Collision Avoidance Maneuvers

Total Page:16

File Type:pdf, Size:1020Kb

Collision Avoidance Maneuvers National Aeronautics and Space Administration U.S. Space Debris Environment, Operations, and Research Updates J.-C. Liou, Ph.D. Chief Scientist for Orbital Debris National Aeronautics and Space Administration United States 55th Session of the Scientific and Technical Subcommittee Committee on the Peaceful Uses of Outer Space, United Nations 29 January – 9 February 2018, Vienna National Aeronautics and Space Administration Presentation Outline • Space Missions in 2017 • Earth Satellite Population • Collision Avoidance Maneuvers • Postmission Disposal of U.S. Spacecraft • Space Situational Awareness (SSA) and the Space Debris Sensor (SDS) 2/12 National Aeronautics and Space Administration Worldwide Space Activity in 2017 • A total of 86 space launches placed more than 400 spacecraft into Earth orbits during 2017, following the trend of increase over the past decade 140 120 100 80 60 40 20 Worldwide LaunchesWorldwide (Earth Orbit orBeyond) 0 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 3/12 • Number of Objects 10000 12000 14000 16000 18000 20000 National Aeronautics and Space Administration Space and Aeronautics National objects Earth orbitcontinued in to increase 2017 in According Satellite to theCatalog, U.S. the number of10 cm andlarger 2000 4000 6000 8000 Evolution of the Cataloged Satellite Population 0 1956 1958 1960 Mission-relatedDebris Rocket Bodies Spacecraft Fragmentation Debris TotalObjects 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 Iridiumand 33 Collision2251 Cosmos of 1982 4 Year /12 1984 1986 Destruction of Fengyun 1988 1990 1992 1994 1996 1998 2000 - 2002 1C 2004 2006 2008 2010 are operational ~1700 2012 2014 2016 2018 • National Aeronautics and Space Administration Space and Aeronautics National Mass in Orbit (metric tons) Thetotal mass ofmaterial exceeded 7600 metric 2017 tonsin Mass in Near 1000 2000 3000 4000 5000 6000 7000 8000 0 1956 1958 1960 1962 1964 Debris Mission-related Fragmentation Debris Rocket Bodies Spacecraft Total Objects 1966 - 1968 Increase to Earth Continued Space 1970 1972 1974 1976 1978 1980 Year 5 1982 /12 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 National Aeronautics and Space Administration International Space Station and NASA Robotic Spacecraft Collision Avoidance Maneuvers • NASA has established conjunction assessment processes for its human spaceflight and uncrewed spacecraft to avoid accidental collisions with objects tracked by the U.S. Space Surveillance Network (SSN) – NASA also assists other U.S. government spacecraft owners with conjunction assessments and subsequent maneuvers • The International Space Station (ISS) has conducted 25 debris collision avoidance maneuvers since 1999 – None in 2016-2017, but an ISS visiting vehicle had one collision avoidance maneuver in 2017 • During 2017 NASA executed or assisted in the execution of 21 collision avoidance maneuvers by uncrewed spacecraft – Four maneuvers were conducted to avoid debris from Fengyun-1C – Two maneuvers were conducted to avoid debris from the collision of Cosmos 2251 and Iridium 33 – One maneuver was conducted to avoid the ISS 6/12 National Aeronautics and Space Administration Disposal of U.S. Spacecraft in GEO • Two U.S. commercial spacecraft ended operations in GEO in 2017 – Intelsat 701 and EchoStar 3 were launched before the establishment of the 2007 UN COPUOS Space Debris Mitigation Guidelines – Both spacecraft conducted disposal maneuvers to move away from the GEO region and postmission passivation operations (fuel depletion, discharging batteries), consistent with the UN COPUOS Space Debris Mitigation Guidelines • A third spacecraft, AMC-9, launched in 2003, was forced to end its mission after a serious anomaly – The operator was able to regain partial control of the spacecraft, raised its orbit away from GEO, and carried out several passivation operations International Minimum Height Maximum Height Spacecraft Designator above GEO above GEO Intelsat 701 1993-066A 264 km 279 km EchoStar 