Plasticity in the Human Hippocampus

Total Page:16

File Type:pdf, Size:1020Kb

Plasticity in the Human Hippocampus Plasticity in the Human Hippocampus Katherine Woollett Submitted for PhD in Cognitive Neuroscience October 2010 University College London Supervisor: Eleanor A. Maguire Declaration: I, Katherine Woollett, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Signed: Date: Abstract If we are to approach rehabilitation of memory-impaired patients in a systematic and efficacious way, then it is vital to know if the human memory system has the propensity for plasticity in adulthood, the limiting factors on such plasticity, and the timescales of any plastic change. This thesis was motivated by an attempt to develop a body of knowledge in relation to these questions. There is wide agreement that the hippocampus plays a key role in navigation and memory across species. Evidence from animal studies suggests that spatial memory- related hippocampal volume changes and experience-related hippocampal neurogenesis takes place throughout the lifespan. Previous studies in humans indicated that expert navigators, licensed London taxi drivers, have different patterns of hippocampal grey matter volume relative to control participants. In addition, preliminary evidence also suggested there may be functional consequences associated with this grey matter pattern. Using licensed London taxi drivers as a model for learning and memory, the work undertaken centered on four key issues: (1) In a set of studies, I characterised the neuropsychological profile of licensed London taxi drivers in detail, which included devising a number of new table-top associational memory tests. This enabled me to assess the functional consequences of their expertise and hippocampal grey matter pattern in greater depth than previous studies. (2) In order to explore the effects of taxi drivers’ expertise in more naturalistic settings, I also examined how well they could learn the layout of an unfamiliar town compared with a group of non-taxi drivers, and how effectively taxi drivers could integrate a new district into their existing spatial representation of London. (3) I then conducted a study on experts whose knowledge was much less spatial than taxi drivers in order to examine if the effects on hippocampal grey matter and neuropsychology were general or whether they were specific to the spatial domain. (4) Given that previous taxi driver studies were cross-sectional, the question of whether the human hippocampus can exhibit spatial memory-related structural plasticity in adulthood was uncertain. I therefore conducted a longitudinal study which assessed participants both pre and post taxi driver training using structural MRI and neuropsychological measures. This enabled me to investigate, within subjects, whether hippocampal volume changes can be acquired in response to intense spatial stimulation. In addition, I explored whether ceasing to be a taxi driver (i.e. retiring after many years on the job) resulted in ‘reverse’ plasticity. I found evidence for hippocampal plasticity within individuals as a result of their intense acquisition of spatial knowledge over a number of years that was associated with qualifying to be a licensed London taxi driver, and preliminary evidence of reverse plasticity when taxi drivers retire. This suggests that hippocampal structure and memory ability can be modified in response to environmental factors and are not necessarily hard-wired. However, my results also provide some insights into the boundaries within which human memory operates, as I identified both positive and negative cognitive consequences of being an expert navigator, and also established that the MRI and neuropsychology effects of expertise on the hippocampus may be restricted to the spatial domain. Acknowledgements The work in this thesis could not have been accomplished without the generous help of a number of people. I wish to thank Prof. Eleanor Maguire, my principal supervisor, for her invaluable support and advice throughout my PhD, and for being so encouraging, enthusiastic and patient, and Prof. Neil Burgess, my secondary supervisor. Next there are my friends and colleagues to thank from UCL: Nikolaus Weiskopf, Chloe Hutton and John Ashburner for their technical advice; Alex Leff and Jenny Crinion for being so helpful and generous with their time; Alice Neal, Debbie Talmi and Jen Summerfield for making me smile; the support staff at the FIL; Peter Aston, David Bradbury, Janice Glensman, Ric Davis and Chris Freemantle for help with scanning and computers. Finally, I would like to thank my mother, Beto and Marga Martin for teaching me to never give up, without which I would not have been here today doing this PhD. Table of Contents Chapter 1- Does experience change the brain? 