The Cassini-Huygens Mission Overview
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NASA Johnson Space Center Houston, Texas 77058 October 1999 Volume 4, Issue 4
A publication of The Orbital Debris Program Office NASA Johnson Space Center Houston, Texas 77058 October 1999 Volume 4, Issue 4. NEWS Marshall Researchers Developing Patch Kit to Mitigate ISS Impact Damage Stephen B. Hall, FD23A procedure and developmental status. external patching for several reasons: time KERMIt Lead Engineer constraints, accessibility, work envelope, Marshall Space Flight Center External Repair Rationale collateral damage and EVA suit compatibility. KERMIt, a Kit for External Repair of The decision was made to develop a kit for A primary risk factor in repairing Module Impacts, is now punctured modules is the being developed at the time constraint involved. Marshall Space Flight Even given the relatively Center in Huntsville, Ala. large volume of air within Its purpose: to seal the Space Station upon punctures in the assembly completion, International Space Station analyses have shown that a caused by collisions with 1-inch-diameter hole can meteoroids or space cause pressure to drop to debris. The kit will enable unacceptable levels in just crewmembers to seal one hour. In that timeframe, punctures from outside the crew must conclude a damaged modules that module has been punctured, have lost atmospheric determine its location, pressure. Delivery of the remove obstructions kit for operational use is restricting access, obtain a scheduled for next year. repair kit and seal the leak. This article -- which This action would be a expands on material challenge even if the crew appearing in the July 1999 was not injured and no issue of “Orbital Debris significant subsystem Quarterly” -- discusses the damage had occurred. rationale for an externally applied patch, Astronaut installing toggle bolt in simulated puncture sample plate on Laboratory requirements influencing Module in Neutral Buoyancy Laboratory. -
Exomars Schiaparelli Direct-To-Earth Observation Using GMRT
TECHNICAL ExoMars Schiaparelli Direct-to-Earth Observation REPORTS: METHODS 10.1029/2018RS006707 using GMRT S. Esterhuizen1, S. W. Asmar1 ,K.De2, Y. Gupta3, S. N. Katore3, and B. Ajithkumar3 Key Point: • During ExoMars Landing, GMRT 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, 2Cahill Center for Astrophysics, observed UHF transmissions and California Institute of Technology, Pasadena, CA, USA, 3National Centre for Radio Astrophysics, Pune, India Doppler shift used to identify key events as only real-time aliveness indicator Abstract During the ExoMars Schiaparelli separation event on 16 October 2016 and Entry, Descent, and Landing (EDL) events 3 days later, the Giant Metrewave Radio Telescope (GMRT) near Pune, India, Correspondence to: S. W. Asmar, was used to directly observe UHF transmissions from the Schiaparelli lander as they arrive at Earth. The [email protected] Doppler shift of the carrier frequency was measured and used as a diagnostic to identify key events during EDL. This signal detection at GMRT was the only real-time aliveness indicator to European Space Agency Citation: mission operations during the critical EDL stage of the mission. Esterhuizen, S., Asmar, S. W., De, K., Gupta, Y., Katore, S. N., & Plain Language Summary When planetary missions, such as landers on the surface of Mars, Ajithkumar, B. (2019). ExoMars undergo critical and risky events, communications to ground controllers is very important as close to real Schiaparelli Direct-to-Earth observation using GMRT. time as possible. The Schiaparelli spacecraft attempted landing in 2016 was supported in an innovative way. Radio Science, 54, 314–325. A large radio telescope on Earth was able to eavesdrop on information being sent from the lander to other https://doi.org/10.1029/2018RS006707 spacecraft in orbit around Mars. -
The Cassini Robot
THE CASSINI–HUYGENS MISSION LESSON The Cassini Robot 5 Students begin by examining their prior 3–4 hrs notions of robots and then consider the characteristics and capabilities of a robot like the Cassini–Huygens spacecraft that would be sent into space to explore another planet. Students compare robotic functions to human body functions. The lesson MEETS NATIONAL SCIENCE EDUCATION prepares students to design, build, diagram, STANDARDS: and explain their own models of robots for Unifying Concepts and Processes space exploration in the Saturn system. A computer-generated rendering of Cassini–Huygens. • Form and function PREREQUISITE SKILLS BACKGROUND INFORMATION Science and Drawing and labeling diagrams Background for Lesson Discussion, page 122 Technology • Abilities of Assembling a spacecraft model Questions, page 127 technological Some familiarity with the Saturn Answers in Appendix 1, page 225 design system (see Lesson 1) 56–63: The Cassini–Huygens Mission 64–69: The Spacecraft 70–76: The Science Instruments 81–94: Launch and Navigation 95–101: Communications and Science Data EQUIPMENT, MATERIALS, AND TOOLS For the teacher Materials to reproduce Photocopier (for transparencies & copies) Figures 1–6 are provided at the end of Overhead projector this lesson. Chart paper (18" × 22") FIGURE TRANSPARENCY COPIES Markers; clear adhesive tape 1 1 per group 21 For each group of 3 to 4 students 3 1 1 per student Chart paper (18" × 22") 4 1 per group Markers 51 Scissors 6 (for teacher only) Clear adhesive tape or glue Various household objects: egg cartons, yogurt cartons, film canisters, wire, aluminum foil, construction paper 121 Saturn Educator Guide • Cassini Program website — http://www.jpl.nasa.gov/cassini/educatorguide • EG-1998-12-008-JPL Background for Lesson Discussion LESSON craft components and those of human body 5 The definition of a robot parts. -
7 Planetary Rings Matthew S
7 Planetary Rings Matthew S. Tiscareno Center for Radiophysics and Space Research, Cornell University, Ithaca, NY, USA 1Introduction..................................................... 311 1.1 Orbital Elements ..................................................... 312 1.2 Roche Limits, Roche Lobes, and Roche Critical Densities .................... 313 1.3 Optical Depth ....................................................... 316 2 Rings by Planetary System .......................................... 317 2.1 The Rings of Jupiter ................................................... 317 2.2 The Rings of Saturn ................................................... 319 2.3 The Rings of Uranus .................................................. 320 2.4 The Rings of Neptune ................................................. 323 2.5 Unconfirmed Ring Systems ............................................. 324 2.5.1 Mars ............................................................... 324 2.5.2 Pluto ............................................................... 325 2.5.3 Rhea and Other Moons ................................................ 325 2.5.4 Exoplanets ........................................................... 327 3RingsbyType.................................................... 328 3.1 Dense Broad Disks ................................................... 328 3.1.1 Spiral Waves ......................................................... 329 3.1.2 Gap Edges and Moonlet Wakes .......................................... 333 3.1.3 Radial Structure ..................................................... -
Aerothermodynamic Analysis of a Mars Sample Return Earth-Entry Vehicle" (2018)
Old Dominion University ODU Digital Commons Mechanical & Aerospace Engineering Theses & Dissertations Mechanical & Aerospace Engineering Summer 2018 Aerothermodynamic Analysis of a Mars Sample Return Earth- Entry Vehicle Daniel A. Boyd Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/mae_etds Part of the Aerodynamics and Fluid Mechanics Commons, Space Vehicles Commons, and the Thermodynamics Commons Recommended Citation Boyd, Daniel A.. "Aerothermodynamic Analysis of a Mars Sample Return Earth-Entry Vehicle" (2018). Master of Science (MS), Thesis, Mechanical & Aerospace Engineering, Old Dominion University, DOI: 10.25777/xhmz-ax21 https://digitalcommons.odu.edu/mae_etds/43 This Thesis is brought to you for free and open access by the Mechanical & Aerospace Engineering at ODU Digital Commons. It has been accepted for inclusion in Mechanical & Aerospace Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. AEROTHERMODYNAMIC ANALYSIS OF A MARS SAMPLE RETURN EARTH-ENTRY VEHICLE by Daniel A. Boyd B.S. May 2008, Virginia Military Institute M.A. August 2015, Webster University A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE AEROSPACE ENGINEERING OLD DOMINION UNIVERSITY August 2018 Approved by: __________________________ Robert L. Ash (Director) __________________________ Oktay Baysal (Member) __________________________ Jamshid A. Samareh (Member) __________________________ Shizhi Qian (Member) ABSTRACT AEROTHERMODYNAMIC ANALYSIS OF A MARS SAMPLE RETURN EARTH-ENTRY VEHICLE Daniel A. Boyd Old Dominion University, 2018 Director: Dr. Robert L. Ash Because of the severe quarantine constraints that must be imposed on any returned extraterrestrial samples, the Mars sample return Earth-entry vehicle must remain intact through sample recovery. -
Stardust Comet Flyby
