SPHERES Interact - Human-Machine Interaction Aboard the International Space Station
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Cassini Robot
THE CASSINI–HUYGENS MISSION LESSON The Cassini Robot 5 Students begin by examining their prior 3–4 hrs notions of robots and then consider the characteristics and capabilities of a robot like the Cassini–Huygens spacecraft that would be sent into space to explore another planet. Students compare robotic functions to human body functions. The lesson MEETS NATIONAL SCIENCE EDUCATION prepares students to design, build, diagram, STANDARDS: and explain their own models of robots for Unifying Concepts and Processes space exploration in the Saturn system. A computer-generated rendering of Cassini–Huygens. • Form and function PREREQUISITE SKILLS BACKGROUND INFORMATION Science and Drawing and labeling diagrams Background for Lesson Discussion, page 122 Technology • Abilities of Assembling a spacecraft model Questions, page 127 technological Some familiarity with the Saturn Answers in Appendix 1, page 225 design system (see Lesson 1) 56–63: The Cassini–Huygens Mission 64–69: The Spacecraft 70–76: The Science Instruments 81–94: Launch and Navigation 95–101: Communications and Science Data EQUIPMENT, MATERIALS, AND TOOLS For the teacher Materials to reproduce Photocopier (for transparencies & copies) Figures 1–6 are provided at the end of Overhead projector this lesson. Chart paper (18" × 22") FIGURE TRANSPARENCY COPIES Markers; clear adhesive tape 1 1 per group 21 For each group of 3 to 4 students 3 1 1 per student Chart paper (18" × 22") 4 1 per group Markers 51 Scissors 6 (for teacher only) Clear adhesive tape or glue Various household objects: egg cartons, yogurt cartons, film canisters, wire, aluminum foil, construction paper 121 Saturn Educator Guide • Cassini Program website — http://www.jpl.nasa.gov/cassini/educatorguide • EG-1998-12-008-JPL Background for Lesson Discussion LESSON craft components and those of human body 5 The definition of a robot parts. -
Orbital Debris: a Chronology
NASA/TP-1999-208856 January 1999 Orbital Debris: A Chronology David S. F. Portree Houston, Texas Joseph P. Loftus, Jr Lwldon B. Johnson Space Center Houston, Texas David S. F. Portree is a freelance writer working in Houston_ Texas Contents List of Figures ................................................................................................................ iv Preface ........................................................................................................................... v Acknowledgments ......................................................................................................... vii Acronyms and Abbreviations ........................................................................................ ix The Chronology ............................................................................................................. 1 1961 ......................................................................................................................... 4 1962 ......................................................................................................................... 5 963 ......................................................................................................................... 5 964 ......................................................................................................................... 6 965 ......................................................................................................................... 6 966 ........................................................................................................................ -
STS-117 Press Kit STS-117 Press Kit
STS-117 Press Kit STS-117 Press Kit CONTENTS Section Page STS-117 MISSION OVERVIEW................................................................................................. 1 STS-117 TIMELINE OVERVIEW................................................................................................ 11 MISSION PRIORITIES............................................................................................................. 13 LAUNCH AND LANDING ........................................................................................................... 15 LAUNCH............................................................................................................................................... 15 ABORT-TO-ORBIT (ATO)...................................................................................................................... 15 TRANSATLANTIC ABORT LANDING (TAL)............................................................................................. 15 RETURN-TO-LAUNCH-SITE (RTLS)....................................................................................................... 15 ABORT ONCE AROUND (AOA)............................................................................................................... 15 LANDING ............................................................................................................................................. 15 MISSION PROFILE................................................................................................................... 17 STS-117 -