12 1.1 Introduction 13 1.2 Structural effects of expertise in the healthy adult human brain 17 1.3 Hippocampal anatomy 19 1.4 The functions of the hippocampus 26 1.5 Structural changes in the hippocampus 31 1.6 Licensed London taxi drivers – a model system 33 1.7 What are the underlying mechanisms of plasticity? 42 1.8 Functional differentiation along the long-axis of the hippocampus 49 1.9 Thesis overview 54 Chapter 2 - Materials and Methods 56 2.1 Introduction 57 2.2 Participants 57 2.3 Biophysics of magnetic resonance imaging 60 2.3.1 Magnetic fields 60 2.4 Generating an MR signal 62 2.5 Tomographic image formation 64 2.6 Scanning parameters 64 2.7 Structural MRI sequences 66 2.8 Automated analysis of structural MRI scans 69 2.8.1 Standard voxel-based morphometry (VBM) 69 2.8.2 Diffeomorphic Anatomical Registration using Exponentiated Lie algebra (DARTEL) 71 2.8.3 High Dimensional Warping 71 2.9 Statistical inference 72 2.10 Neuropsychological tests 73 Chapter 3 - The effects of navigational expertise: an in-depth analysis 75 3.1 Introduction 76 3.2 Experiment 1 78 3.2.1 Materials and methods 78 3.2.2 Procedure 89 3.2.3 Data analysis 89 3.3 Results 90 3.3.1 MRI data 90 i 3.3.2 Neuropsychological data 91 3.4 Discussion 97 3.5 Experiment 2 101 3.5.1 Material and Methods 102 3.5.2 Procedure and data analyses 107 3.5.3 Results 107 3.5.4 Discussion 108 Chapter 4 -The effects of navigational expertise on wayfinding in new environments 111 4.1 Introduction 112 4.2 Experiment 3 114 4.2.1 Materials and methods 114 4.2.2 Procedure 123 4.2.3 Data analysis 123 4.2.4 Results 124 4.2.5 Discussion 132 Chapter 5 - Non-spatial expertise and hippocampal grey matter volume 139 5.1 Introduction 140 5.2 Experiment 4 142 5.2.1 Material and methods 142 5.2.2 Procedure 144 5.2.3 Data analyses 144 5.2.4 Results 144 5.2.5 Discussion 148 Chapter 6 - Hippocampal plasticity: a longitudinal study 151 6.1 Introduction 153 6.2 Experiment 5 158 6.2.1 Materials and methods 158 6.2.2 Procedure 162 6.2.3 Data analyses 162 6.2.4 Results: Time 1 163 6.2.5 Results: Time 2 167 6.2.6 Results: Time 1 vs. Time 2 171 6.2.7 Discussion 174 6.3 Experiment 6 177 6.3.1 Material and methods 178 6.3.2 Procedure 182 ii 6.3.3 Data analysis 183 6.3.4 Results 183 6.3.5 Discussion 186 Chapter 7 - General discussion 188 7.1 Plasticity in the human hippocampus 190 7.2 Neuropsychological consequences of navigational expertise 196 7.3 Spatial and non-spatial expertise 201 7.4 Implications for the hippocampus 203 7.5 Conclusions 205 References 208 iii List of Figures Figure 1. Example of a sagittal view from a structural MRI scan 14 Figure 2. The human hippocampal formation 19 Figure 3. Schematic representation of the hippocampal network 20 Figure 4. Hippocampal place cells 24 Figure 5. Navigation performance 29 Figure 6. Map of London 34 Figure 7. Taxi driver qualification process 35 Figure 8. Hippocampal volume differences between taxi drivers and control subjects 37 Figure 9. The effect of taxi driving experience on grey matter volume 39 Figure 10. Main effects for the neuropsychological tests 40 Figure 11. Newly generated cells can be detected in the adult human hippocampus in patients 48 Figure 12. 3D modelling of molecularly defined subdivisions of DG, CA3, and CA1 delineated by gene expression 52 Figure 13. Protons align parallel or anti-parallel to the magnetic field (B0) 62 Figure 14. Generation of MR signal 63 Figure 15. T1 weighted scan - Structural MRI image showing different tissue intensities 66 Figure 16. The Rey-Osterrieth complex figure 84 Figure 17. Example of London landmark recognition test stimuli 86 Figure 18. Example of London proximity judgements test stimuli 87 Figure 19. Object–place associations test 89 Figure 20. Anterior hippocampal grey matter volume differences between taxi drivers and control subjects 92 Figure 21. London proximity judgements 94 Figure 22. Object-place test 96 Figure 23. Visual paired associates test 104 Figure 24. Visual paired associates within a scene context test 104 Figure 25. Face-name associations test 105 Figure 26. Object-sound associations test 106 Figure 27. Verbal paired associates 107 Figure 28. Map of New Town 116 Figure 29. Map of London 120 Figure 30. Example views from the three environments 121 Figure 31. Example sketch maps 126 Figure 32. Scenes correctly recognised across environments 129 Figure 33. Road segments recalled across environments 130 Figure 32. Road junction recalled across environments 131 Figure 35. Knowledge in medical doctors 147 Figure 36. Grey matter differences between qualified London taxi drivers 173 Figure 37. The virtual environment of London (UK) 182 iv Figure 38. MRI findings in retired taxi drivers 185 Figure 39. Rey complex figure 186 Figure 40.
