrates, vulnerability indices, 176:72 bacteria, 171:1 ff. Vertebrates, vulnerability to cholinester- UV irradiation, mechanisms of action, ase-inhibiting pesticides, 176:81 171:5 Very volatile organic compounds UV light dosages, water treatment (table), (VVOCs), 175:2 171:27 Veterinary anesthetics, 180:10 UV light, mechanisms of damage to bacte- Veterinary antibiotics, 180:9, 10 ria, 171:29 Veterinary antifungals, 180:10, 12 UV light, used as a disinfectant by nature, Veterinary aquaculture medicines, 180:12, 171:28 17 UV use and antibiotic resistance in bacte- Veterinary drug degradation scenarios ria, 171:34 (data), 180:37 UV-tolerant bacteria, 171:30 Veterinary drugs, aquatic toxicity, 180:44 ff. Vacuuming, house dust sampling, 175:9 Veterinary drugs, CAS numbers (table), Vapor phase photochemistry, described, 180:76 172:145, 147, 168 Veterinary drugs, chemical names (table), Vapor pressures, pyrethroids, 174:52, 53 180:76 214 Cumulative and Comprehensive Subject Matter Index Volumes 171–180

Veterinary drugs, terrestrial toxicity, 180: Veterinary medicines, fish contamination, 63 ff. 180:24 Veterinary ectoparasiticides, 180:9, 10 Veterinary medicines, freshwater contami- Veterinary endectocides, 180:9, 11 nation, 180:18 Veterinary feed additives, 180:2 Veterinary medicines, groundwater con- Veterinary growth promoters, 180:2, tamination, 180:20 12 Veterinary medicines, marine contamina- Veterinary hormones, 180:10, 12 tion, 180:25 Veterinary International Cooperation on Veterinary medicines, metabolism/envi- Harmonisation, 180:5 ronmental fate, 180:31 Veterinary medicine uses, 180:9, 15 Veterinary medicines, metabolism of ma- Veterinary medicines, aquatic toxicity, jor classes, 180:32 180:43 ff. Veterinary medicines, oestrogenic activity Veterinary medicines, CAS numbers (ta- environment, 180:72 ble), 180:76 Veterinary medicines, Phase I decision Veterinary medicines, chemical names (ta- tree, 180:6 ble), 180:76 Veterinary medicines, Phase II decision Veterinary medicines, degradation scenar- tree, 180:7 ios (data), 180:37 Veterinary medicines, responsible authori- Veterinary medicines, disposal of un- ties, 180:2 wanted, 180:16 Veterinary medicines, risk assessment Veterinary medicines, endocrine-disrupt- models, 180:6 ing effects, 180:73 Veterinary medicines, sediment contami- Veterinary medicines, environment risk nation, 180:20. characterization, 180:5 Veterinary medicines, soil contamination, Veterinary medicines, environmental con- 180:22 taminants, 180:1 ff. Veterinary medicines, soil sorption data Veterinary medicines, environmental haz- (table), 180:35 ards, 180:36 Veterinary medicines, terrestrial toxicity, Veterinary medicines, environmental mon- 180:63 ff. itoring data, 180:18 ff. Veterinary medicines, Tier A decision Veterinary medicines, environmental oc- tree, 180:4 currence, 180:17 Veterinary medicines, use scenarios, 180: Veterinary medicines, environmental path- 2, 9 ways, 180:13 Veterinary medicines used in UK (table), Veterinary medicines, environmental risk 180:10 assessment, 180:3 Veterinary pesticides, aquatic toxicity, Veterinary medicines, exposure assess- 180:44 ff. ment models, 180:8 Veterinary pesticides, terrestrial toxicity, Veterinary medicines, fate in manure 180:63 ff. slurry, 180:32, 34 VETPEC model, veterinary medicines, Veterinary medicines, fate in sediment, 180:9 180:36 Vinclozolin, hydrolytic profile, 175:204 Veterinary medicines, fate in soil, Vistula River, nutrient load to Gulf of 180:33 Gdan´sk, 179:4, 6 Veterinary medicines, fate in surface wa- Vivianite, phosphate fertilizer, 177:11 ters, 180:34 VOCs (volatile organic compounds), 175: Veterinary medicines, feces/urine contami- 2 nation, 180:22 Volatile organic compounds (VOCs), 175:2 Cumulative and Comprehensive Subject Matter Index Volumes 171–180 215

Volatilization boundary condition, methyl Waterborne pathogenic protozoa, 180:94 bromide, 177:71 Waukegan Harbor, PCB-contamination re- Vulnerability index, persistent organic pol- mediation, 174:10 lutants, 176:77 Waxes, epicuticular effects on OP photo- Vulnerability index, vertebrate rank order degradation, 172:182 persistent pollutants, 176:80 White-blooded icefishes, Antarctica, 171: Vulnerability indices, vertebrate biomoni- 54 tors, 176:73 Wildlife, exposure organophosphorus VVOCs (very volatile organic com- (OP) insecticides, 172:21 ff. pounds), 175:2 Wildlife risk, fipronil insecticide, 176:37 VX, review summary, 172:73, 76 Wildlife toxicity, avermectins, 171:126 VX, RfDs & UFs, 172:68 Wipe sampling, OSHA, house dust, 175:10

