Mercury Concentration in Bivalve Molluscs

Total Page:16

File Type:pdf, Size:1020Kb

Mercury Concentration in Bivalve Molluscs Bull Vet Inst Pulawy 59, 357-360, 2015 DOI:10.1515/bvip-2015-0053 Mercury concentration in bivalve molluscs Józef Szkoda1, Maciej Durkalec1, Agnieszka Nawrocka1, Mirosław Michalski2 1Department of Pharmacology and Toxicology, 2Department of Hygiene of Animal Origin, National Veterinary Research Institute, 24-100 Pulawy, Poland [email protected] Received: April 23, 2015 Accepted: September 4, 2015 Abstract A total of 85 mussel samples of eight species were examined. Analysis of mercury in the freeze-dried samples was carried out by atomic absorption spectrometry method using direct mercury analyser AMA 254. The analytical procedure for determination of mercury was covered by the quality assurance programme of research and participation in national and international proficiency tests. Concentrations of total mercury in all investigated samples were found to be generally low, in the range of 0.033-0.577 mg/kg of dry weight and of 0.003-0.045 mg/kg of wet weight. The results indicate that obtained levels of mercury in bivalve molluscs are not likely to pose a risk to the health of consumers. Keywords: mercury, bivalve molluscs, bioaccumulation, food safety. Introduction which may pose a threat to the health of consumers (7, 13). In Poland, the interest in marine food, or seafood, The rules for the marketing of live bivalve has increased in the recent years. Crustaceans, mostly molluscs for direct consumption and also for shrimps, squids, and lobsters, are frequently chosen processing are strictly defined in EU law regulating by consumers, but less popular oysters, cockles, all aspects of production, including environmental mussels, and clams which belong to bivalve molluscs conditions, farming, cleaning, transport, sale, are also purchased. These organisms, living mainly in microbiological and virological limits, as well as the aquatic environment, are found in almost all maximum levels of contaminants and residues of geographical areas. Most of the species inhabit marine biotoxins (6, 14, 18, 19). It has been reported intertidal zone of marine waters as benthic fauna. The that fish and other aquatic organisms can accumulate minority of bivalve species live in the depths of the toxic metals, including mercury (2, 10, 12, 17, 24, sea, in freshwater, or brackish water. Bivalves adopt 25). Several studies have investigated the toxic effects a sedentary or sessile lifestyle, living on underwater of mercury in living organisms. Mercury and rocks, stones, gravel, woods, or buried in sand, silt, especially its organic forms may disturb enzymatic and mud. Most of the species are filter feeders and use reactions and cause destruction of cells which phytoplankton as an important source of food (4). accumulate this element in large quantities (1, 3, 8, 9). Bivalves play an important role in aquatic ecosystems Various mechanisms of mercury action can lead to in clarifying water (13). It should be mentioned that dysfunction of the central nervous system and bivalve farming is one of economically important numerous developmental disorders (1, 5, 7, 8, 26). aquaculture branches for such countries as Spain, The aim of the study was to assess mercury France, Denmark and Italy, where seafood concentrations in bivalve molluscs available on the consumption is considerable. Given the fact that most Polish market. The material was collected within the of bivalve species are filter feeders, they can multi-annual monitoring programme "Protection of accumulate in their tissues such environmental animal and public health”. contaminants as pesticides, dioxins, and toxic metals, © 2015 J. Szkoda et al. This is an open access article distributed under the Creative Commons Attribution- NonCommercial-NoDerivs license (http://creativecommons.org/licenses/by-nc-nd/3.0/) 358 J. Szkoda et al./Bull Vet Inst Pulawy/59 (2015) 357-360 Material and Methods performed using the following certified reference