New Records of Fungus Gnats for Norway (Diptera, Mycetophilidae)

Total Page:16

File Type:pdf, Size:1020Kb

New Records of Fungus Gnats for Norway (Diptera, Mycetophilidae) © Norwegian Journal of Entomology. 15 December 2009 New records of fungus gnats for Norway (Diptera, Mycetophilidae) GEIR SØLI, EIRIK RINDAL & LARS OVE HANSEN Søli, G., Rindal, E. & Hansen, L. O. 2009. New records of fungus gnats for Norway (Diptera: Mycetophilidae). Norw. J. Entomol. 56, 69–73. Fifteen species of Mycetophilidae are reported new to Norway, and their distribution and biology are commented on. Among the new species, Neuratelia subulata Zaitzev, 1994 has previously not been recorded from the Nordic region. The total number of species of Mycetophilidae in Norway is thus increased to 589. Key words: Diptera, Mycetophilidae, Norway, new records. Geir Søli, Eirik Rindal and Lars Ove Hansen, Natural History museum, University of Oslo, PO Box 1172 Blindern, NO-0316 Oslo, Norway. E-mail: [email protected], [email protected], [email protected] Introduction Our knowledge about Norwegian Mycetophilidae is rapidly increasing (see Søli & Kjærandsen 2008). Fungus gnats in the family Mycetophilidae form Since the compilation of the first Norwegian check an extremely common and species rich group of list which comprised 473 species (Gammelmo Diptera in northern temperate regions, and our & Søli 2006), as many as 101 more species knowledge about their taxonomy has increased have already been added (Kjærandsen & Jordal considerably during the last two decades (for a 2007, Søli & Kjærandsen 2008). By the present review, see Kjærandsen et al. 2007). Members contribution, our fauna comprises 589 species. of the family expose a rather diverse biology, but Though, compared to the number of species in our know, the majority of species are associated with neighbouring countries, one may assert that a high fungi in one or another way. A number of species number of species will be discovered in the years develop in sporophores, while others feed on to come. In Sweden, which is supposed to have a mycelium in decaying or rotting organic matter, much similar fauna of Mycetophilidae to that in above all in dead wood. Økland (1994, 1996) Norway, the number of species has just exceeded demonstrated that species of fungus gnats may 800! (Kjærandsen, pers. com). be vulnerable to modern forestry practices, and as such good indicators of undisturbed forests. We find it noteworthy that eight of the species This is one reason why the family was assessed here reported as new to Norway, were found in in the last two editions of the Norwegian Red List dry, sandy areas. These species were sampled as (Direktoratet for naturforvaltning 1999, Kålås part of a project designed to study various families et al. 2006). In the most recent edition, as many of Hymenoptera and Diptera normally found in as 108 species of Mycetophilidae were included such habitats. As fungus gnats are most frequent (Gammelmo et al. 2006). An updated and revised in humid areas, dry areas are seemingly less well edition is prepared in these days, and we thus investigated by those studying fungus gnats. find it advantageous to publish records of new Hence, there is a possibility that there exists a Norwegian species. much ignored assemblage of species living in dry 69 Søli et al.: New records of fungus gnats for Norway and sandy surroundings, or more precisely, species World distribution: Palearctic; in Europe associated to fungi preferring such habitats. recorded from Germany, Czech Republic, Poland, Belaruss, Estonia, Latvia, Faroe Island, Sweden, The new species Finland, North and Northwest Russia. Also recorded from the East Palaearctic. The genera are listed alphabetically. Where Biology: The larvae have been reported to develop nothing else is stated, data on distribution is in a various agaricales, but also in Polyporaceae taken from Fauna Europaea (Chandler 2004). (Zaitzev 2003). The indicated Nordic distribution patterns, follow the system of concepts developed for Sweden by Brevicornu arcticoides Caspers, 1985 Kjærandsen et al. (2007). The material is kept in Material: NORWAY, EIS 27, BØ: Kongsberg, the collection of the Natural History Museum, Skollenborg, Labro (32V NM 3822 0911; 120 University of Oslo, Norway (NHMO). masl), 2 August–28 September 2008, 1♂, Leg. L. O. Hansen (Malaise trap, pine forest - sand-pit). Anatella dampfi Landrock, 1924 Nordic distribution: Boreal. In Sweden recorded Material: NORWAY, EIS 27, BØ: Kongsberg, from Lule Lappmark (Kjærandsen et al. 2007). Skollenborg (32V NM 3822 0911), 2 August–28 World distribution: Palearctic, recorded September 2008, 1♂, Leg. L. O. Hansen (Malaise from Great Britain, France, Switzerland, The trap. Sandy area); EIS 36, AK: Oslo, Maridalen, Netherlands, Germany, North and Northwest Dausjøen (32V NN 997 541), 19 July–26 August Russia. 