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Stardust Comet Flyby Press Kit January 2004 Contacts Don Savage Policy/Program Management 202/358-1727 NASA Headquarters, Washington DC Agle Stardust Mission 818/393-9011 Jet Propulsion Laboratory, Pasadena, Calif. Vince Stricherz Science Investigation 206/543-2580 University of Washington, Seattle, WA Contents General Release ……………………………………......………….......................…...…… 3 Media Services Information ……………………….................…………….................……. 5 Quick Facts …………………………………………..................………....…........…....….. 6 Why Stardust?..................…………………………..................………….....………......... 7 Other Comet Missions ....................................................................................... 10 NASA's Discovery Program ............................................................................... 12 Mission Overview …………………………………….................……….....……........…… 15 Spacecraft ………………………………………………..................…..……........……… 25 Science Objectives …………………………………..................……………...…........….. 34 Program/Project Management …………………………...................…..…..………...... 37 1 2 GENERAL RELEASE: NASA COMET HUNTER CLOSING ON QUARRY Having trekked 3.2 billion kilometers (2 billion miles) across cold, radiation-charged and interstellar-dust-swept space in just under five years, NASA's Stardust spacecraft is closing in on the main target of its mission -- a comet flyby. "As the saying goes, 'We are good to go,'" said project manager Tom Duxbury at NASA's Jet -
Generation of GOES-16 True Color Imagery Without a Green Band
Confidential manuscript submitted to Earth and Space Science 1 Generation of GOES-16 True Color Imagery without a Green Band 2 M.K. Bah1, M. M. Gunshor1, T. J. Schmit2 3 1 Cooperative Institute for Meteorological Satellite Studies (CIMSS), 1225 West Dayton Street, 4 Madison, University of Wisconsin-Madison, Madison, Wisconsin, USA 5 2 NOAA/NESDIS Center for Satellite Applications and Research, Advanced Satellite Products 6 Branch (ASPB), Madison, Wisconsin, USA 7 8 Corresponding Author: Kaba Bah: ([email protected]) 9 Key Points: 10 • The Advanced Baseline Imager (ABI) is the latest generation Geostationary Operational 11 Environmental Satellite (GOES) imagers operated by the U.S. The ABI is improved in 12 many ways over preceding GOES imagers. 13 • There are a number of approaches to generating true color images; all approaches that use 14 the GOES-16 ABI need to first generate the visible “green” spectral band. 15 • Comparisons are shown between different methods for generating true color images from 16 the ABI observations and those from the Earth Polychromatic Imaging Camera (EPIC) on 17 Deep Space Climate Observatory (DSCOVR). 18 Confidential manuscript submitted to Earth and Space Science 19 Abstract 20 A number of approaches have been developed to generate true color images from the Advanced 21 Baseline Imager (ABI) on the Geostationary Operational Environmental Satellite (GOES)-16. 22 GOES-16 is the first of a series of four spacecraft with the ABI onboard. These approaches are 23 complicated since the ABI does not have a “green” (0.55 µm) spectral band. Despite this 24 limitation, representative true color images can be built. -
Digital Opportunity: a Review of Intellectual Property and Growth
Digital Opportunity A Review of Intellectual Property and Growth An Independent Report by Professor Ian Hargreaves May 2011 Contents Page Foreword by Ian Hargreaves 01 Executive Summary 03 Chapter 1 Intellectual Property and Growth 10 Chapter 2 The Evidence Base 16 Chapter 3 The International Context 21 Chapter 4 Copyright Licensing: a Moment of Opportunity 26 Chapter 5 Copyright: Exceptions for the Digital Age 41 Chapter 6 Patents 53 Chapter 7 Designs 64 Chapter 8 Enforcement and Disputes 67 Chapter 9 SMEs and the IP Framework 86 Chapter 10 An Adaptive IP Framework 91 Chapter 11 Impact 97 Annex A Terms of Reference 101 Annex B Stakeholders Met during Review of IP and Growth 102 Annex C Call for Evidence Submissions 105 Annex D List of Supporting Documents 109 Foreword When the Prime Minister commissioned this review in November 2010, he did so in terms which some considered provocative. The Review was needed, the PM said, because of the risk that the current intellectual property framework might not be sufficiently well designed to promote innovation and growth in the UK economy. In the five months we have had to compile the Review, we have sought never to lose sight of David Cameron’s “exam question”. Could it be true that laws designed more than three centuries ago with the express purpose of creating economic incentives for innovation by protecting creators’ rights are today obstructing innovation and economic growth? The short answer is: yes. We have found that the UK’s intellectual property framework, especially with regard to copyright, is falling behind what is needed. -
Appendix 1: Venus Missions