3 1997-059A 350 km 440 km AMC-9 2003-024A 277 km 430 km 7/12 National Aeronautics and Space Administration Iridium System Satellite Replacement and Disposal in LEO • In 2017, the operator of the 66 spacecraft Iridium constellation began replacement of spacecraft – Forty new spacecraft (“Iridium NEXT”) were launched in 2017 – Thirteen first-generation spacecraft were removed from operational orbits for disposal and passivation, consistent with the UN COPUOS Space Debris Mitigation Guidelines • Six decayed from orbit and reentered so far, three are expected to reenter by 2020, and the remaining four are expected to reenter within 25 years • As newly launched spacecraft enter into service, additional first- generation Iridium spacecraft will be removed from orbit for disposal Successful launch of the 4th Iridium NEXT mission on 22 December 2017. 8/12 National Aeronautics and Space Administration Space Situational Awareness in the United States • The U.S. Strategic Command (USSTRATCOM) continues to use the SSN to track the largest objects in the near-Earth environment – Objects approximately 10 cm and larger in low Earth orbit (LEO) – Objects approximately 1 m and larger in geosynchronous Earth orbit (GEO) – USSTRATCOM shares the SSA data with the global community via SSA Sharing Agreements and the space-track.org website • NASA uses additional radars, telescopes, and in-situ measurements to characterize objects too small to be tracked by the SSN, but large enough to threaten human spaceflight and robotic missions – Millimeter-sized debris represent the highest penetration risk to most operational spacecraft in LEO – NASA uses all available measurement data to develop the Orbital Debris Engineering Model (ORDEM) for mission impact risk assessments. The model is available at the NASA Orbital Debris Program Office’s website 9/12 National Aeronautics and Space Administration SSA Coverage in the United States 36,000 ES-MCAT (2018- ) MODEST (04-14) 10,000 Goldstone radars (>32.2º) HUSIR (Haystack radar) (>30º) 2000 Data Gap 1000 HST-WFPC2 (580x610 km, 93-09) USSTRATCOM Space Surveillance Network STS (95-11), SDS (2018-2020) Haystack Auxiliary (HAX) radar (>42.6º) 100 10 µm 100 µm 1 mm 1 cm 10 cm 1 m 10 m Particle Size (Boundaries are notional) 10/12 National Aeronautics and Space Administration Top Risk for Operational Spacecraft in LEO • The 2014-15 NASA Engineering and Safety Center study on the micrometeoroid and orbital debris assessment for the Joint Polar Satellite System provided the following findings – Millimeter-sized orbital debris pose the highest penetration risk to most operational spacecraft in LEO – The most effective means to collect direct measurement data on millimeter- sized debris above 600 km altitude is to conduct in situ measurements – There is currently no in situ data on such small debris above 600 km altitude • Since the orbital debris population follows a power-law size distribution, there are many more millimeter-sized debris than the large tracked objects – Current conjunction assessments and collision avoidance maneuvers against the tracked objects (which are typically 10 cm and larger) only address a small fraction (<1%) of the mission-ending risk from orbital debris • To address the millimeter-sized debris data gap above 600 km, NASA has recently developed an innovative in situ measurement instrument – the Space Debris Sensor (SDS) 11/12 National Aeronautics and Space Administration Measurements of Small Debris from the ISS • SpaceX-13, carrying resupply and NASA’s SDS, was launched to the ISS on 15 December 2017 – The SDS mission will mature NASA’s in situ measurement technologies and collect data on the sub-millimeter debris population at the ISS altitude – NASA will seek future mission opportunities to deploy SDS above 600 km altitude to fill the data gap on the millimeter-sized orbital debris for better SSA and reliable orbital debris impact risk assessments to improve the safe operations of spacecraft in LEO ISS MAGIK SpaceX-13 launch Animation SDS Columbus SpaceX-13 launch SDS SpaceX Dragon trunk 12/12.