materials: SRM-2976 (National Institute of Science and A total of 85 tissue samples of eight species of Technology, USA) and TORT-2 (National Research bivalve molluscs (Table 1) were obtained from local Council, Canada). The chosen method was regularly market in Poland. evaluated by participation in proficiency programmes organised by Food Analyses Performance Assessment Table 1. Bivalve molluscs - the species studied Scheme (FAPAS) and European Union Reference Laboratories comparisons (20). Our laboratory also Number Species of samples organises proficiency testing for regional veterinary laboratories involved in the analysis of mercury Dog cockle (Glycymeris glycymeris) 7 concentration in foods of animal origin and feed. Manila clam (Ruditapes philippinarum) 17 Atlantic jackknife clam (Ensis directus) 8 Results Blue mussel (Mytilus edulis) 21 Mercury concentrations in the tissues of selected Pacific oyster (Crassostrea gigas) 17 species of bivalve molluscs (expressed in dry weight) Great scallop (Pecten maximus) 3 are summarised in Table 2. Mean total mercury concentration was 0.132 mg/kg and median Common cockle (Cardium edule) 7 0.120 mg/kg (dry wt.). The maximum concentration of Hard clam (Mercenaria mercenaria) 5 mercury (0.577 mg/kg dry wt.) and the highest mean level (0.170 mg/kg dry wt.) were found in Pacific oyster (Crassostrea gigas), but the differences in Bivalves were cleaned and rinsed with deionised concentration of mercury among species were not water. Afterwards, fresh tissues were separated from statistically significant. the shell and homogenised. Moisture content in tissue Mercury concentrations in tissues of selected samples was determined using HR83 moisture analyser bivalve species (expressed in wet wt) are presented in (Mettler-Toledo International Inc., Switzerland). Fig. 1. They ranged from 0.014 to 0.024 mg/kg in Hard Mercury analysis was performed in fresh samples clam (Mercenaria mercenaria) and Dog cockle by atomic absorption spectrometry using AMA254 (Glycymeris glycymeris) respectively. direct mercury analyser (Altec, Czech Republic). The Mercury recoveries in certified reference materials procedure of mercury content determination in (CRMs) and results of selected proficiency tests are biological samples was previously described by presented in Table 3. Szkoda et al. (24). Statistical calculations were The given Z-scores in proficiency tests indicate performed using Statistica 10 PL software (StatSoft, that the obtained values are not statistically different Poland). from the assigned values. Quality control of analytical measurements was Table 2. Concentrations of mercury in bivalve molluscs, depending on the species (mg/kg dry matter) Species Number Mean Std. dev. Median Min. Max. Moisture of samples Dog cockle 7 0.09 0.199 82.8 0.138 0.035 0.133 Manila clam 17 0.035 0.397 87.1 0.118 0.082 0.102 Atlantic jacknife clam 8 0.099 0.135 83.0 0.119 0.012 0.118 Blue mussel 21 0.045 0.250 84.3 0.135 0.063 0.126 Pacific oyster 17 0.052 0.577 86.6 0.170 0.121 0.145 Great scallop 3 0.036 0.096 73.8 0.072 0.032 0.086 Common cockle 7 0.045 0.194 85.2 0.118 0.055 0.125 Hard clam 5 0.102 0.045 0.122 0.033 0.147 87.1 J. Szkoda et al./Bull Vet Inst Pulawy/59 (2015) 357-360 359 Fig. 1. Mean mercury concentrations (with range) in selected species of bivalve molluscs (expressed in wet-weight) Table 3. Concentration of mercury detected in certified reference material and materials from international and national proficiency tests (mg/kg of dry wt.) Material Assigned value Measured value Recovery (%) Z-score Certified reference material SRM-2976 (Mussel tissue) 0.061 0.060 98 - Certified reference material TORT-2 (Lobster hepatopancreas) 0.270 0.286 106 - 14th Proficiency test, EURL (Frozen fish) 0.222 0.211 95 -0.5 21th Proficiency test, EURL (Freeze-dried mussels) 0.0328 0.0385 117 0.8 Proficiency test, PIWet-PT2012/ZFT/32 (Frozen fish) 0.116 0.116 100 0.0 Discussion Toxicity of mercury is well known. The main sources of this toxic metal in human diet are fish and