NASA Range Capabilities Roadmap
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Call for M5 Missions
ESA UNCLASSIFIED - For Official Use M5 Call - Technical Annex Prepared by SCI-F Reference ESA-SCI-F-ESTEC-TN-2016-002 Issue 1 Revision 0 Date of Issue 25/04/2016 Status Issued Document Type Distribution ESA UNCLASSIFIED - For Official Use Table of contents: 1 Introduction .......................................................................................................................... 3 1.1 Scope of document ................................................................................................................................................................ 3 1.2 Reference documents .......................................................................................................................................................... 3 1.3 List of acronyms ..................................................................................................................................................................... 3 2 General Guidelines ................................................................................................................ 6 3 Analysis of some potential mission profiles ........................................................................... 7 3.1 Introduction ............................................................................................................................................................................. 7 3.2 Current European launchers ........................................................................................................................................... -
AI, Robots, and Swarms: Issues, Questions, and Recommended Studies
AI, Robots, and Swarms Issues, Questions, and Recommended Studies Andrew Ilachinski January 2017 Approved for Public Release; Distribution Unlimited. This document contains the best opinion of CNA at the time of issue. It does not necessarily represent the opinion of the sponsor. Distribution Approved for Public Release; Distribution Unlimited. Specific authority: N00014-11-D-0323. Copies of this document can be obtained through the Defense Technical Information Center at www.dtic.mil or contact CNA Document Control and Distribution Section at 703-824-2123. Photography Credits: http://www.darpa.mil/DDM_Gallery/Small_Gremlins_Web.jpg; http://4810-presscdn-0-38.pagely.netdna-cdn.com/wp-content/uploads/2015/01/ Robotics.jpg; http://i.kinja-img.com/gawker-edia/image/upload/18kxb5jw3e01ujpg.jpg Approved by: January 2017 Dr. David A. Broyles Special Activities and Innovation Operations Evaluation Group Copyright © 2017 CNA Abstract The military is on the cusp of a major technological revolution, in which warfare is conducted by unmanned and increasingly autonomous weapon systems. However, unlike the last “sea change,” during the Cold War, when advanced technologies were developed primarily by the Department of Defense (DoD), the key technology enablers today are being developed mostly in the commercial world. This study looks at the state-of-the-art of AI, machine-learning, and robot technologies, and their potential future military implications for autonomous (and semi-autonomous) weapon systems. While no one can predict how AI will evolve or predict its impact on the development of military autonomous systems, it is possible to anticipate many of the conceptual, technical, and operational challenges that DoD will face as it increasingly turns to AI-based technologies. -
FY2009 NRO Congressional Budget Justification Book
NATIONAL RECONNAISSANCE OFFICE 14675 Lee Road Chantilly, VA 20151-1715 6 July 2009 Mr. Steven Aftergood Senior Research Analyst Federation of American Scientists 1725 DeSales St NW, 6th Floor Washington, D.C. 20036 Dear Mr. Aftergood: This is in response to your faxed letter, dated 5 March 2008, received in the Information Management Services Center of the National Reconnaissance Office (NRO) on 7 March 2008. Pursuant to the Freedom of Information Act (FOIA), you requested "a copy of all unclassified portions of the NRO Congressional Budget Justification Book (CBJB) for Fiscal Year 2009.° Your request was processed in accordance with the Freedom of Information Act, 5 U.S.C. § 552, as amended. A thorough search of our files and databases located one record, consisting of 465 pages that is responsive to your request. This record is being released to you in part. Material withheld is denied pursuant to FOIA exemption(b) (3) which applies to information specifically exempt by statute, 50 U.S.C. § 403-1(i) which protects intelligence sources and methods from unauthorized disclosure. AS you are aware, the FOIA authorizes federal agencies to assess fees for record services. Based upon the information provided, you have been placed in the "other" category of requesters, which means that a requester is responsible for charges incurred for the cost of search time exceeding two hours and duplication in excess of the first 100 pages of document reproduction in the processing of this request. In your request, you expressed a willingness to pay fees up to the amount of $50.00. -