2002, 1♂, Leg. K. M. Olsen & S. Reiso (Malaise Biology: Unknown. trap, near river outlet). Nordic distribution: A boreal species. In Sweden Brevicornu fissicauda (Lundström, 1911) recorded from Lule Lappmark only (Kjærandsen Material: NORWAY, EIS 28, AK: Oslo, Østensjø, et al. 2007). Ljanselva, Skullerud, (32V PM 0314 3745), 17 World distribution: Holarctic; in Palearctic June 2009, 1♂, Leg. G. Søli. recorded from Great Britain, Germany, Czech Nordic distribution: Nemoral – boreonemoral. Republic, Slovakia, Switzerland, Italy, Sweden, In Sweden recorded from Skåne and Öland North Russia, and Estonia. In Sweden only (Kjærandsen et al. 2007). recorded from Lule Lappmark (Kjærandsen et al. World distribution: Holarctic; widely distributed 2007). in Europe. Also recorded from East Palaearctic. Biology: As for the great majority of species in Biology: Unknown. this genus, the biology is unknown. Exechia spinigera Winnertz, 1863 Brachypeza (Paracordyla) obscura Winnertz, Material: NORWAY, EIS 28, BØ: Nedre Eiker, 1863 Mjøndalen, Ryggkollen [W] (32W NM 5903 Material: NORWAY, EIS 27, BØ: Kongsberg, 2453), 3 August–28 September 2008, 1♂, Leg. L. Skollenborg (32V NM 3822 0911;), 2 August–28 O. Hansen (Malaise trap. Sand pit in pine forest). September 2008, 1♂, Leg. L. O. Hansen (Malaise Nordic distribution: A boreal species. In Sweden trap); EIS 37, AK: Ullensaker, Sessvollmoen W, recorded from Lule Lappmark only (Kjærandsen (32V PM 1780 8054, 208 masl), 11–26 June 2007, et al. 2007). 1♂, Leg. L. O. Hansen (Malaise trap. Sandy pine World distribution: Palearctic, in Europe forest). recorded with certainty from Sweden, Finland Nordic distribution: Boreal-boreonemoral. and North Russia only. Records from e.g. The In Sweden recorded from Västergötland and Netherlands, and Poland, probably refer to E. Lule Lappmark (Kjærandsen et al. 2007). It is a spinuligera Lundström, Also recorded from East conspicuous species, resembling a large Cordyla, Palaearctic. and unlikely to be overlooked in any sample. Remarks: A difficult name with questionable 70 Norw. J. Entomol. 56, 69–73 identity as the original type material is lost (see distribution. Kjærandsen et al. 2007) . Biology: Larvae observed on dead wood with mycelium (Zaitzev 1982 in Kurina 1997). Greenomyia mongolica Laštovka & Matile, 1974 Mycetophila britannica Laštovka & Kidd, Material: NORWAY, EIS 28, AK: Oslo, Bleikøya 1975 [N] (32V NM 9750 4035), 29 August–1 November Material: NORWAY, EIS 37, AK: Ullensaker, 2008, 1♂, Leg. A. Endrestøl (Malaise trap. Forest Sessvollmoen, Aurtjernet W (32W PM 1684 edge ). 7912, 200 masl), 30 August–1 October 2008, 1♂, Nordic distribution: A boreonemoral species. Leg. L. O. Hansen (Malaise trap. Sandy area). In Sweden known from the Stockholm area Nordic distribution: Nemoral. Not recorded (Kjærandsen et al. 2007). from Sweden. World distribution: Palaearctic; in Europe World distribution: Palearctic; in Europe with known from Russia C (Moscow Prov.), Estonia a southern and western distribution, recorded and Sweden. from Denmark, Germany, The Netherlands, Great Remarks: This rare species has according to Britain, Ireland, France, Portugal, Spain, Italy, Kurina (1997) a distribution of the Balto- Eurasian Greece, Crete, and Cyprus. Also recorded from distribution, connected to the spruce and fir forests the Near East. of the South Taiga. The records from Sweden and Biology: Larvae polyphage, reared from Norway, however, point to an even more western Armillaria mellea, Hebeloma crustuliniforme, Figure 1. The striking fungus gnat Greenomyia mongolica Lastovka & Matile, 1974 was found in Oslo in 2008. The species has previously only been recorded from Sweden, Estonia and near Moscow in Russia. (Photo: Karsten Sund, Natural