Bivalve molluscs are widely used as biomonitors seafood (1, 7, 8). The safety of consumers is provided of environmental metal concentrations. Beiras et al. (2) by legislation setting the maximum levels of mercury in found that mercury concentrations in tissues of Mytilus food. According to Commission Regulation (EC) No. galloprovincialis in Galicia, Spain, ranged from 0.100 1881/2006 setting the maximum level for certain to 1.109 mg/kg dry weight. Other authors monitored contaminants in foodstuffs, the maximum concentration heavy metal content in mussels from Apulian Coasts in of mercury in fish (with exception of some predatory Italy (22). The level of mercury was similar to the species) and in seafood is 0.5 mg/kg of wet weight (6). value determined by Beiras et al. (2) and ranged from The obtained concentrations of total mercury in fresh 0.10 to 0.81 mg/kg dry wt. Comparable results of tissue of bivalve molluscs were below the maximum mercury concentrations in tissues of Manila clam level (Fig. 1). Our finding corresponds with the results (Ruditapes phillipinarum) from Lagoon of Venice of other authors (10, 23). (0.130-0.830 mg/kg dry wt.) were reported by The European Food Safety Authority (EFSA) Moschino et al (15). Slightly lower content of mercury Panel on Contaminants in the Food Chain (CONTAM) (0.033-0.336 mg/kg dry wt.) was observed by Lepom in the line with Joint FAO/WHO Expert Committee on et al. (12) in tissues of freshwater mussels (Dreissena Food Additives (JECFA) established the following polymorpha) sampled in German surface waters, and tolerable weekly intake (TWI) of 4 μg/kg for inorganic by Rutzke et al. (21) in Lakes Ontario and Erie in the mercury and 1.3 μg/kg of body weight for United States. The ability of bivalve molluscs to methylmercury (8). accumulate toxic metals from water and sediments was To assess the risk associated with the consumption used in numerous studies in the assessment of of mercury presented in bivalve tissues, the tolerable environmental pollution by these elements (2, 11, 15, TWI for inorganic mercury was adopted.
Recommended publications
  • MOLLUSCS Species Names – for Consultation 1
    MOLLUSCS species names – for consultation English name ‘Standard’ Gaelic name Gen Scientific name Notes Neologisms in italics der MOLLUSC moileasg m MOLLUSCS moileasgan SEASHELL slige mhara f SEASHELLS sligean mara SHELLFISH (singular) maorach m SHELLFISH (plural) maoraich UNIVALVE SHELLFISH aon-mhogalach m (singular) UNIVALVE SHELLFISH aon-mhogalaich (plural) BIVALVE SHELLFISH dà-mhogalach m (singular) BIVALVE SHELLFISH dà-mhogalaich (plural) LIMPET (general) bàirneach f LIMPETS bàirnich common limpet bàirneach chumanta f Patella vulgata ‘common limpet’ slit limpet bàirneach eagach f Emarginula fissura ‘notched limpet’ keyhole limpet bàirneach thollta f Diodora graeca ‘holed limpet’ china limpet bàirneach dhromanach f Patella ulyssiponensis ‘ridged limpet’ blue-rayed limpet copan Moire m Patella pellucida ‘The Virgin Mary’s cup’ tortoiseshell limpet bàirneach riabhach f Testudinalia ‘brindled limpet’ testudinalis white tortoiseshell bàirneach bhàn f Tectura virginea ‘fair limpet’ limpet TOP SHELL brùiteag f TOP SHELLS brùiteagan f painted top brùiteag dhotamain f Calliostoma ‘spinning top shell’ zizyphinum turban top brùiteag thurbain f Gibbula magus ‘turban top shell’ grey top brùiteag liath f Gibbula cineraria ‘grey top shell’ flat top brùiteag thollta f Gibbula umbilicalis ‘holed top shell’ pheasant shell slige easaig f Tricolia pullus ‘pheasant shell’ WINKLE (general) faochag f WINKLES faochagan f banded chink shell faochag chlaiseach bhannach f Lacuna vincta ‘banded grooved winkle’ common winkle faochag chumanta f Littorina littorea ‘common winkle’ rough winkle (group) faochag gharbh f Littorina spp. ‘rough winkle’ small winkle faochag bheag f Melarhaphe neritoides ‘small winkle’ flat winkle (2 species) faochag rèidh f Littorina mariae & L. ‘flat winkle’ 1 MOLLUSCS species names – for consultation littoralis mudsnail (group) seilcheag làthaich f Fam.