Space Technology Mission Directorate
Space Technology Mission Directorate Innovation and Opportunity Conference 2018 Therese Griebel, Deputy Associate Administrator for STMD Programs | 11.07.18 TECHNOLOGY DRIVES EXPLORATION sparking enabling exploration investing in innovation and discovery America embracing competition engaging the and public-private NASA Pre-decisional – Internal Use Only – Do brightest minds partnerships 2 Not Distribute Partnerships & Technology Transfer SBIR/STTR • Technology Transfer • Prizes and Challenges Early Stage Innovation • iTech • NASA Innovative Advanced Concepts • Space Tech Research Grants Technology Demonstrations • Center Innovation Fund/Early Mid TRL • Technology Demonstration Career Initiative Missions • Small Spacecraft High TRL Technology Technology Maturation • Flight Opportunities • Game Changing Low TRL Development 3 FY 2018 Key Accomplishments Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) Aboard ISS demonstrated fully autonomous X-ray navigation in space — a capability that could revolutionize NASA’s ability in the Small Spacecraft future to pilot robotic spacecraft to Two small spacecraft (Integrated the far reaches of the solar Solar Array and Reflect Antenna and system and beyond. Optical Communication and Sensor Demonstration) missions were successfully launched aboard Orbital ATK’s Cygnus spacecraft. Kilopower Testing successfully completed on 1 kW ground demonstration system- could be used for an Solar Electric affordable fission nuclear power In Space Robotics Propulsion system to enable long-duration -
International Space Station Basics Components of The
National Aeronautics and Space Administration International Space Station Basics The International Space Station (ISS) is the largest orbiting can see 16 sunrises and 16 sunsets each day! During the laboratory ever built. It is an international, technological, daylight periods, temperatures reach 200 ºC, while and political achievement. The five international partners temperatures during the night periods drop to -200 ºC. include the space agencies of the United States, Canada, The view of Earth from the ISS reveals part of the planet, Russia, Europe, and Japan. not the whole planet. In fact, astronauts can see much of the North American continent when they pass over the The first parts of the ISS were sent and assembled in orbit United States. To see pictures of Earth from the ISS, visit in 1998. Since the year 2000, the ISS has had crews living http://eol.jsc.nasa.gov/sseop/clickmap/. continuously on board. Building the ISS is like living in a house while constructing it at the same time. Building and sustaining the ISS requires 80 launches on several kinds of rockets over a 12-year period. The assembly of the ISS Components of the ISS will continue through 2010, when the Space Shuttle is retired from service. The components of the ISS include shapes like canisters, spheres, triangles, beams, and wide, flat panels. The When fully complete, the ISS will weigh about 420,000 modules are shaped like canisters and spheres. These are kilograms (925,000 pounds). This is equivalent to more areas where the astronauts live and work. On Earth, car- than 330 automobiles. -
Autonomous Robotic Systems for Mars Exploration Dr. Andrew E
Autonomous Robotic Systems for Mars Exploration Dr. Andrew E. Johnson Jet Propulsion Laboratory California Institute of Technology Robotic spacecraft that land on and rove over the surface of Mars must be designed to overcome many challenges due to the hostile and uncertain environment. Winds and dust buffet landers as they descend rapidly to the surface. Rocks, scarps, dunes and slopes must be avoided during landing and rover traverse. Temperature extremes, radiation, shock and vibration stress mechanical designs and computing must recover gracefully from hardware and software failures. The round-trip light time precludes direct tele-operation so all vehicle motion is executed autonomously on-board given high level commands from earth. Autonomous robotic systems are increasingly used to mitigate these challenges while also extending the capabilities of the spacecraft. The objective of robotic Mars missions is to advance scientific discovery. Science return is greater when there is geological diversity and stratigraphy near the landing site, but these create terrain that is risky for landing. To mitigate these risks autonomous robotic systems are being developed for safe landing in these hazardous terrains. Algorithms have been developed that estimate the pose of the lander relative to known landmarks and automatically detect and avoid landing hazards. These algorithms are being combined with sensors and high performance computing to create bolt-on systems for safe and pin-point landing. Landing is fully autonomous and failure is not recoverable, so these systems are designed to be self- checking and as simple as possible while also dealing with environmental factors like illumination variations, dust and terrain relief. -