Three Events Occurred During This Period Which Together Constitute a Major Milestone in the Way Meteorological Data Are Pr
6.1 DESIGNING WEATHER SUPPORT FOR FUTURE RANGES – RESULTS FROM THE ADVANCED RANGE TECHNOLOGY WORKING GROUP WEATHER SUBGROUP William P. Roeder1 and John T. Madura2 145th Weather Squadron, Patrick Air Force Base, FL 2Weather Office, Kennedy Space Center, FL 1. INTRODUCTION 2. ARTWG WEATHER TECHNOLOGY ROADMAP The Advanced Range Technology Working Group The ARTWG Weather Subgroup, which included (ARTWG) was formed to identify the technologies government, industry and university participants, prepared required for the best performing, most cost-effective future a technology roadmap summarizing desired major space launch and test Ranges, and the R&D required to capabilities for optimal meteorological support to space achieve those technologies. The ARTWG resulted from a ranges for 25 years into the future. The 25-year planning White House Office of Science and Technology Policy time was further divided into three sub-periods (Table-2). (2000) report on the future of America’s space program. The near term requirements can be met with technology The White House tasked NASA and the U.S. Air Force to that is currently available and implementation can begin cooperatively identify the R&D requirements necessary to immediately. The mid term requirements are those that ensure the future competitiveness of U.S. ranges. Two will likely be available in 5-10 years or will require a small parallel initiatives resulted, the ARTWG (2004) co-chaired amount of development. The far term requirements are by NASA and the Air Force, and the companion Advanced advanced capabilities that will require considerable time Spaceport Technology Working Group (ASTWG) (2003), for research and development. -
Federal Register/Vol. 84, No. 72/Monday, April 15, 2019
15296 Federal Register / Vol. 84, No. 72 / Monday, April 15, 2019 / Proposed Rules DEPARTMENT OF TRANSPORTATION Docket: Background documents or FSS—Flight safety system comments received may be read at PC—Probability of casualty Federal Aviation Administration http://www.regulations.gov at any time. PI—Probability of impact Follow the online instructions for RLV—Reusable launch vehicle 14 CFR Parts 401, 404, 413, 414, 415, accessing the docket or go to the Docket Table of Contents 417, 420, 431, 433, 435, 437, 440, and Operations in Room W12–140 of the 450 I. Overview of Proposed Rule West Building Ground Floor at 1200 II. Background [Docket No.: FAA–2019–0229; Notice No. New Jersey Avenue SE, Washington, A. History 19–01] DC, between 9 a.m. and 5 p.m., Monday B. Licensing Process through Friday, except Federal holidays. C. National Space Council RIN 2120–AL17 FOR FURTHER INFORMATION CONTACT: For D. Streamlined Launch and Reentry Licensing Requirements Aviation Streamlined Launch and Reentry questions concerning this action, contact Randy Repcheck, Office of Rulemaking Committee Licensing Requirements III. Discussion of the Proposal Commercial Space Transportation, A. The FAA’s Approach To Updating and AGENCY: Federal Aviation Federal Aviation Administration, 800 Streamlining Launch and Reentry Administration (FAA), Department of Independence Avenue SW, Washington, Regulations Transportation (DOT). DC 205914; telephone (202) 267–8760; B. Single Vehicle Operator License ACTION: Notice of proposed rulemaking email [email protected]. C. Performance-Based Requirements and (NPRM). SUPPLEMENTARY INFORMATION: Means of Compliance D. Launch From a Federal Launch Range SUMMARY: This rulemaking would Authority for This Rulemaking E. -
1.1 a Survey of the Lightning Launch Commit Criteria
1.1 A Survey Of The Lightning Launch Commit Criteria William P. Roeder and Todd M. McNamara 45th Weather Squadron, Patrick AFB, FL 1. 45 WS MISSION The 45th Weather Squadron (45 WS) provides comprehensive weather services to America’s space program at Cape Canaveral Air Force Station (CCAFS) and NASA’s Kennedy Space Center (KSC) (Harms et al., 1999). These services include weather support for pre-launch, launch, post-launch, routine weather forecast, 24/7 watches/warnings, flight briefings, and special missions. A major part of the 45 WS support to launch is evaluating and forecasting the Lightning Launch Commit Criteria (LLCC) (Roeder et al., 1999) and User Launch Commit Criteria (Boyd et al., 1995). The LLCC protect against natural and rocket triggered lightning strikes to the in-flight rocket. The User Launch Commit Criteria include low level winds so the rocket doesn’t Figure 1. Average cloud-to-ground lighting flash density topple or get blown back into the launch pad 2 during launch, and ceiling and visibility so the (flashes/km •year) for the CONUS (1989–1993), corrected for detection efficiency. Data are from the ascending rocket can be tracked by camera to National Lightning Detection Network. Figure provided ensure it is on the correct trajectory. Launch by Dr. Richard Orville, Texas A&M University. customers include the DoD, NASA, and commercial customers for approximately 30 launches per year. The launch vehicles supported 2. INTRODUCTION TO THE LIGHTNING recently include Titan, Atlas, Delta, Athena, LAUNCH COMMIT CRITERIA Pegasus, and Space Shuttle space launch vehicles, and Trident ballistic missiles. -