    [Show full text]
  • Physiological Responses to Ocean Acidification and Warming
    Marine Environmental Research 130 (2017) 38e47 Contents lists available at ScienceDirect Marine Environmental Research journal homepage: www.elsevier.com/locate/marenvrev Physiological responses to ocean acidification and warming synergistically reduce condition of the common cockle Cerastoderma edule * E.Z. Ong a, b, , M. Briffa b, T. Moens a, C. Van Colen a a Ghent University, Biology Department, Marine Biology Research Group, Krijgslaan 281eS8, B 9000 Ghent, Belgium b Marine Biology & Ecology Research Centre, Plymouth University, Plymouth PL4 8AA, UK article info abstract Article history: The combined effect of ocean acidification and warming on the common cockle Cerastoderma edule was Received 4 February 2017 investigated in a fully crossed laboratory experiment. Survival of the examined adult organisms remained Received in revised form high and was not affected by elevated temperature (þ3 C) or lowered pH (À0.3 units). However, the 6 June 2017 morphometric condition index of the cockles incubated under high pCO conditions (i.e. combined Accepted 3 July 2017 2 warming and acidification) was significantly reduced after six weeks of incubation. Respiration rates Available online 5 July 2017 increased significantly under low pH, with highest rates measured under combined warm and low pH conditions. Calcification decreased significantly under low pH while clearance rates increased signifi- Keywords: Future ocean cantly under warm conditions and were generally lower in low pH treatments. The observed physio- fi Ocean acidification logical responses suggest that the reduced food intake under hypercapnia is insuf cient to support the Ocean warming higher energy requirements to compensate for the higher costs for basal maintenance and growth in Cerastoderma edule future high pCO2 waters.
    [Show full text]
  • Shell Whelk Dog Whelk Turret It Could Be a Periwinkle Shell (Nucella Lapillus) Shell Spire Shell Thick Top Shell (Osilinus Lineatus) Dark Stripes Key on Body
    It could be a type of It could be a type of It could be a It could be a type of topshell whelk Dog whelk turret It could be a periwinkle Shell (Nucella lapillus) shell spire shell Thick top shell (Osilinus lineatus) Dark stripes Key on body Egg Underside capsules Actual size It could be a type of (Hydrobia sp) Common periwinkle spiral worm White ‘Colar’ (Littorina littorea) Flat periwinkle (Littorinasp) Yes Roughly ‘ribbed’ shell. Very high up shore ‘Tooth inside (Turitella communis) opening (Spirorbis sp) Does it have 6 Common whelk No (Buccinum undatum) Yes or more whorls Brown, speckled Netted dog whelk body (twists)? Painted topshell (Nassarius reticulatus) (Calliostoma zizyphinum) No Rough periwinkle Flattened spire Yes Is it long, thin (Littorina saxatilis) Yes Yes and cone shaped Is it permanently No like a unicorn’s horn? attached to Is there a groove or teeth No Is there mother No a surface? in the shell opening? of pearl inside It could be a type of the shell opening? bivalve Yes Yes Common otter-shell (Lutraria lutraria) Bean-like tellin No Is the shell in (Fabulina fabula) Is it 2 parts? spiraled? Common cockle (Cerastoderma edule) It could be a Flat, rounded No sand No Great scallop mason It could be a Is the shell a (Pecten maximus) shell Razor shell worm keel worm Wedge-shaped Is the case dome or (Ensis sp) No Pacific oyster shell made from Yes cone shape? (Crassostrea gigas) Shell can be Peppery furrow shell very large (Scrobicularia plana) sand grains? Elongated and and doesn’t (Lanice conchilega) deep-bodied fully close with large ‘frills’ No (Pomatoceros sp) Yes It could be a type of sea urchin It could be a type of An acorn Native oyster Empty barnacle barnacle Does it have that may be found in estuaries and shores in the UK.