Recommended publications
  • Of Boundary Extension: Anticipatory Scene Representation Across Development and Disorder
    Received: 23 July 2016 | Revised: 14 January 2017 | Accepted: 19 January 2017 DOI: 10.1002/hipo.22728 RESEARCH ARTICLE Testing the “Boundaries” of boundary extension: Anticipatory scene representation across development and disorder G. Spano1,2 | H. Intraub3 | J. O. Edgin1,2,4 1Department of Psychology, University of Arizona, Tucson, Arizona 85721 Abstract 2Cognitive Science Program, University of Recent studies have suggested that Boundary Extension (BE), a scene construction error, may be Arizona, Tucson, Arizona 85721 linked to the function of the hippocampus. In this study, we tested BE in two groups with varia- 3Department of Psychological and Brain tions in hippocampal development and disorder: a typically developing sample ranging from Sciences, University of Delaware, Newark, preschool to adolescence and individuals with Down syndrome. We assessed BE across three dif- Delaware 19716 ferent test modalities: drawing, visual recognition, and a 3D scene boundary reconstruction task. 4Sonoran University Center for Excellence in Despite confirmed fluctuations in memory function measured through a neuropsychological Developmental Disabilities, University of Arizona, Tucson, Arizona 85721 assessment, the results showed consistent BE in all groups across test modalities, confirming the Correspondence near universal nature of BE. These results indicate that BE is an essential function driven by a com- Goffredina Spano, Wellcome Trust Centre plex set of processes, that occur even in the face of delayed memory development and for Neuroimaging, Institute of Neurology, hippocampal dysfunction in special populations. University College London, 12 Queen Square, London WC1N 3BG, UK. Email: [email protected] KEYWORDS Funding information down syndrome, memory development, hippocampus, prediction error, top-down influences LuMind Research Down Syndrome Foundation; Research Down Syndrome and the Jerome Lejeune Foundation; Molly Lawson Graduate Fellow in Down Syndrome Research (GS).
    [Show full text]
  • Mind-Wandering in People with Hippocampal Damage
    This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. Research Articles: Behavioral/Cognitive Mind-wandering in people with hippocampal damage Cornelia McCormick1, Clive R. Rosenthal2, Thomas D. Miller2 and Eleanor A. Maguire1 1Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, WC1N 3AR, UK 2Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK DOI: 10.1523/JNEUROSCI.1812-17.2018 Received: 29 June 2017 Revised: 21 January 2018 Accepted: 24 January 2018 Published: 12 February 2018 Author contributions: C.M., C.R.R., T.D.M., and E.A.M. designed research; C.M. performed research; C.M., C.R.R., T.D.M., and E.A.M. analyzed data; C.M., C.R.R., T.D.M., and E.A.M. wrote the paper. Conflict of Interest: The authors declare no competing financial interests. We thank all the participants, particularly the patients and their relatives, for the time and effort they contributed to this study. We also thank the consultant neurologists: Drs. M.J. Johnson, S.R. Irani, S. Jacobs and P. Maddison. We are grateful to Martina F. Callaghan for help with MRI sequence design, Trevor Chong for second scoring the Autobiographical Interview, Alice Liefgreen for second scoring the mind-wandering thoughts, and Elaine Williams for advice on hippocampal segmentation. E.A.M. and C.M. are supported by a Wellcome Principal Research Fellowship to E.A.M. (101759/Z/13/Z) and the Centre by a Centre Award from Wellcome (203147/Z/16/Z).