America's Spaceport
National Aeronautics and Space Administration America’s Spaceport www.nasa.gov America’s Spaceport John F. Kennedy Space Center “This generation does not intend to founder in the backwash of the coming age of space. We mean to be a part of it — we mean to lead it.” President John Fitzgerald Kennedy September 12, 1962 he John F. Kennedy Space Center — America’s Spaceport — is the doorway to upon Spanish treasure ships laden with riches from space. From its unique facilities, humans and machines have begun the exploration the mines of Mexico and Peru. Shoals, reefs and T of the solar system, reaching out to the sun, the moon, the planets and beyond. storms also exacted their toll on the treasure fleets, While these spectacular achievements have fired the imagination of people throughout leaving behind a sunken bonanza now being reaped the world and enriched the lives of millions, they represent only a beginning. At America’s by modern-day treasure hunters. Spaceport, humanity’s long-cherished dream of establishing permanent outposts on the new space frontier is becoming a reality. By the early 18th century, America’s Spaceport Origins echoed with the footsteps of other intruders: Yet, our leap toward the stars is also an epilogue to a rich and colorful past . an almost English settlers and their Indian allies (the latter to forgotten legacy replete with Indian lore, stalwart adventurers, sunken treasure and hardy become known as the Seminoles) from colonies in pioneers. Georgia and South Carolina. Thus began a new era of conflict and expansion that ouldw continue until The sands of America’s Spaceport bear the imprint of New World history from its earliest the end of the Second U.S. -
Spacecraft Dormancy Autonomy Analysis for a Crewed Martian Mission
NASA/TM-2018-219965 Spacecraft Dormancy Autonomy Analysis for a Crewed Martian Mission Julia Badger Lead Author, Editor Contributors: Avionics Don Higbee Communications Tim Kennedy, Sharada Vitalpur ECLSS Miriam Sargusingh, Sarah Shull Guidance, Navigation and Control Bill Othon Power Francis J. Davies Propulsion Eric Hurlbert Robotics Julia Badger Software Neil Townsend Spacecraft Emergency Responses Jeff Mauldin, Emily Nelson Structures Kornel Nagy Thermal Katy Hurlbert Vehicle Systems Management Jeremy Frank Crew Perspective Stan Love National Aeronautics and Space Administration July 2018 NASA STI Program ... in Profile Since its founding, NASA has been dedicated to the CONFERENCE PUBLICATION. advancement of aeronautics and space science. The Collected papers from scientific and NASA scientific and technical information (STI) technical conferences, symposia, seminars, program plays a key part in helping NASA maintain or other meetings sponsored or this important role. co-sponsored by NASA. The NASA STI program operates under the SPECIAL PUBLICATION. Scientific, auspices of the Agency Chief Information Officer. technical, or historical information from It collects, organizes, provides for archiving, and NASA programs, projects, and missions, disseminates NASA’s STI. The NASA STI often concerned with subjects having program provides access to the NTRS Registered substantial public interest. and its public interface, the NASA Technical Report Server, thus providing one of the largest TECHNICAL TRANSLATION. collections of aeronautical and space science STI in English-language translations of foreign the world. Results are published in both non-NASA scientific and technical material pertinent to channels and by NASA in the NASA STI Report NASA’s mission. Series, which includes the following report types: Specialized services also include organizing TECHNICAL PUBLICATION. -
Fy2010 Defense Budget