Warfare agents (chemical), oral reference X-ray fluorescence, hair trace element doses, 172:65 ff. analysis, 175:65 Waste disposal, pesticide, 177:123 ff. Xenobiotic effects on teleosts’ skeletal Waste treatment of soils, shifts metals to system, 172:1 ff. more mobile forms, 177:9 Xenobiotics, house dust concentrations Wastewater chlorination, MAR-bacterial benchmarks, 175:33 selection, 171:22 Wastewater disposal, pesticide contami- Zero-valent iron treatment, pesticide con- nated, 177:143 taminated soils, 177:164 Water chlorination, increasing resistance Zeta potential, bacterial cells, 171:6 in bacteria, 171:1 ff. Zetacypermethrin, see cypermethrin, 174: Water chlorine disinfection today, 171:25 82 Water, photochemical transformation or- Zinc, algal toxicity (table), 178:37 ganophosphates, 172:166 Zinc concentrations, Antarctic fish, 171: Water solubility, metal phosphate com- 53 ff., 63 pounds, 177:25 Zinc fixation in soils, 178:5 Water solubility, pyrethroids, 174:52, 54 Zinc, occupational hair levels, 175:58 Water UV disinfection today, 171:38 Zinc, soil contaminant sources, 177:3 Water-insoluble phosphates, effects my- Zinc, toxicity to earthworms, 178:11 corrihizal plants, 177:32 Zinc, toxicity to springtails, 178:11 INFORMATION FOR AUTHORS Reviews of Environmental Contamination and Toxicology Edited by George W. Ware Published by Springer-Verlag New York ؒ Berlin ؒ Heidelberg ؒ Hong Kong London ؒ Milan ؒ Paris ؒ Tokyo

The original copy and one good photocopy of the manuscript, and a diskette with the electronic files for the manuscript, complete with figures and tables, are required. Manuscripts will be published in the order in which they are received, reviewed, and accepted. They should be sent to the Editor. Dr. George W. Ware 5794 E. Camino del Celador Tucson, Arizona 85750 Telephone and FAX: (520) 299–3735 Email: [email protected] 1. Manuscript: The manuscript, in English, should be typewritten, double-spaced 1 throughout (including reference section), on one side of 8 ⁄2 × 11-inch blank white paper, with at least one-inch margins. The first page should start with the title of the manuscript, name(s) of author(s), with the author affiliation(s) as first-page starred footnotes, and “Contents” section. Pages should be numbered consecutively in arabic numerals, includ- ing those bearing figures and tables only. In titles, in-text outline headings and subhead- ings, figure legends, and table headings only the initial word, proper names, and univer- sally capitalized words should be capitalized. Footnotes should be inserted in text and numbered consecutively in the text using arabic numerals. Tables should be typed on separate sheets and numbered consecutively within the text in arabic numerals; they should bear a descriptive heading, in lower case, which is underscored with one line and starts after the word “Table” and the appropriate arabic numeral; footnotes in tables should be designated consecutively within a table by the lower-case alphabet. Figures (including photos, graphs, and line drawings) should be numbered consecutively within the text in arabic numerals; each figure should be affixed to a separate page bearing a legend (below the figure) in lower case starting with the term “Fig.” and a number. To facilitate production, authors are strongly encouraged to submit their manuscripts (including figures and tables) in electronic form on diskette. Manuscripts may be submit- ted in DOS, Windows, or Macintosh format (but not UNIX) using popular word process- ing software (e.g., WordPerfect, Microsoft Word) or they can be saved as ASCII files. Tables can be prepared likewise or can be submitted as spreadsheets (e.g., Microsoft Excel). Figures may also be submitted electronically using such programs as Adobe Illustrator and Adobe Photoshop. The rules cannot be narrower than .25 pt. Gray screens should not be paler than 15% and should not be darker than 60%. Screens meant to be differentiated from one another must differ by at least 15%. Files can be saved both in .tif or .eps format only. Figures should be saved in both their original application and as PostScript files. Scanned reproductions of black and white art should be provided as 300 ppi TIFF files. Scanned color illustrations should be provided as TIFF files scanned at a minimum of 300 ppi with a 24-bit color depth. Please provide tables and figures in their own files, not to be included in text files. Authors with questions regarding electronic preparation of their manuscripts are encouraged to contact Jenny Wolkowicki at Springer- Verlag via phone (212–460-1732), FAX (212–533-5977), or Internet (JENNYW@ SPRINGER-NY.COM). 