Cumulative and Comprehensive Subject Matter Index Volumes 171–180 Abamectin, avermectin B1, 171:112 Acanthamoeba, human infections caused, 1 Aaetnefcson crop pests/benefi- 180:116Abamectin,effects cial insects, 171:115 Acanthamoeba, in air, dust & soil, 180: 0 Aaetnevrnetleffects, 171: 103Abamectin,environmental 115 Acanthamoeba, in animal wastes, 180:102 Abamectin, non-target insect effects, 171: Acanthamoeba, in sewage & biosolids, 116 180:102 Abamectin, resistance induction insect Acanthamoeba, in surface waters, 180: pests, 171:116 100 Abbreviations, scientific organizations, Acanthamoeba, in swimming pools, spas, 172:119 180:102 Abbreviations, toxicological, 176:4 Acanthamoeba, in tapwater & bottled wa- Abiotic coupling, manganese oxidation of ter, 180:101 Cr(III), 178:121 Acanthamoeba infection in AIDS patients, Abiotic hydrolysis, pesticides aquatic envi- 180:114 ronment, 175:79 ff. Acanthamoeba, interactions with Legio- Abiotic pesticide hydrolysis, adsorption ef- nella pneumophila, 180:114 fects, 175:85 Acanthamoeba keratitis, contact lenses as- Abiotic pesticide hydrolysis, clay effects, sociation, 180:119 175:88 Acanthamoeba keratitis, diagnosis, 180: Abiotic pesticide hydrolysis, cosolvent ef- 106 fects, 175:85 Acanthamoeba keratitis, eye infections, Abiotic pesticide hydrolysis, dissolved or- 180:104 ganic matter effects, 175:86 Acanthamoeba keratitis, immunity, 180: Abiotic pesticide hydrolysis, metal ions/ 110 175:88 Acanthamoeba keratitis, incidence &oxideseffects, Abiotic pesticide hydrolysis, micelle ef- pathogenicity, 180:109 fects, 175:89 Acanthamoeba keratitis, mechanisms in- Abiotic pesticide hydrolysis, modifying volved in, 180:118 environmental factors, 175:83 Acanthamoeba keratitis, risk factors, 180: Abiotic pesticide hydrolysis, pH rate pro- 121 files, 175:82 Acanthamoeba keratitis, symptoms in pa- Absorption coefficients (photochemical), tients, 180:105 organophosphates (table), 172:149 Acanthamoeba keratitis, treatment, 180:108 Acanthamoeba, bacterial endosymbionts, Acanthamoeba, life cycle (diag.), 180:97 180:98 Acanthamoeba, methods of identification, Acanthamoeba, currently identified spe- 180:96 cies (table), 180:95 Acanthamoeba, previously genus Hartma- Acanthamoeba eye infections, dose re- nella, 180:95 sponse, 180:17 Acanthamoeba resistance to water treat- Acanthamoeba, health effects, 180:103 ments, 180:117 167 168 Cumulative and Comprehensive Subject Matter Index Volumes 171–180 Acanthamoeba species group classifica- Acute toxicity, fipronil, 176:34 tion, 180:96 Acute toxicity, fipronil mammals, 176:34 Acanthamoeba spp. health effects, 180:93 ADI, fipronil, 176:46 ff. Adonis®, fipronil proprietary name, Acanthamoeba spp. potential waterborne 176:6 transmission, 180:93 ff. Adsorption, abiotic pesticide hydrolysis, Acanthamoeba, where found, 180: 99, 175:85 100 Adsorption coefficient (Kd), methyl bro- Acenaphthylene, PAH, 179:75 mide, 177:68 Acenapthene, PAH, 179:75 Adsorption/desorption coefficients soil, Acephate, hydrolysis pathways, 175:140 pyrethroids, 174:56 Acephate, sublethal AChE inhibition, Advisory Committee on Crop Protection aquatic organisms, 172:45 Chemistry, 177:125 Acetylcholine (ACh), synapse neurotrans- a.e. (acid equivalent) defined, 174:20 mitter, 172:150 Aerodynamic method, methyl bromide Acetylcholinesterase (AChE), function in volatilization, 177:85 nervous system, 172:22 Aflatoxin, ammoniation decontamination Acetylcholinesterase (AChE) inhibition, safety, 171:157 organophosphates, 172:2 Aflatoxin B1, conversion to aflatoxin M1 Acetylcholinesterase (AChE), insecticidal in cow’s milk, 171:157 activity role, 172:150 Aflatoxin B1, most potent of the four afla- Acetylcholinesterase inhibitors, tissue resi- toxins, 171:140 dues, 173:17 Aflatoxin hazard reduction, using ammoni- AChE (acetylcholinesterase), function in ation, 171:139 ff. nervous system, 172:22 Aflatoxin M1, conversion from aflatoxin AChE (acetylcholinesterase) inhibition, or- B1 in cow’s milk, 171:157 ganophosphates, 172:2 Aflatoxin M1, residues in Arizona milk, AChE (acetylcholinesterase), insecticidal 171:159 activity role, 172:150 Aflatoxin, reduction using ammonia-re- AChE inhibition, by non-OP or non-carba- lated procedures, 171:167 mate pesticides, 172:52 Aflatoxin, trout feeding studies, 171:163 AChE inhibition, organophosphate insecti- Aflatoxin-ammonia reaction products, cidal mode of action, 172:150 feed concentrations, 171:155 AChE inhibition, sublethal OP levels Aflatoxin-ammonia reaction products, aquatic organisms, 172:44 toxic potential, 171:156, 160 AChE inhibitors, CBRs, 173:5 Aflatoxin-ammonia reaction products, tox- AChE inhibitors, mode of action, 173:8 icity, 171:153, 160 AChE inhibitors, tissue residues, 173:17 Aflatoxin-ammonia reaction products, tox- Acid equivalent (a.e.), defined, 174:20 icological