U N I T E D S T A T E S D E P A R T M E N T O F D E F E N S E FISCAL YEAR 2010 BUDGET REQUEST S U M M A R Y J U S T I F I C A T I O N • M A Y 2 0 0 9 On behalf of the President, I am pleased to transmit to Congress this volume that presents the Department of Defense’s budget request of $533.8 billion for Fiscal Year 2010. The purpose of the Secretary’s Summary Justification is to inform Cong ress and provide the American people a clear understanding of how their tax dollars are being invested to provide for our Nation’s defense. It includes: • An explanation of the Department’s missions, accomplishments, and priorities; • A summary of the request by Military Department and Defense agencies; • Information on special areas of interest and emphasis for Fiscal Year 2010; and • Details on the Department’s major weapons programs. The Military Departments and Defense agencies will provide Congress with additional detailed justification materials on this request. The requested funds would: provide military pay, benefits, and world-class healthcare for 2.3 million Soldiers, Sailors, Marines, and Airmen ($163.9 billion); support military operations and force readiness ($160.9 billion); invest in modernization ($186.1 billion); and support family housing and facilities ($23.0 billion). In addition to the $533.8 billion request, the Administration requests $130.0 billion for Fiscal Year 2010 to support ongoing Overseas Contingency Operations. -
Gait Optimization for Multi-Legged Walking Robots, with Application to a Lunar Hexapod
GAIT OPTIMIZATION FOR MULTI-LEGGED WALKING ROBOTS, WITH APPLICATION TO A LUNAR HEXAPOD A DISSERTATION SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Daniel Ch´avez-Clemente January 2011 © 2011 by Daniel Chavez Clemente. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/px063cb7934 Includes supplemental files: 1. This video shows a simulation of the zero-interaction gait optimization for the ATHLETE robot. (DanielChavezSwaySimulation.wmv) ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Stephen Rock, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. J Gerdes I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Jean-Claude Latombe I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Terrence Fong Approved for the Stanford University Committee on Graduate Studies. -
Delta II Aquarius/SAC-D Mission Overview
Mission Overview Delta II Aquarius/SAC-D Vandenberg Air Force Base, CA PMS 280C PMS 279C PMS 123C Black United Launch Alliance (ULA) is proud to launch the Aquarius/SAC-D mission. Aquarius/SAC-D will be launched aboard a Delta II 7320-10C launch vehicle from Vandenberg Air Force Base (VAFB), California. The Delta II will deliver the Aquarius/SAC-D spacecraft into Sun-synchronous orbit, where it will begin its mission to improve our understanding of Earth’s climate system by mapping the concentration of dissolved salt at the ocean’s surface. ULA provides Delta II launch services under the NASA Launch Services (NLS) contract with the NASA Kennedy Space Center Launch Services Program. We are delighted that NASA has chosen the Delta II for this mission developed by the Comision Nacional de Actividades Espaciales (CONAE), Argentina and the Jet Propulsion Laboratory (JPL) and built by Investigciones Aplicades (INVAP), Argentina. I congratulate the entire team for their significant efforts. ULA looks forward to continued launches of scientific space missions. Vernon L. Thorp NASA Program Manager United Launch Alliance 1 Atlas V AEHF-1 AQUARIUS/SAC-D OBSERvatORY | Overview The Aquarius/SAC-D Observatory is a joint U.S./Argentinian mission to map the salinity—the concentration of dissolved salt—at the ocean surface. This information is critical to improving our understanding of two major components of Earth’s climate system: the water cycle and ocean circulation. By measuring ocean salinity from space, the Aquarius/SAC-D mission will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. -
Collision Avoidance Maneuvers
National Aeronautics and Space Administration U.S. Space Debris Environment, Operations, and Research Updates J.-C. Liou, Ph.D. Chief Scientist for Orbital Debris National Aeronautics and Space Administration United States 55th Session of the Scientific and Technical Subcommittee Committee on the Peaceful Uses of Outer Space, United Nations 29 January – 9 February 2018, Vienna National Aeronautics and Space Administration Presentation Outline • Space Missions in 2017 • Earth Satellite Population • Collision Avoidance Maneuvers • Postmission Disposal of U.S. Spacecraft • Space Situational Awareness (SSA) and the Space Debris Sensor (SDS) 2/12 National Aeronautics and Space Administration Worldwide Space Activity in 2017 • A total of 86 space launches placed more than 400 spacecraft into Earth orbits during 2017, following the trend of increase over the past decade 140 120 100 80 60 40 20 Worldwide LaunchesWorldwide (Earth Orbit orBeyond) 0 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 3/12 • Number of Objects 10000 12000 14000 16000 18000 20000 National Aeronautics and Space Administration Space and Aeronautics National objects Earth orbitcontinued in to increase 2017 in According Satellite to theCatalog, U.S. the number of10 cm andlarger 2000 4000 6000 8000 Evolution of the Cataloged Satellite Population 0 1956 1958 1960 Mission-relatedDebris Rocket Bodies Spacecraft Fragmentation Debris TotalObjects 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 Iridiumand 33 Collision2251 Cosmos of 1982 4 Year /12 1984 1986