SSEC SF4 Ppt.Pdf (395.7Kb)
Design and Operation of Micro-Gravity Dynamics and Controls Laboratories Georgia Institute of Technology Space Systems Engineering Conference Atlanta, GA GT-SSEC.F.4 Alvar Saenz-Otero David W. Miller MIT Space Systems Laboratory MIT Dept. of Aeronautics and Astronautics Using ISS to develop telescope technology MIT Space Systems Laboratory 1 Motivation • A large number of upcoming programs require the development of new space technologies – Advanced structural control – High precision staged optical control – Docking and rendezvous – Formation flight – Tethered flight • How can one demonstrate the maturity of these technologies? – Is it possible to have demonstrations and validation of models prior to flight? – Where can one not only demonstrate, but also research these technologies? JPL DARPA ESA NASA SIM Orbital Express Darwin JWST Using ISS to develop telescope technology MIT Space Systems Laboratory 2 Introduction • Space technology maturation is a challenging process – Complexity, risk, and cost increase substantially as a program progresses from ground-based research and development to space-based demonstrations • NASA’s Technology Readiness Levels (TRLs) provide a guideline to determine the state of development of a technology – Nine levels of readiness are defined – But the advancement between levels is not necessarily linear nor is it necessary to go through each level Now with ISS – Many times complex/expensive levels (e.g. TRL 7) are skipped Complexity Risk TRL 1-2 Basic principles & concept Cost TRL 3-4 Proof-of-concept & -
Zero Robotics Tournaments
Collaborative Competition for Crowdsourcing Spaceflight Software and STEM Education using SPHERES Zero Robotics by Sreeja Nag B.S. Exploration Geophysics, Indian Institute of Technology, Kharagpur, 2009 M.S. Exploration Geophysics, Indian Institute of Technology, Kharagpur, 2009 Submitted to the Department of Aeronautics and Astronautics and the Engineering Systems Division in Partial Fulfillment of the Requirements for the Degrees of Master of Science in Aeronautics and Astronautics and Master of Science in Technology and Policy at the Massachusetts Institute of Technology June 2012 © 2012 Massachusetts Institute of Technology. All rights reserved Signature of Author ____________________________________________________________________ Department of Aeronautics and Astronautics and Engineering Systems Division May 11, 2012 Certified by __________________________________________________________________________ Jeffrey A. Hoffman Professor of Practice in Aeronautics and Astronautics Thesis Supervisor Certified by __________________________________________________________________________ Olivier L. de Weck Associate Professor of Aeronautics and Astronautics and Engineering Systems Thesis Supervisor Accepted by __________________________________________________________________________ Eytan H. Modiano Professor of Aeronautics and Astronautics Chair, Graduate Program Committee Accepted by __________________________________________________________________________ Joel P. Clark Professor of Materials Systems and Engineering Systems Acting Director, -
The Cassini-Huygens Mission Overview
SpaceOps 2006 Conference AIAA 2006-5502 The Cassini-Huygens Mission Overview N. Vandermey and B. G. Paczkowski Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 The Cassini-Huygens Program is an international science mission to the Saturnian system. Three space agencies and seventeen nations contributed to building the Cassini spacecraft and Huygens probe. The Cassini orbiter is managed and operated by NASA's Jet Propulsion Laboratory. The Huygens probe was built and operated by the European Space Agency. The mission design for Cassini-Huygens calls for a four-year orbital survey of Saturn, its rings, magnetosphere, and satellites, and the descent into Titan’s atmosphere of the Huygens probe. The Cassini orbiter tour consists of 76 orbits around Saturn with 45 close Titan flybys and 8 targeted icy satellite flybys. The Cassini orbiter spacecraft carries twelve scientific instruments that are performing a wide range of observations on a multitude of designated targets. The Huygens probe carried six additional instruments that provided in-situ sampling of the atmosphere and surface of Titan. The multi-national nature of this mission poses significant challenges in the area of flight operations. This paper will provide an overview of the mission, spacecraft, organization and flight operations environment used for the Cassini-Huygens Mission. It will address the operational complexities of the spacecraft and the science instruments and the approach used by Cassini- Huygens to address these issues. I. The Mission Saturn has fascinated observers for over 300 years. The only planet whose rings were visible from Earth with primitive telescopes, it was not until the age of robotic spacecraft that questions about the Saturnian system’s composition could be answered. -
Cassini-Huygens