History Museum, Oslo) 71 Søli et al.: New records of fungus gnats for Norway Russula nigricans and Melanopus squamosus. Finland, North and Central Russia. In England recorded from all months except Biology: Unknown. February and March (Laštovka & Kidd 1974) Mycomya (Mycomya) bisulca Lackschewitz, Mycetophila distigma Meigen, 1830 1937 Material: NORWAY, EIS 28, AK: Oslo, Material: NORWAY, EIS 37, AK: Ullensaker, Hengsenga (32V NM 9341 4318), 8 August–7 Sessvollmoen W (32V PM 1780 8054, 208 September 2007, 2♂♂, Leg. A. Endrestöl masl), 11–26 June 2007, 3♂♂, Leg. L. O. Hansen (Malaise trap); Søndre Nordstrand, Ljanselva, (Malaise trap. Sandy pine forest). Liadalen (32V PM 0051 3589), 12 May–13 June Nordic distribution: Boreal. In Sweden recorded 2009, 1♂, Leg. G. Søli & E. Rindal (Malasie trap); from Lule Lappmark only (Kjærandsen et al. Nordstrand, Ljanselva, ”Urskogen” (32V PM 2007). 0179 3679), 1 August–11 September 2009, 1♂, World distribution: Palaearctic; in Europe only Leg. G. Søli & E. Rindal (Malaise trap). recorded from Sweden, Finland, Estonia and Nordic distribution: Boreal.
Recommended publications
  • Ra82 Diptera
    RA82 DIPTERA: Mycetophilinae Fungus Gnats (6480) Recording Form Locality Date(s) from: to: Vice county GPS users Grey cells for Habitat Altitude (metres) Source (circle *Source details Recorder Determiner Compiler one) Field 1 Museum* 2 Grid reference Literature* 3 MYCETOPHILIDAE: Mycetophilinae 33101 Exechiopsis (Exechiopsis) clypeata Exechiini 33117 dryaspagensis 32801 Allodia (Allodia) anglofennica 33519 griseolum33118 dumitrescae 32912 embla 33526 intermedium33119 fimbriata 32802 lugens 33522 kingi33120 furcata 32803 lundstroemi 33523 nigrofuscum33106 hammi 32804 ornaticollis 33524 proximum33107 indecisa 32806 truncata 33527 rosmellitum33108 intersecta 32805 zaitzevi 33514 ruficorne33109 jenkinsoni 32901 Allodia (Brachycampta) alternans 33515 serenum33110 ligulata 32910 angulata 33516 sericoma33121 magnicauda 32903 barbata 33601 Cordyla brevicornis33112 pseudindecisa 32904 czernyi 33602 crassicornis33113 pulchella 32909 foliifera 33603 fasciata33114 subulata 32905 grata 33604 fissa33115 unguiculata 32906 neglecta 33605 flaviceps33116 Exechiopsis (Xenexechia) crucigera 32907 pistillata 33606 fusca33002 leptura 32915 protenta 33613 insons33003 membranacea 32914 silvatica 33608 murina33122 pollicata 32916 westerholti 33609 nitidula32605 Myrosia maculosa 32602 Allodiopsis domestica 33610 parvipalpis32601 Notolopha cristata 32610 korolevi 33614 pseudomurina32701 Pseudexechia aurivernica 32607 rustica 33611 pusilla32706 monica 32212 Anatella alpina 33612 semiflava32705 parallela 32213 ankeli 33201 Exechia bicincta32703 trisignata 32216 bremia
    [Show full text]
  • Somerset's Ecological Network
    Somerset’s Ecological Network Mapping the components of the ecological network in Somerset 2015 Report This report was produced by Michele Bowe, Eleanor Higginson, Jake Chant and Michelle Osbourn of Somerset Wildlife Trust, and Larry Burrows of Somerset County Council, with the support of Dr Kevin Watts of Forest Research. The BEETLE least-cost network model used to produce Somerset’s Ecological Network was developed by Forest Research (Watts et al, 2010). GIS data and mapping was produced with the support of Somerset Environmental Records Centre and First Ecology Somerset Wildlife Trust 34 Wellington Road Taunton TA1 5AW 01823 652 400 Email: [email protected] somersetwildlife.org Front Cover: Broadleaved woodland ecological network in East Mendip Contents 1. Introduction .................................................................................................................... 1 2. Policy and Legislative Background to Ecological Networks ............................................ 3 Introduction ............................................................................................................... 3 Government White Paper on the Natural Environment .............................................. 3 National Planning Policy Framework ......................................................................... 3 The Habitats and Birds Directives ............................................................................. 4 The Conservation of Habitats and Species Regulations 2010 ..................................