Appendix 1: Venus Missions Sputnik 7 (USSR) Launch 02/04/1961 First attempted Venus atmosphere craft; upper stage failed to leave Earth orbit Venera 1 (USSR) Launch 02/12/1961 First attempted flyby; contact lost en route Mariner 1 (US) Launch 07/22/1961 Attempted flyby; launch failure Sputnik 19 (USSR) Launch 08/25/1962 Attempted flyby, stranded in Earth orbit Mariner 2 (US) Launch 08/27/1962 First successful Venus flyby Sputnik 20 (USSR) Launch 09/01/1962 Attempted flyby, upper stage failure Sputnik 21 (USSR) Launch 09/12/1962 Attempted flyby, upper stage failure Cosmos 21 (USSR) Launch 11/11/1963 Possible Venera engineering test flight or attempted flyby Venera 1964A (USSR) Launch 02/19/1964 Attempted flyby, launch failure Venera 1964B (USSR) Launch 03/01/1964 Attempted flyby, launch failure Cosmos 27 (USSR) Launch 03/27/1964 Attempted flyby, upper stage failure Zond 1 (USSR) Launch 04/02/1964 Venus flyby, contact lost May 14; flyby July 14 Venera 2 (USSR) Launch 11/12/1965 Venus flyby, contact lost en route Venera 3 (USSR) Launch 11/16/1965 Venus lander, contact lost en route, first Venus impact March 1, 1966 Cosmos 96 (USSR) Launch 11/23/1965 Possible attempted landing, craft fragmented in Earth orbit Venera 1965A (USSR) Launch 11/23/1965 Flyby attempt (launch failure) Venera 4 (USSR) Launch 06/12/1967 Successful atmospheric probe, arrived at Venus 10/18/1967 Mariner 5 (US) Launch 06/14/1967 Successful flyby 10/19/1967 Cosmos 167 (USSR) Launch 06/17/1967 Attempted atmospheric probe, stranded in Earth orbit Venera 5 (USSR) Launch 01/05/1969 Returned atmospheric data for 53 min on 05/16/1969 M. -
L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade. -
SPHERES Interact - Human-Machine Interaction Aboard the International Space Station
SPHERES Interact - Human-Machine Interaction aboard the International Space Station Enrico Stoll Steffen Jaekel Jacob Katz Alvar Saenz-Otero Space Systems Laboratory Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge Massachusetts, 02139-4307, USA [email protected] [email protected] [email protected] [email protected] Renuganth Varatharajoo Department of Aerospace Engineering University Putra Malaysia 43400 Selangor, Malaysia [email protected] Abstract The deployment of space robots for servicing and maintenance operations, which are tele- operated from ground, is a valuable addition to existing autonomous systems since it will provide flexibility and robustness in mission operations. In this connection, not only robotic manipulators are of great use but also free-flying inspector satellites supporting the oper- ations through additional feedback to the ground operator. The manual control of such an inspector satellite at a remote location is challenging since the navigation in three- dimensional space is unfamiliar and large time delays can occur in the communication chan- nel. This paper shows a series of robotic experiments, in which satellites are controlled by astronauts aboard the International Space Station (ISS). The Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) were utilized to study several aspects of a remotely controlled inspector satellite. The focus in this case study is to investigate different approaches to human-spacecraft interaction with varying levels of autonomy under zero-gravity conditions. 1 Introduction Human-machine interaction is a wide spread research topic on Earth since there are many terrestrial applica- tions, such as industrial assembly or rescue robots. Analogously, there are a number of possible applications in space such as maintenance, inspection and assembly amongst others. -
Chapter 14. Saturn and Its Attendants
14. Saturn and Its Attendants 1 Chapter 14. Saturn and Its Attendants Figure 14.3. A Voyager portrait. Note. In this section we survey physical properties of Saturn. Note. Some general facts about Saturn include: Orbital Period 29.5 years Rotation Period 10 hours 40 minutes Tilt of Axis 26◦ Mass 95 times Earth’s mass Surface Gravity 1.13 of Earth’s Albedo 34% Satellites 17 known Galileo was the first to see Saturn’s rings. Huygens explained them as rings and discovered the moon Titan. Cassini observed gaps in the rings and discovered four satellites. Saturn also has differential rotation, and a composition similar to that of Jupiter. 14. Saturn and Its Attendants 2 Note. Saturn is similar to Jupiter, with belts and zones, but the contrast on Saturn is less extreme. Rising and descending gas combines with rapid rotation to form strips circling the planet, as on Jupiter. The interior is similar to Jupiter, with a very thick layer of clouds, a layer of liquid hydrogen and helium, a layer of liquid metallic hydrogen, and a rock-and-ice solid core. Saturn puts out 1.8 times as much energy as it takes in, the excess is from continued differentiation (the heavy stuff sinks and releases energy). Saturn has a magnetic field slightly stronger than Earth’s and its magnetosphere fluctuates in size with solar activity. Figure 14.7. The internal structure of Saturn. Note. There is evidence for as many as 22 satellites. Of primary concern are (in no particular order): Titan. It is only one of two satellites that has an atmosphere.