2. Summary: A concise but informative summary (double-spaced) must conclude the text; it should summarize the significant content and major conclusions presented. It 1 must not be longer than two 8 ⁄2 x 11-inch pages. As a summary, it should be more informative than the usual abstract. 3. References: All papers, books, and other works cited in the text must be included in a “References” section (also double-spaced) at the end of the manuscript. If comprehen- sive papers on the same subject have been published, they should be cited when the bibliographic citations extend farther back than to these papers. All papers cited in the text should be given parentheses and alphabetically when more than one reference is cited at a time, e.g. (Coats and Smith 1993; Holcombe et al. 1995; Stratton 1999), except when the author is mentioned, as for example, “and the study of Roberts and Stoydin (1991).” References to unpublished works should be kept to a mini- mum and mentioned only in the text itself in parentheses. References to published works are given at the end of the text in alphabetical order under the first author’s name and chronologically, citing all authors (surnames followed by initials throughout; do not use “and”) according to the following examples: Periodicals: Name(s), initials, year of publication in parentheses, full article title, journal title as abbreviated in the “ACS Style Guide: A Manual for Authors and Editors” of the American Chemical Society, volume number, colon, first and last page numbers. Example: Leistra MT (1990) Distribution of 1,3-dichloropropene over the phases in soil. J Agric Food Chem 18:1124–1126. Books: Name(s), initials, year of publication in parentheses, full title, edition, volume number, name of publisher, place of publication, first and last page numbers. Example: Gosselin R, Hodge H, Smith R, Gleason M (1986) Clinical Toxicology of Commer- cial Products, 4th Ed. Wilkins-Williams, Baltimore, MD pp 119–121. Work in an edited collection: Name(s), initials, year of publication in parentheses, full title. In: name(s) and initial(s) of editor(s), the abbreviation ed(s) in parentheses, name of publisher, place of publication, first and last page numbers. Example: Metcalf RL (1978) Fumigants. In: White-Stevens J (ed) Pesticides in the environment. Marcel Dekker, New York, pp 120–130. Abbreviations A acre min minute(s) bp boiling point M molar cal calorie mon month(s) cm centimeter(s) ng nanogram(s) d day(s) nm nanometer(s)(millimicron) ft foot (feet) N normal gal gallon(s) no. number(s) g gram(s) od outside diameter ha hectare(s) oz ounce(s) hr hour(s) ppb parts per billion (µg/kg) in. inch(es) ppm parts per million (mg/kg) id inside diameter ppt parts per trillion (ng/kg) kg kilogram(s) pg picogram(s) L liter(s) lb pound(s) mp melting point psi pounds per square inch m meter(s) rpm revolutions per minute m3 cubic meter(s) sec second(s) µg microgram(s) sp gr specific gravity µL microliter(s) sq square (as in “square m”) µm micrometer(s) vs versus mg milligram(s) wk week(s) mL milliliter(s) wt weight mm millimeter(s) yr year(s) mM millimolar Numbers: All numbers used with abbreviations and fractions or decimals are arabic numerals. Otherwise, numbers below ten are to be written out. Numerals should be used for a series (e.g., “0.5, 1, 5, 10, and 20 days”), for pH values, and for temperatures. When a sentence begins with a number, write it out. Symbols: Special symbols (e.g., Greek letters) must be identified in the margin, e.g. A=βb/2λ [beta] [lambda] Percent should be % in text, figures, and tables. Style and format: The following examples illustrate the style and