    [Show full text]
  • Cambodian Journal of Natural History
    Cambodian Journal of Natural History Giant ibis census Patterns of salt lick use Protected area revisions Economic contribution of NTFPs New plants, bees and range extensions June 2016 Vol. 2016 No. 1 Cambodian Journal of Natural History ISSN 2226–969X Editors Email: [email protected] • Dr Neil M. Furey, Chief Editor, Fauna & Flora International, Cambodia. • Dr Jenny C. Daltry, Senior Conservation Biologist, Fauna & Flora International, UK. • Dr Nicholas J. Souter, Mekong Case Study Manager, Conservation International, Cambodia. • Dr Ith Saveng, Project Manager, University Capacity Building Project, Fauna & Flora International, Cambodia. International Editorial Board • Dr Stephen J. Browne, Fauna & Flora International, • Dr Sovanmoly Hul, Muséum National d’Histoire Singapore. Naturelle, Paris, France. • Dr Martin Fisher, Editor of Oryx – The International • Dr Andy L. Maxwell, World Wide Fund for Nature, Journal of Conservation, Cambridge, U.K. Cambodia. • Dr L. Lee Grismer, La Sierra University, California, • Dr Brad Pett itt , Murdoch University, Australia. USA. • Dr Campbell O. Webb, Harvard University Herbaria, • Dr Knud E. Heller, Nykøbing Falster Zoo, Denmark. USA. Other peer reviewers for this volume • Prof. Leonid Averyanov, Komarov Botanical Institute, • Neang Thy, Minstry of Environment, Cambodia. Russia. • Dr Nguyen Quang Truong, Institute of Ecology and • Prof. John Blake, University of Florida, USA. Biological Resources, Vietnam. • Dr Stephan Gale, Kadoorie Farm & Botanic Garden, • Dr Alain Pauly, Royal Belgian Institute of Natural Hong Kong. Sciences, Belgium. • Fredéric Goes, Cambodia Bird News, France. • Dr Colin Pendry, Royal Botanical Garden, Edinburgh, • Dr Hubert Kurzweil, Singapore Botanical Gardens, UK. Singapore. • Dr Stephan Risch, Leverkusen, Germany. • Simon Mahood, Wildlife Conservation Society, • Dr Nophea Sasaki, University of Hyogo, Japan.