Recommended publications
  • NASA Johnson Space Center Houston, Texas 77058 October 1999 Volume 4, Issue 4
    A publication of The Orbital Debris Program Office NASA Johnson Space Center Houston, Texas 77058 October 1999 Volume 4, Issue 4. NEWS Marshall Researchers Developing Patch Kit to Mitigate ISS Impact Damage Stephen B. Hall, FD23A procedure and developmental status. external patching for several reasons: time KERMIt Lead Engineer constraints, accessibility, work envelope, Marshall Space Flight Center External Repair Rationale collateral damage and EVA suit compatibility. KERMIt, a Kit for External Repair of The decision was made to develop a kit for A primary risk factor in repairing Module Impacts, is now punctured modules is the being developed at the time constraint involved. Marshall Space Flight Even given the relatively Center in Huntsville, Ala. large volume of air within Its purpose: to seal the Space Station upon punctures in the assembly completion, International Space Station analyses have shown that a caused by collisions with 1-inch-diameter hole can meteoroids or space cause pressure to drop to debris. The kit will enable unacceptable levels in just crewmembers to seal one hour. In that timeframe, punctures from outside the crew must conclude a damaged modules that module has been punctured, have lost atmospheric determine its location, pressure. Delivery of the remove obstructions kit for operational use is restricting access, obtain a scheduled for next year. repair kit and seal the leak. This article -- which This action would be a expands on material challenge even if the crew appearing in the July 1999 was not injured and no issue of “Orbital Debris significant subsystem Quarterly” -- discusses the damage had occurred. rationale for an externally applied patch, Astronaut installing toggle bolt in simulated puncture sample plate on Laboratory requirements influencing Module in Neutral Buoyancy Laboratory.
    [Show full text]
  • AI, Robots, and Swarms: Issues, Questions, and Recommended Studies
    AI, Robots, and Swarms Issues, Questions, and Recommended Studies Andrew Ilachinski January 2017 Approved for Public Release; Distribution Unlimited. This document contains the best opinion of CNA at the time of issue. It does not necessarily represent the opinion of the sponsor. Distribution Approved for Public Release; Distribution Unlimited. Specific authority: N00014-11-D-0323. Copies of this document can be obtained through the Defense Technical Information Center at www.dtic.mil or contact CNA Document Control and Distribution Section at 703-824-2123. Photography Credits: http://www.darpa.mil/DDM_Gallery/Small_Gremlins_Web.jpg; http://4810-presscdn-0-38.pagely.netdna-cdn.com/wp-content/uploads/2015/01/ Robotics.jpg; http://i.kinja-img.com/gawker-edia/image/upload/18kxb5jw3e01ujpg.jpg Approved by: January 2017 Dr. David A. Broyles Special Activities and Innovation Operations Evaluation Group Copyright © 2017 CNA Abstract The military is on the cusp of a major technological revolution, in which warfare is conducted by unmanned and increasingly autonomous weapon systems. However, unlike the last “sea change,” during the Cold War, when advanced technologies were developed primarily by the Department of Defense (DoD), the key technology enablers today are being developed mostly in the commercial world. This study looks at the state-of-the-art of AI, machine-learning, and robot technologies, and their potential future military implications for autonomous (and semi-autonomous) weapon systems. While no one can predict how AI will evolve or predict its impact on the development of military autonomous systems, it is possible to anticipate many of the conceptual, technical, and operational challenges that DoD will face as it increasingly turns to AI-based technologies.
    [Show full text]
  • L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
    databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade.