    [Show full text]
  • CNS 2014 Program
    Cognitive Neuroscience Society 21st Annual Meeting, April 5-8, 2014 Marriott Copley Place Hotel, Boston, Massachusetts 2014 Annual Meeting Program Contents 2014 Committees & Staff . 2 Schedule Overview . 3 . Keynotes . 5 2014 George A . Miller Awardee . 6. Distinguished Career Contributions Awardee . 7 . Young Investigator Awardees . 8 . General Information . 10 Exhibitors . 13 . Invited-Symposium Sessions . 14 Mini-Symposium Sessions . 18 Poster Schedule . 32. Poster Session A . 33 Poster Session B . 66 Poster Session C . 98 Poster Session D . 130 Poster Session E . 163 Poster Session F . 195 . Poster Session G . 227 Poster Topic Index . 259. Author Index . 261 . Boston Marriott Copley Place Floorplan . 272. A Supplement of the Journal of Cognitive Neuroscience Cognitive Neuroscience Society c/o Center for the Mind and Brain 267 Cousteau Place, Davis, CA 95616 ISSN 1096-8857 © CNS www.cogneurosociety.org 2014 Committees & Staff Governing Board Mini-Symposium Committee Roberto Cabeza, Ph.D., Duke University David Badre, Ph.D., Brown University (Chair) Marta Kutas, Ph.D., University of California, San Diego Adam Aron, Ph.D., University of California, San Diego Helen Neville, Ph.D., University of Oregon Lila Davachi, Ph.D., New York University Daniel Schacter, Ph.D., Harvard University Elizabeth Kensinger, Ph.D., Boston College Michael S. Gazzaniga, Ph.D., University of California, Gina Kuperberg, Ph.D., Harvard University Santa Barbara (ex officio) Thad Polk, Ph.D., University of Michigan George R. Mangun, Ph.D., University of California,
    [Show full text]
  • Decoding Representations of Scenes in the Medial Temporal Lobes
    HIPPOCAMPUS 22:1143–1153 (2012) Decoding Representations of Scenes in the Medial Temporal Lobes Heidi M. Bonnici,1 Dharshan Kumaran,2,3 Martin J. Chadwick,1 Nikolaus Weiskopf,1 Demis Hassabis,4 and Eleanor A. Maguire1* ABSTRACT: Recent theoretical perspectives have suggested that the (Eichenbaum, 2004; Johnson et al., 2007: Kumaran function of the human hippocampus, like its rodent counterpart, may be et al., 2009) and even visual perception (Lee et al., best characterized in terms of its information processing capacities. In this study, we use a combination of high-resolution functional magnetic 2005; Graham et al., 2006, 2010). Current perspec- resonance imaging, multivariate pattern analysis, and a simple decision tives, therefore, have emphasized that the function of making task, to test specific hypotheses concerning the role of the the hippocampus, and indeed surrounding areas within medial temporal lobe (MTL) in scene processing. We observed that the medial temporal lobe (MTL), may be best charac- while information that enabled two highly similar scenes to be distin- guished was widely distributed throughout the MTL, more distinct scene terized by understanding the nature of the information representations were present in the hippocampus, consistent with its processing they perform. role in performing pattern separation. As well as viewing the two similar The application of multivariate pattern analysis scenes, during scanning participants also viewed morphed scenes that (MVPA) techniques applied to functional magnetic spanned a continuum between the original two scenes. We found that patterns of hippocampal activity during morph trials, even when resonance imaging (fMRI) data (Haynes and Rees, perceptual inputs were held entirely constant (i.e., in 50% morph 2006; Norman et al., 2006) offers the possibility of trials), showed a robust relationship with participants’ choices in the characterizing the types of neural representations and decision task.