    [Show full text]
  • Study of Systemic Status of Mycetophilidae
    浙 江 林 学 院 学 报 2003 , 20(1):32 ~ 36 Journal of Zhejiang Forestry College Article ID :1000-5692(2003)01-0032-05 Study of systemic status of Mycetophilidae WANG Yi-ping , WU Hong , XU Hua-chao (Institute of Forest Protection , Zhejiang Forestry College, Linan 311300 , Zhejiang , China) Abstract :The actuality of Mycetophilidae family research has been illustrated in detail .The research includes biology , classification and idenfication , geographical distribution , status of systemic classification and system development .The existed problems and expectation are also explored in the paper .According to the latest information , Mycetophilidae family is composed of 5 subfamilies , i .e , Mycomyinae , Sciophilinae , Gnoristinae , Leiinae and Mycetophilinae .Mycetophilinae includes 2 tribes :Exechiini and Mycetophilini .References 28 Key words :Mycetophilidae ;geographical distribution ;classification status CLC Number :Q969.44 Document Code:A The family Mycetophilidae belongs to the superfamily Sciaroidea in the order Diptera , which is the largest family in the superfamily Sciaroidea[ 1] .Because of this insects feeding on edible fungi or large fungus body , a lot of scholars have been involved in the research on fungus pest species , and great progress in research on fungus gnats has been made .Based on research results and literature published at home and abroad in the past two decades , the authors make a summarization on the situation of the family Mycetophilidae insect species , including the biology , geography distribution , classification , phylogeny and make a forecast for the existing problems in the hope of providing some fundamental systemic materials for both theoretical research and practical application in the field of control of edible fungus pests[ 2 ~ 15] .
    [Show full text]
  • Succession of Diptera on Dead Beech Wood: a 10-Year Study
    Pedobiologia 47, 61–75, 2003 © Urban & Fischer Verlag http://www.urbanfischer.de/journals/pedo Succession of Diptera on dead beech wood: A 10-year study Klaus Hövemeyer* and Jürgen Schauermann Institute of Zoology and Anthropology, Division of Ecology, University of Göttingen, Berliner Str. 28, D 37073 Göttingen Submitted May 8, 2002 · Accepted Juli 31, 2002 Summary This study describes the decomposition of dead beech wood and the succession of xylobiont Diptera. Branch wood (Ø = 4.3–11.5 cm) was sampled from two beech trees felled by wind in autumn 1984. In each spring (1987–1995) 6 to 8 logs were selected and placed individually in closed emergence traps to collect adult Diptera. Decay state of the logs was described by measuring relative density, water content, bark cover, moss cover, litter cover, carbon and nitrogen contents, C:N ratio, and residual weight. Overall, the environmental factors decreased or increased with log age as expected but vari- ation within cohorts was considerable. For some common dipteran species clear temporal patterns of occurrence were identified, and it was also possible to relate abundances of some species to individual environmental factors. On the com- munity level, mean number of individuals per log tended to increase with log age, suggesting that dead wood becomes a more rewarding food resource in the course of decomposition. Diversity of Diptera measured as the mean number of species per log increased with log age, indicating that resource heterogeneity increased with log age. Diversity of Diptera also increased with water content and moss cover but was negatively correlated with bark cover, C:N ratio, and relative density.