    [Show full text]
  • *Pres Report 97
    42 APPENDIX C U.S. and Russian Human Space Flights 1961–September 30, 1997 Spacecraft Launch Date Crew Flight Time Highlights (days:hrs:min) Vostok 1 Apr. 12, 1961 Yury A. Gagarin 0:1:48 First human flight. Mercury-Redstone 3 May 5, 1961 Alan B. Shepard, Jr. 0:0:15 First U.S. flight; suborbital. Mercury-Redstone 4 July 21, 1961 Virgil I. Grissom 0:0:16 Suborbital; capsule sank after landing; astronaut safe. Vostok 2 Aug. 6, 1961 German S. Titov 1:1:18 First flight exceeding 24 hrs. Mercury-Atlas 6 Feb. 20, 1962 John H. Glenn, Jr. 0:4:55 First American to orbit. Mercury-Atlas 7 May 24, 1962 M. Scott Carpenter 0:4:56 Landed 400 km beyond target. Vostok 3 Aug. 11, 1962 Andriyan G. Nikolayev 3:22:25 First dual mission (with Vostok 4). Vostok 4 Aug. 12, 1962 Pavel R. Popovich 2:22:59 Came within 6 km of Vostok 3. Mercury-Atlas 8 Oct. 3, 1962 Walter M. Schirra, Jr. 0:9:13 Landed 8 km from target. Mercury-Atlas 9 May 15, 1963 L. Gordon Cooper, Jr. 1:10:20 First U.S. flight exceeding 24 hrs. Vostok 5 June 14, 1963 Valery F. Bykovskiy 4:23:6 Second dual mission (withVostok 6). Vostok 6 June 16, 1963 Valentina V. Tereshkova 2:22:50 First woman in space; within 5 km of Vostok 5. Voskhod 1 Oct. 12, 1964 Vladimir M. Komarov 1:0:17 First three-person crew. Konstantin P. Feoktistov Boris G. Yegorov Voskhod 2 Mar. 18, 1965 Pavel I.
    [Show full text]
  • Securing Japan an Assessment of Japan´S Strategy for Space
    Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology
    [Show full text]
  • Spacecraft Dormancy Autonomy Analysis for a Crewed Martian Mission
    NASA/TM-2018-219965 Spacecraft Dormancy Autonomy Analysis for a Crewed Martian Mission Julia Badger Lead Author, Editor Contributors: Avionics Don Higbee Communications Tim Kennedy, Sharada Vitalpur ECLSS Miriam Sargusingh, Sarah Shull Guidance, Navigation and Control Bill Othon Power Francis J. Davies Propulsion Eric Hurlbert Robotics Julia Badger Software Neil Townsend Spacecraft Emergency Responses Jeff Mauldin, Emily Nelson Structures Kornel Nagy Thermal Katy Hurlbert Vehicle Systems Management Jeremy Frank Crew Perspective Stan Love National Aeronautics and Space Administration July 2018 NASA STI Program ... in Profile Since its founding, NASA has been dedicated to the CONFERENCE PUBLICATION. advancement of aeronautics and space science. The Collected papers from scientific and NASA scientific and technical information (STI) technical conferences, symposia, seminars, program plays a key part in helping NASA maintain or other meetings sponsored or this important role. co-sponsored by NASA. The NASA STI program operates under the SPECIAL PUBLICATION. Scientific, auspices of the Agency Chief Information Officer. technical, or historical information from It collects, organizes, provides for archiving, and NASA programs, projects, and missions, disseminates NASA’s STI. The NASA STI often concerned with subjects having program provides access to the NTRS Registered substantial public interest. and its public interface, the NASA Technical Report Server, thus providing one of the largest TECHNICAL TRANSLATION. collections of aeronautical and space science STI in English-language translations of foreign the world. Results are published in both non-NASA scientific and technical material pertinent to channels and by NASA in the NASA STI Report NASA’s mission. Series, which includes the following report types: Specialized services also include organizing TECHNICAL PUBLICATION.