    [Show full text]
  • Impact of Trematode Parasitism on the Fauna of a North Sea Tidal Flat
    HELGOI~NDER MEERESUNTERSUCHUNGEN Helgol~nder Meeresunters. 37, 185-199 (1984) Impact of trematode parasitism on the fauna of a North Sea tidal flat G. Lauckner Biologische Anstalt Helgoland (Litoralstation]; D-2282 List/Sylt, Federal Republic of Germany ABSTRACT: The impact of larval trematodes on the fauna of a North Sea tidal flat is considered at the individual and at the population level, depicting the digenean parasites of the common periwinkle, Littorina littorea, and their life cycles, as an example. On the German North Sea coast, L. fittorea is first intermediate host for 6 larval trematodes representing 6 digenean families - Cryptocotyle lingua (Heterophyidae), Himasthla elongata (Echinostomatidae), Renicola roscovita (Renicolidae), Microphallus pygmaeus (Microphallidae), Podocotyle atomon (Opecoelidae} and Cercaria lebouri (Notocotylidae). All except P. atomon utilize shore birds as final hosts; adult P. atomon parasitize in the intestine of teleosts, mainly pleuronectid flatfish. Second intermediate hosts of C. lingua are various species of fish; the cercariae of H. elongata encyst in molluscs and polychaetes, those of R. roscovita in molluscs; Iv[. pygmaeus has an abbreviated life cycle; C. lebouri encysts free on solid surfaces; and the fish trematode P. atomon utilizes benthic crustaceans, mainly amphipods, as second intermediate hosts. On the tidal flats of the K6nigshafen (Sylt), up to 77 % of the periwinkles have been found to be infested by larval trematodes. Maximum infestations in individual samples were 23 % for C. lingua, 47 % for H. etongata and 44 To for R. roscovita. The digeneans cause complete 'parasitic castration' of their carriers and hence exclude a considerable proportion of the snails from the breeding population.
    [Show full text]
  • Solent Bivalve Survey 2019 Report
    Solent Bivalve Stock Survey Spring 2019 This report has been produced by the Southern Inshore Fisheries and Conservation Authority. A copy of this report is available on our website at www.southern-ifca.gov.uk or from the Southern IFCA Office at: Unit 3, Holes Bay Park Sterte Road West Poole Dorset BH15 2AA 01202 721373 [email protected] !1 Contents 1. Introduction 3 1.1. The Fishery 3 1.2. The Solent 4 1.3. Current Management 5 2. Methodology 5 2.1. The Survey 5 2.2. Equipment 6 2.3. Data Analysis 6 3. Results 6 3.1. Southampton Water 7 3.2. Portsmouth Harbour 9 3.3. Langstone Harbour 11 4. Discussion 13 4.1. Southampton Water 13 4.2. Portsmouth Harbour 14 4.3. Langstone Harbour 15 4.4. Cockle 16 4.5. American Hard-Shelled clam 17 5. References 17 6. Annex 18 6.1. Annex 1 18 6.2. Annex 2 21 !2 1. Introduction The following report details the bivalve 1 surveys carried out in Southampton Water, Portsmouth Harbour and Langstone Harbour during March - April 2018, October 2018, and March 2019. The report will assess the distribution and abundance of clam and cockle species over time to evaluate the population health and stability of commercially important species for the dredge fishery. In addition, the outcomes from the survey will provide data which can be used as a baseline on which to monitor 2 future trends and potential changes to populations which will feed into the development and monitoring of local management strategies.