    [Show full text]
  • 19 4 327 340 Krivosheina for Inet.P65
    Russian Entomol. J. 19(4): 327340 © RUSSIAN ENTOMOLOGICAL JOURNAL, 2010 Òàáëèöà äëÿ îïðåäåëåíèÿ ðîäîâ ëè÷èíîê ãðèáíûõ êîìàðîâ ïîäñåìåéñòâà Mycetophilinae (Diptera: Mycetophilidae) ôàóíû Ðîññèè è ñîïðåäåëüíûõ ñòðàí Key to genera of larvae of the fungus gnat subfamily Mycetophilinae (Diptera: Mycetophilidae) of Russia and adjacent countries Ì.Ã. Êðèâîøåèíà M.G. Krivosheina Èíñòèòóò ïðîáëåì ýêîëîãèè è ýâîëþöèè èì. À.Í. Ñåâåðöîâà ÐÀÍ, Ìîñêâà 119071 Ðîññèÿ. Email: [email protected] A.N. Severtzov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninsky prospect, 119071 Moscow Russia ÊËÞ×ÅÂÛÅ ÑËÎÂÀ: Mycetophilinae, Mycetophilidae, ëè÷èíêè, îïðåäåëèòåëüíàÿ òàáëèöà ðîäîâ, Ðîññèÿ KEY WORDS: Mycetophilinae, Mycetophilidae, larvae, key to genera, Russia ÐÅÇÞÌÅ. Ñîñòàâëåíà îïðåäåëèòåëüíàÿ òàáëè- ñòâîëîâ ïîâàëåííûõ äåðåâüåâ èëè ïîä ñèëüíî îò- öà ðîäîâ ïîäñåìåéñòâà Mycetophilinae (Diptera, ñòàâøåé êîðîé. Mycetophilidae) ôàóíû Ðîññèè è ñîïðåäåëüíûõ Ëè÷èíêè áîëüøèíñòâà âèäîâ ìèöåòîôèëèí îáè- ñòðàí. Ëè÷èíêè Mycetophilinae îòëè÷àþòñÿ îò ëè- òàþò âíóòðè ïëîäîâûõ òåë âûñøèõ ãðèáîâ, èñêëþ- ÷èíîê äðóãèõ ïîäñåìåéñòâ Mycetophilidae ñòðîåíè- ÷åíèå ñîñòàâëÿþò ëè÷èíêè ðîäîâ Phronia Winnertz, åì âåíòðàëüíîé ñòîðîíû ãîëîâíîé êàïñóëû: ýïèê- 1863 è Epicypta Winnertz, 1863, ëè÷èíêè êîòîðûõ ðàíèàëüíûå ïëàñòèíêè ãîëîâíîé êàïñóëû ñîïðèêà- îáèòàþò íà ïîâåðõíîñòè ãíèþùèõ ñòâîëîâ äåðåâü- ñàþòñÿ íà âåíòðàëüíîé ñòîðîíå â îäíîé òî÷êå. Îá- åâ; íåêîòîðûå âèäû æèâóò ïîä êðûøå÷êàìè õàðàê- ñóæäàþòñÿ ïðèçíàêè ðîäîâîãî óðîâíÿ. òåðíîé ôîðìû (Ðèñ. 1, 2). Ïî òèïó ïèòàíèÿ ïî÷òè âñå ìèöåòîôèëèäû ìèöåòîôàãè. Ñðîêè ëåòà èìà- ABSTRACT. A key to genera of larva of the fun- ãî è ñðîêè ðàçâèòèÿ ëè÷èíîê, ñâÿçàííûõ ñ ïëîäî- gus gnat subfamily Mycetophilinae (Diptera, Myceto- âûìè òåëàìè ãðèáîâ, ÷åòêî óâÿçàíû ñ ïðîäîëæè- philidae) of Russia and adjacent countries is composed.
    [Show full text]
  • Christmas Island Biodiversity Conservation Plan DRAFT
    Christmas Island Biodiversity Conservation Plan DRAFT March 2014 Prepared by: Director of National Parks Made under the Environment Protection and Biodiversity Conservation Act 1999 © Commonwealth of Australia, 2014 This work is copyright. ouY may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. Requests and inquiries concerning reproduction and rights should be addressed to Commonwealth Copyright Administration, Attorney-General’s Department, Robert Garran Offices, National Circuit, Barton ACT 2600 or posted at: ag.gov.au/cca Note: This recovery plan sets out the actions necessary to stop the decline of, and support the recovery of, listed threatened species. The Australian Government is committed to acting in accordance with the plan and to implementing the plan as it applies to Commonwealth areas. The plan has been developed with the involvement and cooperation of a broad range of stakeholders, but individual stakeholders have not necessarily committed to undertaking specific actions. The attainment of objectives and the provision of funds are subject to budgetary and other constraints affecting the parties involved. Proposed actions may be subject to modification over the life of the plan due to changes in knowledge. While reasonable efforts have been made to ensure that the contents of this publication are factually correct, the Commonwealth does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication.