    [Show full text]
  • The Cassini-Huygens Mission Overview
    SpaceOps 2006 Conference AIAA 2006-5502 The Cassini-Huygens Mission Overview N. Vandermey and B. G. Paczkowski Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 The Cassini-Huygens Program is an international science mission to the Saturnian system. Three space agencies and seventeen nations contributed to building the Cassini spacecraft and Huygens probe. The Cassini orbiter is managed and operated by NASA's Jet Propulsion Laboratory. The Huygens probe was built and operated by the European Space Agency. The mission design for Cassini-Huygens calls for a four-year orbital survey of Saturn, its rings, magnetosphere, and satellites, and the descent into Titan’s atmosphere of the Huygens probe. The Cassini orbiter tour consists of 76 orbits around Saturn with 45 close Titan flybys and 8 targeted icy satellite flybys. The Cassini orbiter spacecraft carries twelve scientific instruments that are performing a wide range of observations on a multitude of designated targets. The Huygens probe carried six additional instruments that provided in-situ sampling of the atmosphere and surface of Titan. The multi-national nature of this mission poses significant challenges in the area of flight operations. This paper will provide an overview of the mission, spacecraft, organization and flight operations environment used for the Cassini-Huygens Mission. It will address the operational complexities of the spacecraft and the science instruments and the approach used by Cassini- Huygens to address these issues. I. The Mission Saturn has fascinated observers for over 300 years. The only planet whose rings were visible from Earth with primitive telescopes, it was not until the age of robotic spacecraft that questions about the Saturnian system’s composition could be answered.
    [Show full text]
  • Gait Optimization for Multi-Legged Walking Robots, with Application to a Lunar Hexapod
    GAIT OPTIMIZATION FOR MULTI-LEGGED WALKING ROBOTS, WITH APPLICATION TO A LUNAR HEXAPOD A DISSERTATION SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Daniel Ch´avez-Clemente January 2011 © 2011 by Daniel Chavez Clemente. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/px063cb7934 Includes supplemental files: 1. This video shows a simulation of the zero-interaction gait optimization for the ATHLETE robot. (DanielChavezSwaySimulation.wmv) ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Stephen Rock, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. J Gerdes I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Jean-Claude Latombe I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Terrence Fong Approved for the Stanford University Committee on Graduate Studies.
    [Show full text]
  • Trends in Space Commerce
    Foreword from the Secretary of Commerce As the United States seeks opportunities to expand our economy, commercial use of space resources continues to increase in importance. The use of space as a platform for increasing the benefits of our technological evolution continues to increase in a way that profoundly affects us all. Whether we use these resources to synchronize communications networks, to improve agriculture through precision farming assisted by imagery and positioning data from satellites, or to receive entertainment from direct-to-home satellite transmissions, commercial space is an increasingly large and important part of our economy and our information infrastructure. Once dominated by government investment, commercial interests play an increasing role in the space industry. As the voice of industry within the U.S. Government, the Department of Commerce plays a critical role in commercial space. Through the National Oceanic and Atmospheric Administration, the Department of Commerce licenses the operation of commercial remote sensing satellites. Through the International Trade Administration, the Department of Commerce seeks to improve U.S. industrial exports in the global space market. Through the National Telecommunications and Information Administration, the Department of Commerce assists in the coordination of the radio spectrum used by satellites. And, through the Technology Administration's Office of Space Commercialization, the Department of Commerce plays a central role in the management of the Global Positioning System and advocates the views of industry within U.S. Government policy making processes. I am pleased to commend for your review the Office of Space Commercialization's most recent publication, Trends in Space Commerce. The report presents a snapshot of U.S.