    [Show full text]
  • Chapter 16 Improving Your Memory + 2 Tips for Selecting Passwords
    + Chapter 16 Improving Your Memory + 2 Tips for Selecting Passwords Use a transformation of some memorable cue involving a mix of letters and symbols Keep a record of all passwords in a place to which only you have access (e.g. a safe deposit box) It is easier to recall the location of a hidden object when the location is likely than when it is unexpected + 3 Popular Mnemonic Aids Harris (1980) surveyed housewives and students on their mnemonic use: Both groups used largely similar techniques; however, Students were more likely to write on their hands Housewives were more likely to write on calendars External aids (e.g. diaries, calendars, lists, and timers) were especially popular …Today we have laptops, PDAs, and mobile telephones Very few internal mnemonics were reported These are especially useful in situations that ban external aids + 4 Memory Experts Shereshevskii The Mind of a Mnemonist by Luria A Russian with an amazing memory A former journalist who never took notes but could repeat back quotes verbatim Had seemingly limitless memory for: Digits (100+) Nonsense syllables Foreign-language poetry Complex figures Complex scientific formulae His memory relied heavily on imagery and synesthesia: The tendency for one sense modality to evoke another His apparent inability to forget, and his synesthesia, caused great complications and struggle for him + Wilding and Valentine (1994) 5 Naturals vs. Strategists Naturals Strategists Innately gifted Highly practiced in certain mnemonic techniques Possess a close relative who exhibits a comparable level of memory ability Tested both kinds of mnemonists at the World Memory Championships on two types of tasks: Strategic Tasks e.g.
    [Show full text]
  • From Squirrels to Cognitive Behavioral Therapy (CBT): the Modulation of the Hippocampus
    The Science Journal of the Lander College of Arts and Sciences Volume 10 Number 1 Tenth Anniversary Edition: Fall 2016 - 2016 From Squirrels to Cognitive Behavioral Therapy (CBT): The Modulation of the Hippocampus Rachel Ariella Bartfeld Touro College Follow this and additional works at: https://touroscholar.touro.edu/sjlcas Part of the Cognitive Behavioral Therapy Commons, and the Nervous System Commons Recommended Citation Bartfeld, R. A. (2016). From Squirrels to Cognitive Behavioral Therapy (CBT): The Modulation of the Hippocampus. The Science Journal of the Lander College of Arts and Sciences, 10(1). Retrieved from https://touroscholar.touro.edu/sjlcas/vol10/iss1/4 This Article is brought to you for free and open access by the Lander College of Arts and Sciences at Touro Scholar. It has been accepted for inclusion in The Science Journal of the Lander College of Arts and Sciences by an authorized editor of Touro Scholar. For more information, please contact [email protected]. From Squirrels to Cognitive Behavioral Therapy (CBT): The Modulation of the Hippocampus Rachel Ariella Bartfeld Rachel Ariella Bartfeld graduated with a BS in Biology, Minor in Psychology in September 2016 and is accepted to Quinnipiac University, Frank H. Netter School of Medicine Abstract The legitimacy of psychotherapy can often be thrown into doubt as its mechanisms of action are generally considered hazy and unquantifiable. One way to support the effectiveness of therapy would be to demonstrate the physical effects that this treatment option can have on the brain, just like psychotropic medications that physically alter the brain’s construction leaving no doubt as to the potency of their effects.
    [Show full text]
  • Smutty Alchemy
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2021-01-18 Smutty Alchemy Smith, Mallory E. Land Smith, M. E. L. (2021). Smutty Alchemy (Unpublished doctoral thesis). University of Calgary, Calgary, AB. http://hdl.handle.net/1880/113019 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Smutty Alchemy by Mallory E. Land Smith A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN ENGLISH CALGARY, ALBERTA JANUARY, 2021 © Mallory E. Land Smith 2021 MELS ii Abstract Sina Queyras, in the essay “Lyric Conceptualism: A Manifesto in Progress,” describes the Lyric Conceptualist as a poet capable of recognizing the effects of disparate movements and employing a variety of lyric, conceptual, and language poetry techniques to continue to innovate in poetry without dismissing the work of other schools of poetic thought. Queyras sees the lyric conceptualist as an artistic curator who collects, modifies, selects, synthesizes, and adapts, to create verse that is both conceptual and accessible, using relevant materials and techniques from the past and present. This dissertation responds to Queyras’s idea with a collection of original poems in the lyric conceptualist mode, supported by a critical exegesis of that work.