    [Show full text]
  • Fungus Gnats (Diptera: Bolitophilidae, Diadocidiidae, Keroplatidae and Mycetophilidae) New to Finland
    © Entomologica Fennica. 16 June 2006 Fungus gnats (Diptera: Bolitophilidae, Diadocidiidae, Keroplatidae and Mycetophilidae) new to Finland Alexei Polevoi, Jevgeni Jakovlev* & Alexander Zaitzev Polevoi, A., Jakovlev, J. & Zaitzev, A. 2006: Fungus gnats (Diptera: Bolitophi- lidae, Diadocidiidae, Keroplatidae and Mycetophilidae) new to Finland. — Entomol. Fennica 17: 161–169. Thirty-seven species of fungus gnats new to Finland are reported. Eleven of these are reported in Fennoscandia for the first time: Diadocidia fissa Zaitzev, Macrocera estonica Landrock, M. nigricoxa Winnertz, M. pusilla Meigen, Boletina pallidula Edwards, Mycetophila morata Zaitzev, M. ostentanea Zaitzev, Trichonta nigritula Edwards, T. subterminalis Zaitzev & Menzel, Neoempheria winnertzi Edwards and Neuratelia sintenisi Lackschewitz. The re- cords are based on original material collected in large-scale trapping projects in Southern and Eastern Finland mainly in old-growth forests during 1997–1998. Detailed information on Finnish findings, and data on the general distribution of the species are given. Several species are known with only one (type material) or a few previous records ranging from Norway to Sakhalin. For two poorly-known species, Neuratelia sintenisi Lackschewitz and Rymosia pinnata Ostroverkhova, new figures of male genitalia are presented. A. Polevoi, Forest Research Institute, RU-185910, Pushkinskaya 11, Petro- zavodsk, Russia; E-mail: [email protected] J. Jakovlev, Finnish Forest Research Institute (METLA), Vantaa Research Unit, P. O. Box 18, FI-01301 Vantaa, Finland; *correspondent author’s e-mail: [email protected] A. Zaitzev, Moscow City Pedagogical Institute, Department of Biology, Faculty of Chemistry and Biology, 111568, Chechulina 1, Moscow, Russia; E-mail: [email protected] Received 22 June 2005, accepted 11 November 2005 1.
    [Show full text]
  • Updated Checklist of Norwegian Mycetophilidae (Diptera), with 92% DNA Barcode Reference Coverage
    © Norwegian Journal of Entomology. 22 December 2020 Updated checklist of Norwegian Mycetophilidae (Diptera), with 92% DNA barcode reference coverage JOSTEIN KJÆRANDSEN & GEIR E.E. SØLI Kjærandsen, J. & Søli, G.E.E. 2020. Updated checklist of Norwegian Mycetophilidae (Diptera) with 92% DNA barcode reference coverage. Norwegian Journal of Entomology 67, 201–234. Up to present 602 species and 65 genera of fungus gnats, family Mycetophilidae, are published from Norway. Extensive collecting supported by the Norwegian Biodiversity Information Centre (NBIC) over the eight last years, with special focus on insect fauna in northern Norway, has documented 240 additional species and 2 additional genera from Norway, of which 118 species are considered as new to science. Based on a thorough review of the species previously published from Norway, we have crossed out six species as misidentified. One new synonym is established:Boletina conformis Siebke, 1863 syn. n. = Boletina plana (Walker, 1856). Two species are restituated based on integrative studies including DNA barcodes. These are Ectrepesthoneura bucera Plassmann, 1980 sp. restit., found to be a distinct species separate from Ectrepesthoneura ovata Ostroverkhova, 1977, and Trichonta trifida Lundstrom, 1909 sp. restit., found to be a distinct species separate from Trichonta vulcani (Dziedzicki, 1889). The updated, validated A-checklist includes 821 species of which 703 (86%) refer to formally described species and 118 (14%) to potentially undescribed species, referred to by their interim names as used on BOLD and in our databases. All species are documented with specimens in the museum collections at either Tromsø University Museum (TMU, 781 species, 95%) and/or the Natural History Museum in Oslo (NHMO, 382 species, 47%).
    [Show full text]
  • Mycetophilidae 14
    MYCETOPHILIDAE 14 2 Macrocera variola d Figs. 14.1-2. ( 1 ) Female of Mycetophila alea Laffoon; (2) male of Macrocera variola Garrett. 223 Slender to moderately robust flies, 2.2-13.3 mm long of modified setae, scattered slightly clubbed setae (Figs. 1, 2). Thoracic and tibia1 bristles often strong. (Bolitophila), a dorsal and ventral pit (Asindulum, Fig. Coxae long; tibiae usually with long strong apical spurs 5), or a longitudinal groove with a highly modified (Figs. 77-83). Color varied; body usually dull yellow, surface and a deep internal invagination (Cordyla, Fig. brown, or black, but sometimes brightly marked; wing 91.' often conspicuously marked. Thorax: varying in form from compressed and deep to depressed and low. Thoracic sclerites varying consider- Adult. Head: usually flattened from front to back and ably in size, shape, and distinctness; thoracic structure inserted well below level of upper margin of strongly used to determine relationships among genera and sub- arched thorax, but semicircular in profile and inserted families by Shaw (1948) and Shaw and Shaw (1951), on anterior end of thorax in Manotinae and some Scio- but not satisfactorily and therefore requiring more philinae. Eyes usually densely haired, rarely with a few study. Thoracic vestiture variable, consisting of fine short hairs, usually situated on lower part of head and setae, moderately strong bristles with apices bifid or widely separated above, with an incomplete eye bridge otherwise modified (Tuomikoski, personal commun.), in some Ditomyiinae and a complete bridge in some scale-like setae, or very fine appressed or erect setae; Manotinae. Three ocelli usually present, variable in nature and distribution often used in taxonomic studies, position, with median ocellus sometimes very small or but other times overlooked (e.g.