properties, 171:160 Acridine & its homocyclic analog anthra- Aflatoxin-ammoniation, feeding studies of cene (illus.), 173:41 contaminated feeds, 171:160 Acridine, anaerobic degradation pathway, Aflatoxin-contaminated feeds, mutagenic 173:45 potentials, 171:167 Acridine, photoenhanced toxicity different Aflatoxin-contaminated peanut meal, rat species (table), 173:60 feeding studies, 171:163 Acridine toxicity, species groups, 173:50 Aflatoxin-related ammonia decontamina- Acrolein, hydrolytic profile, 175:232 tion pathway (fig.), 171:152 Actinometry, light source intensity, 172: Aflatoxins, ammonia decontamination 142 efficacy, 171:149, 150 Cumulative and Comprehensive Subject Matter Index Volumes 171–180 169 Aflatoxins, ammonia treatment of contam- Air, proposed arsenic criteria, 180:156 inated cottonseed, 171:148 Air sampling adsorbents, methyl bromide, Aflatoxins, ammoniation chemistry effect, 177:56 171:151 Air sampling, methyl bromide, 177:54, 55 Aflatoxins, ammoniation decontamination Alachlor, degradation by photo-Fenton methods, 171:147 process, 177:160 Aflatoxins, animal feed levels vs edible Alachlor, hydrolytic profile, 175:194 tissue levels, 171:142, 143 Alcohol drinking, hair trace element con- Aflatoxins, Arizona cottonseed monitor- tamination, 175:55 ing results, 171:146 Aldicarb, catalysis by metal ions, 175:184 Aflatoxins, breakdown products from am- Aldicarb, hydrolysis pathways, 175:116 moniation (fig.), 171:152 Aldicarb, hydrolytic profile, 175:200 Aflatoxins, carcinogenicity, 171:140 Aldicarb sulfoxide, hydrolytic profile, Aflatoxins chemistry, ammoniation effect, 175:200 171:151 Aldoxycarb, hydrolytic profile, 175:200 Aflatoxins, FDA action levels animal Aldrin, hydrolytic profile, 175:206 feeds, 171:143 Alfalfa leafcutter bee, spinosad toxicity, Aflatoxins, FDA action levels cow’s milk, 179:42 171:144 Algae, chromium toxicity, 178:128 Aflatoxins, FDA feedstuffs surveillance Algae, environmental metals risk monitor, results, 171:146 178:23 ff. Aflatoxins, feed blending to reduce levels, Algae test protocols for toxicity, 178:26 171:144 Algal Assay Procedure Bottle Test (EPA), Aflatoxins, hepatotoxicity, 171:139 178:23 Aflatoxins, human liver cancer risk, 171: Algal culture techniques, toxicity tests, 141 178:27 Aflatoxins, legal history/action levels, Algal metal toxicity, effects measure- 171:142 ments, 178:37 Aflatoxins, list of contaminated feed- Algal metal toxicity, regulatory context, stuffs, 171:146 178:25 Age effect, hair trace element contamina- Algal metal toxicity testing, 178:23 ff. tion, 175:52 Algal metal toxicity testing, acclimation/ Aging effect on metal availability in soils, adaptation laboratory, 178:41 178:1 ff. Algal metal toxicity testing, adsorption, Aging, increases in metal availability, 178:39 soils, 178:9 Algal metal toxicity testing, inoculum Aging metals, bioavailability to inverte- rate, 178:38 brates, 178:11 Algal metal toxicity testing, lab/field ex- Aging metals, soil availability, 178:2 trapolation, 178:42 Ah-receptor agonists, CBRs, 173:5 Algal metal toxicity testing, toxicity mech- Ah-receptor agonists, defined, 173:2 anisms, 178:39 Ah-receptor agonists, mode of action, Algal metal toxicity testing, uptake, 178: 173:839 Ah-receptor agonists, tissue residues, 173: Algal metal toxicity testing, variables af- 20 fecting results, 178:43 AIDS patients, Acanthamoeba effects, Algal sensitivity, toxicants, interspecific 180:114 differences, 178:35 Air pollution, hair trace element contami- Algal sensitivity, toxicants, intraspecies nation, 175:61 variability, 178:36 170 Cumulative and Comprehensive Subject Matter Index Volumes 171–180 Algal species used in standard toxicity Ammoniation, aflatoxin hazard reduction, testing, 178:34 171:139 ff. Algal toxicity testing, test media, 178:28 Ammoniation, aflatoxin-related break- Aliphatic dithiophosphates, photochemis- down products (fig.), 171:152 try, 172:195 Ammoniation, aflatoxins reduction meth- Aliphatic thiophosphates, photochemistry, ods, 171:147 172:156 Ammoniation, corn aflatoxin decontami- Alkyl N-arylcarbamate hydrolysis, 175: nation efficacy, 171:150 112 Ammoniation, effect on aflatoxin chemis- Allethrin, dimer formation in alkaline hy- try, 171:151 drolysis, 175:94 Ammoniation, feeding studies of afla- Allethrin, hydrolytic profile, 175:192 toxin-contaminated feeds, 171:160 Alloxidim sodium, Beckmann rearrange- Amphibians, arsenic effects, 180:144 ment, 175:154 Ampicillin resistant bacteria, 171:23 Alumina aging in soils, 178:4 Anabaena flos-aquau (alga), toxicity test- Amide herbicides, structures & hydrolytic ing, 178:34 profiles, 175:194 Anaerobic degradation pathway, acridine, Amide hydrolysis mechanisms, 175:100 173:45 Amide pesticide hydrolysis, kinetics mech- Anaerobic
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages53 Page
-
File Size-