    [Show full text]
  • BROODSTOCK CONDITIONING and LARVAL REARING of the GEODUCK CLAM (Panopea Generosa GOULD, 1850)
    BROODSTOCK CONDITIONING AND LARVAL REARING OF THE GEODUCK CLAM (Panopea generosa GOULD, 1850) by Robert Marshall B.Sc.(hons), Dalhousie University, 1993 M.Aq., Simon Fraser University, 1997 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Animal Science) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) March 2012 © Robert Marshall, 2012 Abstract The aim of this thesis was to identify conditions that optimize Panopea generosa broodstock conditioning and larval growth and survival in a hatchery setting. A series of experiments subjected broodstock (adults) to various levels of key factors [i.e. temperature (Ch. 2), salinity (Ch. 3) and nutrition [ration (Ch. 4) and feed type (Ch. 5)]. A larval experiment examined the effects of stocking density and feed level combinations on growth and survival (Ch. 6). Broodstock responses were quantified using gravimetric (condition and gonadosomatic indices) and histological techniques (development classification, volume fractions and oocyte diameter). Survival and spawning rates were also examined. Of the temperatures tested (7, 11, 15 and 19˚C) 11˚C had the highest spawning rates (% individuals) and more oocytes follicle-1, than 15 and 19˚C. At 7˚C gonadosomatic indices were highest but this temperature did not produce spawning clams. Gonads degenerated at 19˚C. Among salinities of 17, 20, 24, and 29 gonad sheath thickness and area occupied by gametes increased at 29 but not at 24. Salinities of 17 and 20 were associated with fungal infection and had high mortality rates after 26 d exposure. With higher ration treatments (up to 7.2 × 109 cells clam-1 d-1 [Isochrysis sp.
    [Show full text]
  • Biogeographic Patterns of the Marine Bivalve Cerastoderma Edule Along European Atlantic Coasts
    Biogeographic patterns of the marine bivalve Cerastoderma edule along European Atlantic coasts DISSERTATION Zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrecht-Universität zu Kiel vorgelegt von Manuela Krakau Kiel 2008 Angefertigt an der Wattenmeerstation Sylt Stiftung Alfred-Wegener-Institut für Polar- und Meeresforschung Referent: Prof. Dr. Karsten Reise Koreferent: Prof. Dr. Reinhold Hanel Tag der mündlichen Prüfung: 10. Juli 2008 Zum Druck genehmigt: 10. Juli 2008 CONTENTS SUMMARY ...…...………………………………….………………………… I ZUSAMMENFASSUNG .……………………………………………………... III GENERAL INTRODUCTION .………………………………………………….. 1 CHAPTER 1: Shell forms of the intertidal bivalve Cerastoderma edule L. from Africa to the Arctic .………………………………………… 9 CHAPTER 2: Cockle parasites across biogeographic provinces ..……......… 36 CHAPTER 3: Genetic diversity in high latitudes – an intertidal bivalve contradicts a common pattern ..…………………………… 59 GENERAL DISCUSSION .…………………...……………………………….. 89 REFERENCES …..…………………………………………………………... 95 APPENDIX ………………………………………………………………… X1 ACKNOWLEDGEMENTS /D ANKSAGUNG Biogeographic patterns of the marine bivalve C. edule SUMMARY SUMMARY The cockle Cerastoderma edule is a common bivalve that inhabits the marine soft-bottom intertidal along European shores. This invertebrate plays a key role in coastal food webs of the Northeast Atlantic coasts due of its high abundances. I studied cockles from 19 sites along the distribution range with the aim to describe the variation of geographic population
    [Show full text]
  • Alaska Final Report
    Final Report Chugach Regional Resources Commission Bivalve Enhancement Program Bivalve inventories and native littleneck clam (Protothaca staminea) culture studies Exxon Valdez Oil Spill Trustee Council Project Number 95131 Produced by: Dr. Kenneth M. Brooks Aquatic Environmental Sciences 644 Old Eaglemount Road Port Townsend, Washington 98368 February 2, 2001 Chugach Regional Resources Commission Bivalve Enhancement Program – Bivalve Inventories and native littleneck clam (Protothaca staminea) culture studies Table of contents Page Introduction 1 1.0. Background information 2 1.1. Littleneck clam life history 2 1.1.1. Reproduction 3 1.1.2. Distribution as a function of tidal elevation. 3 1.1.3. Substrate preferences 3 1.1.4. Habitat Suitability Index (HIS) for native littleneck clams. 3 1.2. Marking clams and other bivalves 5 1.3. Aging of bivalves 6 1.4. Length at age for native littleneck clams in Alaska 8 1.5. Bivalve predators 8 1.6. Bivalve culture 9 1.7. Clam culture techniques 10 1.7.1. Predator control 11 1.7.2. Supplemental seeding 11 1.7.3. Substrate modification. 11 1.7.4. Plastic netting 11 1.7.5. Plastic clam bags 12 1.8. Commercial clam harvest management in Alaska 12 1.9. Environmental effects associated with bivalve culture 13 1.10. Background summary 15 1.11. Purpose of this study 15 2.0. Materials, methods and results for the bivalve inventories conducted in 1995 and 1996 at Port Graham, Nanwalek, Tatitlek, Chenega and Ouzinke. 17 2.1. 1995-96 bivalve inventory sampling design. 17 2.2. Clam sample processing. 18 2.3.