    [Show full text]
  • Structural Design for Combined Mechanical and Thermal Loads
    Structural The Space Shuttle—a mostly reusable, human-rated launch vehicle, spacecraft, space habitat, laboratory, re-entry vehicle, and Design aircraft—was an unprecedented structural engineering challenge. The design had to meet several demands, which resulted in innovative Introduction solutions. The vehicle needed to be highly reliable for environments Gail Chapline that could not be simulated on Earth or fully modeled analytically Orbiter Structural Design for combined mechanical and thermal loads. It had to accommodate Thomas Moser payloads that were not defined or characterized. It needed to be weight Glenn Miller efficient by employing a greater use of advanced composite materials, Shuttle Wing Loads—Testing and Modification Led to Greater Capacity and it had to rely on fracture mechanics for design with acceptable Tom Modlin life requirements. It also had to be certified to meet strength and life Innovative Concept for Jackscrews requirements by innovative methods. During the Space Shuttle Prevented Catastrophic Failures John Fraley Program, many such structural design innovations were developed Richard Ring and extended to vehicle processing from flight to flight. Charles Stevenson Ivan Velez Orbiter Structure Qualification Thomas Moser Glenn Miller Space Shuttle Pogo— NASA Eliminates “Bad Vibrations” Tom Modlin Pressure Vessel Experience Scott Forth Glenn Ecord Willard Castner Nozzle Flexible Bearing— Steering the Reusable Solid Rocket Motor Coy Jordan Fracture Control Technology Innovations— From the Space Shuttle Program to Worldwide Use Joachim Beek Royce Forman Glenn Ecord Willard Castner Gwyn Faile Space Shuttle Main Engine Fracture Control Gregory Swanson Katherine Van Hooser 270 Engineering Innovations Orbiter Structural beyond the state of the art were needed.
    [Show full text]
  • China Dream, Space Dream: China's Progress in Space Technologies and Implications for the United States
    China Dream, Space Dream 中国梦,航天梦China’s Progress in Space Technologies and Implications for the United States A report prepared for the U.S.-China Economic and Security Review Commission Kevin Pollpeter Eric Anderson Jordan Wilson Fan Yang Acknowledgements: The authors would like to thank Dr. Patrick Besha and Dr. Scott Pace for reviewing a previous draft of this report. They would also like to thank Lynne Bush and Bret Silvis for their master editing skills. Of course, any errors or omissions are the fault of authors. Disclaimer: This research report was prepared at the request of the Commission to support its deliberations. Posting of the report to the Commission's website is intended to promote greater public understanding of the issues addressed by the Commission in its ongoing assessment of U.S.-China economic relations and their implications for U.S. security, as mandated by Public Law 106-398 and Public Law 108-7. However, it does not necessarily imply an endorsement by the Commission or any individual Commissioner of the views or conclusions expressed in this commissioned research report. CONTENTS Acronyms ......................................................................................................................................... i Executive Summary ....................................................................................................................... iii Introduction ................................................................................................................................... 1
    [Show full text]
  • NASA Range Capabilities Roadmap
    NASA Transformational Spaceport and Range Capabilities Roadmap Interim Review to National Research Council External Review Panel March 31, 2005 Karen Poniatowski NASA Space Operation Mission Directorate Asst. Assoc. Administrator, Launch Services Agenda • Overview/Introduction • Roadmap Approach/Considerations – Roadmap Timeline/Spirals – Requirements Development • Spaceport/Range Capabilities – Mixed Range Architecture • User Requirements/Customer Considerations – Manifest Considerations – Emerging Launch User Requirements • Capability Breakdown Structure/Assessment • Roadmap Team Observations – Transformational Range Test Concept • Roadmap Team Conclusions • Next Steps 2 National Space Transportation Policy Signed December 2004 • National Policy Focus on Assuring Access to Space “The Federal space launch bases and ranges are vital components of the U.S. space transportation infrastructure and are national assets upon which access to space depends for national security, civil, and commercial purposes. The Secretary of Defense and the Administrator of the National Aeronautics and Space Administration shall operate the Federal launch bases and ranges in a manner so as to accommodate users from all sectors; and shall transfer these capabilities to a predominantly space-based range architecture to accommodate, among others, operationally responsive space launch systems and new users.” • NASA seeks to link the Transformational Spaceport and Range Capability Roadmap activity with the new National Space Transportation Policy direction as we
    [Show full text]