    [Show full text]
  • The Flies of Western North America
    The Flies of Western North America by Frank R. Cole-- with the collaboration of Evert l. Schlinger University of California Press Berkeley and Los Angeles 1969 UNIVERSITETET I BERGEN Zoolosisl< P4ureum 116 BIBIONIDAE PACHYNEU RIDAE MYCETOPHILIDAE D. ca~trinrrsMcAtee (1921) is common throughout the dull in color, most of them being brown or yellowish. In northern United States and southern Canada, with recorded general appearance the flies are not unlike the mosquitoes, western records from Alaska, B.C., Wash., N. Mex., and but the resemblance is, with a little inagnification, seen to Utah. L). cinarginatus hlcAtee (1921) was so named for be quite superficial. the deeply emarginate ninth abdominal tergite of the shin- The sn~allhead is usually set low and closely on the tho- ing black inale; in the female the thorax chiefly black, abdo- men velvety brownish black. Only Calif. types known. D. jai~~esi(Hardy, 1937) was first taken at Masonville, Colo.; it is now known from Utah and east to Michigan, but is made a synonym of obesnlrrs. D. obesulns Loew, first known froin eastern states, has been taken in Colo., Calif., and B.C. D. proxinltrs McAtee ( 1921) is known from Colo. and Wyo. D. scctrts McAtee (1921) was discovered in the White hits., New I-Iampshire; Strickland recorded the species from Alta. D. scroiinrts Loew, with type locality in Illinois, has been determined by Hardy froin eastern states and from B.C., Wash., and Ore. We may as well write off serratico1li.r. \Valker as unrecognizable from the description. D. spinipes Say, originally taken in Missouri, is now listed "througholit U.S." Figure 66.
    [Show full text]
  • SYNTHESIS and PHYLOGENETIC COMPARATIVE ANALYSES of the CAUSES and CONSEQUENCES of KARYOTYPE EVOLUTION in ARTHROPODS by HEATH B
    SYNTHESIS AND PHYLOGENETIC COMPARATIVE ANALYSES OF THE CAUSES AND CONSEQUENCES OF KARYOTYPE EVOLUTION IN ARTHROPODS by HEATH BLACKMON Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT ARLINGTON May 2015 Copyright © by Heath Blackmon 2015 All Rights Reserved ii Acknowledgements I owe a great debt of gratitude to my advisor professor Jeffery Demuth. The example that he has set has shaped the type of scientist that I strive to be. Jeff has given me tremendous intelectual freedom to develop my own research interests and has been a source of sage advice both scientific and personal. I also appreciate the guidance, insight, and encouragement of professors Esther Betrán, Paul Chippindale, John Fondon, and Matthew Fujita. I have been fortunate to have an extended group of collaborators including professors Doris Bachtrog, Nate Hardy, Mark Kirkpatrick, Laura Ross, and members of the Tree of Sex Consortium who have provided opportunities and encouragement over the last five years. Three chapters of this dissertation were the result of collaborative work. My collaborators on Chapter 1 were Laura Ross and Doris Bachtrog; both were involved in data collection and writing. My collaborators for Chapters 4 and 5 were Laura Ross (data collection, analysis, and writing) and Nate Hardy (tree inference and writing). I am also grateful for the group of graduate students that have helped me in this phase of my education. I was fortunate to share an office for four years with Eric Watson.
    [Show full text]