    [Show full text]
  • Inshore Fisheries: Bivalve Molluscs
    Inshore Fisheries: Bivalve Molluscs Scallops Due to a rapid growth rate and high market value, the scallop fishery is of high economic importance. Fishing for scallops has been established in Northern Ireland since 1935 with Queen scallop fishing not becoming commercial until the 1970’s. Due to the different behaviour of King and Queen scallops, with King scallops burying into the sediment whilst Queen scallops are active swimmers, the fishing technique changes to encompass this. King scallops are fished using dredges with 8 or 9 metal teeth set vertically along the front edge of the dredge. The teeth rake up the scallops which are caught by the mesh bag positioned behind the tooth bar. Groups of dredges are hung from a tow bar which has wheels on either end so it can move over the seabed. As Queen scallops tend to swim when disturbed, fishermen can make use of this by using skid dredges or otter trawls. Unlike scallop dredges, skid dredges have no teeth, but instead have a tickler chain which disturbs the Queen scallops causing them to swim into the water column where they are caught by the net attached behind the tickler chain. Management All vessels fishing scallops have to submit shellfish landings to the Department of Agriculture and Rural Development. Information submitted includes port of landing, length of vessel, live weight and value. In addition, all vessels over 10m which harvest scallops have to have a vessel monitoring system on board. In 2008 new regulations came out under the Conservation of Scallop Regulations (Northern Ireland) 2008 which replace the Conservation of Scallops Regulations (Northern Ireland) 1997 and The Inshore Fishing (Daily Closed Time for Scallops) Regulations (Northern Ireland) 2000.
    [Show full text]
  • Research Article
    z Available online at http://www.journalcra.com INTERNATIONAL JOURNAL OF CURRENT RESEARCH International Journal of Current Research Vol. 8, Issue, 05, pp.31490-31498, May, 2016 ISSN: 0975-833X RESEARCH ARTICLE BIOCHEMICAL COMPOSITION OF FOUR OCTOPUSES REPRESENTED IN TRAWL NET BY-CATCHES OFF VISAKHHAPATNAM, EAST COAST OF INDIA *Mohana Rao, M., Yedukondala Rao, P. and Ramesh Babu, K. Department of Marine Living Resources, College of Science and Technology, Andhra University, Visakhapatnam - 530003, A.P., India ARTICLE INFO ABSTRACT Article History: The biochemical parameters such as protein, lipid, carbohydrate and ash besides water content in the muscle of Octopus aegina, O. membranaceus, O. dollfusi and Cystopus indicus have been conducted Received 07th February, 2016 Received in revised form during October2009 to September, 2011 at Visakhapatnam. The percentage composition of protein, 26th March, 2016 lipid, carbohydrate and ash ranges from 9.95 to 17.56, 3.98 to 9.01, 0.23 to 0.62 and 3.73 to 7.79 Accepted 14th April, 2016 respectively in juveniles and adults of four species. There was no remarkable variation in the Published online 31st May, 2016 biochemical composition of four species. Seasonally highest protein and lipid contents were noticed in summer in four species. Variations in biochemical composition in present study may be governed by Key words: spawning cycle and feeding activity. The present study indicated that all the four species of Octopuses studied were nutritionally equal to any food fish and they could be used for food and for preparation Octopus, Juvenile, Adult, Muscle Biochemical composition, of various fish by-products.