    [Show full text]
  • Watching Movies Unfold – a Frame-By-Frame Analysis of the Associated Neural Dynamics
    Research Article: New Research | Cognition and Behavior Watching movies unfold – a frame-by-frame analysis of the associated neural dynamics https://doi.org/10.1523/ENEURO.0099-21.2021 Cite as: eNeuro 2021; 10.1523/ENEURO.0099-21.2021 Received: 14 March 2021 Revised: 21 May 2021 Accepted: 2 June 2021 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2021 Monk et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. 1 2 3 Watching movies unfold – a frame-by-frame analysis of the associated neural 4 dynamics 5 6 7 Abbreviated title: Event processing and the hippocampus 8 9 10 Authors: Anna M. Monk, Daniel N. Barry, Vladimir Litvak, Gareth R. Barnes, Eleanor A. Maguire 11 12 13 Affiliation: Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of 14 Neurology, University College London, 12 Queen Square, London WC1N 3AR, UK 15 16 17 Author contributions: A.M.M. and E.A.M. designed the research; A.M.M. Performed the 18 research; All authors Analyzed the data; A.M.M. and E.A.M. wrote the paper 19 20 21 Correspondence should be addressed to Eleanor Maguire: [email protected] 22 23 24 Number of Figures: 3 25 Number of Tables: 0 26 Number of Multimedia: 0 27 Number of words for Abstract: 245 28 Number of words for significance statement: 107 29 Number of words for Introduction: 736 30 Number of words for Discussion: 2127 31 32 33 Acknowledgements: Thanks to Daniel Bates, David Bradbury and Eric Featherstone for technical 34 support, and Zita Patai for analysis advice.
    [Show full text]
  • Working Memory Training: Assessing the Efficiency of Mnemonic Strategies
    entropy Article Working Memory Training: Assessing the Efficiency of Mnemonic Strategies 1, 2 1 1, Serena Di Santo y, Vanni De Luca , Alessio Isaja and Sara Andreetta * 1 Cognitive Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, I-34136 Trieste, Italy; [email protected] (S.D.S.); [email protected] (A.I.) 2 Scuola Peripatetica d’Arte Mnemonica (S.P.A.M.), 10125 Turin, Italy; [email protected] * Correspondence: [email protected] Current address: Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA. y Received: 6 April 2020; Accepted: 18 May 2020; Published: 20 May 2020 Abstract: Recently, there has been increasing interest in techniques for enhancing working memory (WM), casting a new light on the classical picture of a rigid system. One reason is that WM performance has been associated with intelligence and reasoning, while its impairment showed correlations with cognitive deficits, hence the possibility of training it is highly appealing. However, results on WM changes following training are controversial, leaving it unclear whether it can really be potentiated. This study aims at assessing changes in WM performance by comparing it with and without training by a professional mnemonist. Two groups, experimental and control, participated in the study, organized in two phases. In the morning, both groups were familiarized with stimuli through an N-back task, and then attended a 2-hour lecture. For the experimental group, the lecture, given by the mnemonist, introduced memory encoding techniques; for the control group, it was a standard academic lecture about memory systems. In the afternoon, both groups were administered five tests, in which they had to remember the position of 16 items, when asked in random order.
    [Show full text]
  • BIPN140 Lecture 14: Learning & Memory
    Cellular Neurobiology BIPN140 Second midterm is next Tuesday!! Covers lectures 7-12 (Synaptic transmission, NT & receptors, intracellular signaling & synaptic plasticity). Review session is on Monday (Nov 14th) before midterm 6:00-8:00 PM at 3500 Pacific Hall (Code: 286856). Please come with questions. Peixin’s section tomorrow (2:00-3:00) is cancelled due to Veteran's Day. Additional office hour will be held by Milad & Antonia tomorrow at Pacific Hall 3502, 12:00-2:00 PM. PS 6 Q&A is now posted on the website 2015 Problem sets #4~ #6 and 2nd midterm are also posted! Chih-Ying’s Office Hour: Monday, 1:00-2:00 PM, Bonner Hall 4146 BIPN140 Lecture 14: Learning & Memory 1. Categories of Memory 2. Anterograde v.s. Retrograde Amnesia 3. Brain regions critical for memory Su (FA16) The Major Qualitative Categories of Human Memory (Fig. 31.1) episodic semantic classical conditioning Priming: a change in the processing of a stimulus due to a previous encounter with the same or similar stimulus Temporal Categories of Memory: Phases of Memory (Fig. 31.2) Patient H.M. & Brenda Milner (Box 31c) (Brenda Milner, 1918-) (H.M. 1926-2008) http://www.pbs.org/wgbh/nova/body/corkin-hm-memory.html H.M.: Learning without Realizing it (Kandel et al., Principles of Neural Science, 5th Edition) Brain Areas Associated with Declarative Memory Disorders (Fig. 31.9a) Amygdala: required for fear-based memory Spatial Learning & Memory in Rodents Depends on the Hippocampus (Fig. 31.10) The Case of London Taxi Drivers (Fig. 31.12A) Spatial hypothesis of hippocampal function: the “spatial maps” stored in the hippocampus enable flexible navigation by encoding several routes to the same direction.