High Ambitions for an Outstanding Planetary Mission: Cassini-Huygens Composite image of Titan in ultraviolet and infrared wavelengths taken by Cassini’s imaging science subsystem on 26 October. Red and green colours show areas where atmospheric methane absorbs light and reveal a brighter (redder) northern hemisphere. Blue colours show the high atmosphere and detached hazes (Courtesy of JPL /Univ. of Arizona) Cassini-Huygens Jean-Pierre Lebreton1, Claudio Sollazzo2, Thierry Blancquaert13, Olivier Witasse1 and the Huygens Mission Team 1 ESA Directorate of Scientific Programmes, ESTEC, Noordwijk, The Netherlands 2 ESA Directorate of Operations and Infrastructure, ESOC, Darmstadt, Germany 3 ESA Directorate of Technical and Quality Management, ESTEC, Noordwijk, The Netherlands Earl Maize, Dennis Matson, Robert Mitchell, Linda Spilker Jet Propulsion Laboratory (NASA/JPL), Pasadena, California Enrico Flamini Italian Space Agency (ASI), Rome, Italy Monica Talevi Science Programme Communication Service, ESA Directorate of Scientific Programmes, ESTEC, Noordwijk, The Netherlands assini-Huygens, named after the two celebrated scientists, is the joint NASA/ESA/ASI mission to Saturn Cand its giant moon Titan. It is designed to shed light on many of the unsolved mysteries arising from previous observations and to pursue the detailed exploration of the gas giants after Galileo’s successful mission at Jupiter. The exploration of the Saturnian planetary system, the most complex in our Solar System, will help us to make significant progress in our understanding -
NASA Symbols and Flags in the US Manned Space Program
SEPTEMBER-DECEMBER 2007 #230 THE FLAG BULLETIN THE INTERNATIONAL JOURNAL OF VEXILLOLOGY www.flagresearchcenter.com 225 [email protected] THE FLAG BULLETIN THE INTERNATIONAL JOURNAL OF VEXILLOLOGY September-December 2007 No. 230 Volume XLVI, Nos. 5-6 FLAGS IN SPACE: NASA SYMBOLS AND FLAGS IN THE U.S. MANNED SPACE PROGRAM Anne M. Platoff 143-221 COVER PICTURES 222 INDEX 223-224 The Flag Bulletin is officially recognized by the International Federation of Vexillological Associations for the publication of scholarly articles relating to vexillology Art layout for this issue by Terri Malgieri Funding for addition of color pages and binding of this combined issue was provided by the University of California, Santa Barbara Library and by the University of California Research Grants for Librarians Program. The Flag Bulletin at the time of publication was behind schedule and therefore the references in the article to dates after December 2007 reflect events that occurred after that date but before the publication of this issue in 2010. © Copyright 2007 by the Flag Research Center; all rights reserved. Postmaster: Send address changes to THE FLAG BULLETIN, 3 Edgehill Rd., Winchester, Mass. 01890 U.S.A. THE FLAG BULLETIN (ISSN 0015-3370) is published bimonthly; the annual subscription rate is $68.00. Periodicals postage paid at Winchester. www.flagresearchcenter.com www.flagresearchcenter.com 141 [email protected] ANNE M. PLATOFF (Annie) is a librarian at the University of Cali- fornia, Santa Barbara Library. From 1989-1996 she was a contrac- tor employee at NASA’s Johnson Space Center. During this time she worked as an Information Specialist for the New Initiatives Of- fice and the Exploration Programs Office, and later as a Policy Ana- lyst for the Public Affairs Office. -
IAA Situation Report on Space Debris - 2016
IAA Situation Report on Space Debris - 2016 Editors: Christophe Bonnal Darren S. McKnight International A cadem y of A stronautics Notice: The cosmic study or position paper that is the subject of this report was approved by the Board of Trustees of the International Academy of Astronautics (IAA). Any opinions, findings, conclusions, or recommendations expressed in this report are those of the authors and do not necessarily reflect the views of the sponsoring or funding organizations. For more information about the International Academy of Astronautics, visit the IAA home page at www.iaaweb.org. Copyright 2017 by the International Academy of Astronautics. All rights reserved. The International Academy of Astronautics (IAA), an independent nongovernmental organization recognized by the United Nations, was founded in 1960. The purposes of the IAA are to foster the development of astronautics for peaceful purposes, to recognize individuals who have distinguished themselves in areas related to astronautics, and to provide a program through which the membership can contribute to international endeavours and cooperation in the advancement of aerospace activities. © International Academy of Astronautics (IAA) May 2017. This publication is protected by copyright. The information it contains cannot be reproduced without written authorization. Title: IAA Situation Report on Space Debris - 2016 Editors: Christophe Bonnal, Darren S. McKnight Printing of this Study was sponsored by CNES International Academy of Astronautics 6 rue Galilée, Po Box 1268-16, 75766 Paris Cedex 16, France www.iaaweb.org ISBN/EAN IAA : 978-2-917761-56-4 Cover Illustration: NASA IAA Situation Report on Space Debris - 2016 Editors Christophe Bonnal Darren S.