    [Show full text]
  • CRRC Bivalve and Littleneck Clam Culture Studies
    5.0. Development of hatchery, nursery and growout methods for Nuttall’s cockle (Clinocardium nuttallii). During the 1995 shellfish surveys at the Alaskan Native villages of Tatitlek, Port Graham and Nanwalek, villagers repeatedly expressed a preference for cockles (Clinocardium nuttallii). Residents of Port Graham reported that cockles were common in the 1970’s and early 1980’s, but virtually disappeared several years before the Exxon Valdez oil spill. Very few cockles were observed in any of the quantitative or qualitative surveys conducted at Port Graham, Tatitlek, or Nanwalek. Excellent cockle habitat was observed in qualitative shellfish surveys at Port Graham and Tatitlek. The common cockle from the Eastern Atlantic (Cerastoderma edule) is prized in some areas of Europe and blood cockles of the genus Anadara are grown and marketed in Asia. However, Nuttall’s cockle, common in sandy intertidal areas of the eastern Pacific, is not cultivated and is not commonly harvested commercially. In part, that is because this bivalve does not keep well under refrigeration (author’s personal experience) and therefore has a limited commercial shelf-life. The result is that little work has been accomplished with respect to developing hatchery techniques for propagating this animal. A search of the ASFA and BIOSYS bibliographic databases revealed few citations dealing with the genus Clinocardium. All of those identified in the search were obtained from the University of Washington library system together with many of the references pertaining to other cockle species. 5.1. Background. In addition to being a favored food of Alaskan Natives, cockles appear to grow rapidly in Washington State.
    [Show full text]
  • 104 Th Annual Meeting, Seattle, Washington, March 2012
    Journal of Shellfish Research, Vol. 31, No. 1, 231, 2012. ABSTRACTS OF TECHNICAL PAPERS Presented at the 104th Annual Meeting NATIONAL SHELLFISHERIES ASSOCIATION Seattle, Washington March 24–29, 2012 231 National Shellfisheries Association, Seattle, Washington Abstracts 104th Annual Meeting, March 24–29, 2012 233 CONTENTS Alisha Aagesen, Chris Langdon, Claudia Hase AN ANALYSIS OF TYPE IV PILI IN VIBRIO PARAHAEMOLYTICUS AND THEIR INVOLVEMENT IN PACIFICOYSTERCOLONIZATION........................................................... 257 Cathryn L. Abbott, Nicolas Corradi, Gary Meyer, Fabien Burki, Stewart C. Johnson, Patrick Keeling MULTIPLE GENE SEGMENTS ISOLATED BY NEXT-GENERATION SEQUENCING INDICATE EXTREME DIVERGENCE OF MIKROCYTOS MACKINI. ......................................... 257 Cathryn L. Abbott, Scott R. Gilmore, Geoff Lowe, Gary Meyer, Susan Bower A JOURNEY TOWARDS MOLECULAR DIAGNOSTICS FOR AN UNCLASSIFIABLE INTRACELLULAR MICROCELL PARASITE OF PACIFIC OYSTERS (CRASSOSTREA GIGAS), MIKROCYTOS MACKINI. .................................................................... 257 Robert R. Abbott, Rena Obernolte ACOUSTICALLY TAGGED FISH UTILIZATION OF AN ARTIFICIAL REEF CONSTRUCTED FOR NATIVEOLYMPIAOYSTERRESTORATION................................................... 257 Kumud Acharya, Lynn Schwaebe, Michael Nicholl WHAT INDUCES DREISSENA BUGENSIS TO SPAWN UNDER LABORATORY CONDITIONS? . 258 Chuck Adams, Leslie Sturmer AN ECONOMIC DESCRIPTION OF THE FLORIDA SHELLFISH CULTURE INDUSTRY. 258 Justin Ainsworth, Mitch Vance ESTIMATING DISCARD RATES
    [Show full text]