    [Show full text]
  • How to Develop a Perfect Memory Will Show You in Simple Language and Easy Stages
    HOW TO DEVELOP A DOMINIC O’BRIEN Lybrary.com To my dear mother Pamela who is forever saying, ‘How does he do it!’ The author would like to thank Jon Stock for his invaluable assistance in preparing this book. This is an electronic republication by Lybrary.com of the first edition, 1993 by Pavilion Books Limited. Lybrary.com, PO Box 425281, Cambridge, MA 02142, USA www.lybrary.com ISBN 1-59561-006-5 Copyright © Dominic O’Brien 1993 Electronic Version Copyright © Dominic O’Brien 2005 All rights reserved. The Father of the Bride speech by Richard Curtis and Rowan Atkinson is reproduced by kind permission of The Peters, Fraser & Dunlop Group Ltd and PJB Management. Dominic O'Brien is the eight times winner of the The World Memory Championships and has a number of entries in the Guinness Book of Records including the memorisation of 54 packs of shuffled cards after just a single-sighting of each card. How does he do it? What is his system and how can it help YOU remember names, faces, telephone numbers, pass exams, learn languages, win at Trivial Pursuit and clean up at the Blackjack table? How to Develop a Perfect Memory will show you in simple language and easy stages. 1 INTRODUCTION I know what it is like to forget someone's name. In my time, I have forgotten appointments, telephone numbers, speeches, punch lines of jokes, directions, even whole chapters of my life. Up until recently, I was the most absent- minded, forgetful person you could imagine. I once saw a cartoon of two people dancing rather awkwardly at the Amnesiacs' Annual Ball.
    [Show full text]
  • Moonwalking with Einstein
    Moonwalking With Einstein jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj jjjjjjjjjjjjjjjjjjjjjj jjjjjjjjjjjjjjjjjjjjjj jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj jjjjjjjjjjjjjjjjjjjjjj jjjjjjjjjjjjjjjjjjjjjj jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj jjjjjjjjjjjjjjjjjjjjjj jjjjjjjjjjjjjjjjjjjjjj jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj jjjjjjjjjjjjjjjjjjjjjj jjjjjjjjjjjjjjjjjjjjjj jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj jjjjjjjjjjjjjjjjjjjjjj jjjjjjjjjjjjjjjjjjjjjj Let’s Connect! jjjjjjjjjjjjjjjjjj jjjjjjjjjjjjjj jjjjjjjjjjjjjj jjjjjjjjjjjjjjjjjj jjjjjjjjjjjjjj jjjjjjjjjjjjjj jjjjjjjjjjjjjjjjjj jjjjjjjjjjjjjj jjjjjjjjjjjjjj Moonwalking With Einstein, Joshua Foer My Rating (From 0-5) Complexity (From 0-10) 5 Summary What makes an expert? Is it the amount of years they have under their belt? Or a specific certification? In this book, Joshua Foer will challenge our preconceived notions of expertise. He’ll show us how the tops in each field aren’t just better because they’ve been there long enough, or have the certifications, but instead because they’ve trained their memory to hold enough valuable memories so that when a situation presents they rely on intuition rather than analysis. My Takeaway In the coming future algorithms will fundamentally transform the world we see today. From analysis based fields like accounting to finance, to creative fields like journalism, nursing, you name it and algorithms will have more value than humans in each job role. But it’s not all doom and gloom. What the algorithms can’t do, and will never do (we think), is replace the inherent intuition each of us has. These are the big ideas, the solutions that seem out of nowhere and come about in split seconds. The author points to stories of experts in SWAT, and how they can sense danger ten seconds before any of the entry or mid-level officers. He also supports this with the best chess players. No matter the niche, each expert pulls from intuition, from long term memory, NOT analysis – what the computer can do.
    [Show full text]