format to be fol- lowed (except for abandonment of periods with abbreviations): Sklarew DS, Girvin DC (1986) Attenuation of polychlorinated biphenyls in soils. Rev Environ Contam Toxicol 98:1–41. Yang RHS (1986) The toxicology of methyl ethyl ketone. Residue Rev 97:19–35. References by the same author(s) are arranged chronologically. If more than one reference by the same author(s) published in the same year is cited, use a, b, c after year of publication in both text and reference list. 4. Illustrations: Illustrations may be included only when indispensable for the compre- hension of text. They should not be used in place of concise explanations in text. Sche- matic line drawings must be drawn carefully. For other illustrations, clearly defined black-and-white glossy photos are required. Should darts (arrows) or letters be required on a photo or other type of illustration, they should be marked neatly with a soft pencil on a duplicate copy or on an overlay, with the end of each dart indicated by a fine pinprick; darts and lettering will be transferred to the illustrations by the publisher. Photos should not be less than 5x7 inches in size. Alterations of photos in page proof stage are not permitted. Each photo or other illustration should be marked on the back, distinctly but lightly, with a soft pencil, with first author’s name, figure number, manu- script page number, and the side that is the top. If illustrations from published books or periodicals are used, the exact source of each should be included in the figure legend; if these “borrowed” illustrations are copyrighted by others, permission of the copyright holder to reproduce the illustrations must be se- cured by the author. Permissions forms are available from the Editor and upon comple- tion by the original publisher should be returned to the Editor. 5. Chemical Nomenclature: All pesticides and other subject-matter chemicals should be identified according to Chemical Abstracts, with the full chemical name in text in parentheses or brackets the first time a common or trade name is used. If many such names are used, a table of the names, their precise chemical designations, and their Chemical Abstract Numbers (CAS) should be included as the last table in the manu- script, with a numbered footnote reference to this fact on the first text page of the manu- script. 6. Miscellaneous: Abbreviations: Common units of measurement and other commonly abbreviated terms and designations should be abbreviated as listed below; if any others are used often in a manuscript, they should be written out the first time used, followed by the normal and acceptable abbreviation in parentheses [e.g., Acceptable Daily Intake (ADI), Angstrom (A˚ ), picogram (pg)]. Except for inch (in.) and number (no., when fol- lowed by a numeral), abbreviations are used without periods. Temperatures should be reported as “°C” or “°F” (e.g., mp 41° to 43°C). Because the metric system is the interna- tional standard, when pounds (lb) and gallons (gal) are used, the metric equivalent should follow in parentheses. 7. Proofreading scheme: The senior author must return the Master Set of page proofs to Springer-Verlag within one week of receipt. Author corrections should be clearly indicated on the proofs with ink, and in conformity with the standard “Proofreader’s Marks” accompanying each set of proofs. In correcting proofs, new or changed words or phrases should be carefully and legibly handprinted (not handwritten) in the margins. 8. Offprints: Senior authors receive 30 complimentary offprints of a published paper. Additional offprints may be ordered from the publisher at the time the principal author receives the proofs. Order forms for additional offprints will be sent to the senior author along with the page proofs. 9. Page charges: There are no page charges, regardless of length of manuscript. How- ever, the cost of alteration (other than corrections of typesetting errors) attributable to authors’ changes in the page proof, in excess of 10% of the original composition cost, will be charged to the authors. If there are further questions, see any volume of Reviews of Environmental Contami- nation and Toxicology or telephone the Editor (520–299-3735). Volume 159 is especially helpful for style and format.