Fvs-1000 System Resolution

Total Page:16

File Type:pdf, Size:1020Kb

Fvs-1000 System Resolution FVS-1000 FVSYSTEMS-1000 MULTI FVS-1000 SYSTEM RESOLUTION A A B B SYSTEMTELECINE © 1998 Sony Corporation. All rights reserved. Reproduction in whole or in part without written permission is prohibited. REMOTE INPUT CHECK SOURCE SELECT 1 POSI MASTER RED GREEN BLUE FILM SIZE PAN TILT ZOOM ROTATION SYSTEM ERROR MEMORY ADDR. PRESET 35mm 16mm 2 SOURCE ALARM FILM RATE READY DESTINATION RESET Features and specifications are subject to change without notice. 3 DF WARNING 24 EXECUTE HOUR MIN SEC FRAME 25 /1.001 4 + 30 KEY INHIBIT OFF ON SHUTTLE JOG VAR REFERECE MENU 1080 30 VARI/LOCKED PLAY 525 24 SET UP REVERSE FORWARD 625 25 All non-metric weights and measures are approximate. FIELD OUTPUT MODE MODE 1080 60I/ 30F SEARCHSTOP REV READY STEP FWD MARK IN 48I 24F 50I 25F 525 60I Sony is a registered trademark of Sony Corporation. REW REVSTOP PLAY FF 625 50I 48I All other trademarks are the property of their respective owners. Distributed by Printed in Japan BC-00698 MK7082/1OHB-9804 @ ©1998 Sony Corporation THE NEXT GENERATION IS EXPECTED TO BE BEYOND TRADITIONAL KNOWLEDGE. SO, THERE IS MUCH WE CAN DO. he FVS-1000 Multi Resolution Telecine system is based on a unique engineering concept, Twhere the latest advances in light control, solid state imaging, digital image processing and the traditional skills of photography are harmonized within the same piece of equipment. The system is modular so that a wide range of film transfer work - HDTV transfer and 525/625 SDTV transfer - can be managed on the same platform. The future of content distribution requires material to be simultaneously played out at different levels of resolution. It also relies heavily on modern data compression schemes, such as the MPEG2 standard. So for both DTV and DVD, image stability is a crucial factor because of the use of inter-frame compression schemes to efficiently compress and reproduce the original picture. These schemes demand a new level of performance from the telecine, requiring high resolution, real-time, pin-registered picture quality. THE EVOLUTION IS HERE. — TELECINE FROM SONY. The FVS-1000 System is based on an RGB independent frame-based high resolution image capturing system. In order to faithfully reproduce the rich tonality of negative film stock, the film frame image is captured by state-of-the-art two million pixel Area CCDs, with primary color correction performed in the optical domain. This helps to reduce signal processing noise to the absolute minimum while also providing sufficient headroom to compensate for film exposure errors. A truly innovative film transport provides intermittent film motion which precisely and safely halts the film for exposure. The S.O.P.S. (Sony Optical Picture Stabilizer) provides opto-electronic pin- registered image quality by fine adjustments of the light path. Registration pins are not used in the film transport. A progressively scanned frame-based digital signal processor provides simultaneous outputs of HDTV and SDTV signals. A combination of digital and optical picture manipulation systems allows flexible picture trimming, pan-scan, rotation and anamorphic conversion. The FVS-1000 System interfaces with industry-standard color correctors, noise reducers and controllers. The mature NTSC/PAL film transfer industry faces increased demands in picture quality as a consequence of the arrival of digital video transmission and distribution. The FVS-1000 System redefines the standards of performance, productivity and reliability in film to digital transfer. Higher resolution images will be delivered to the home and the utilization of MPEG2 compression for program delivery calls for vigilance in image stability and signal to noise. Sony mobilizes a number of innovative new technologies in the FVS-1000 telecine to squarely address this new performance demand. Frame-based Image Capturing The FVS-1000 Multi Resolution Telecine applies the same principle as a professional motion film camera to ensure the highest image quality. Each frame is exposed when the film is stationary, and its position is registered in the film gate. The advantage of imaging the film when it is stationary is that errors due to film transportation are removed, hence the geometric accuracy of the captured image is improved. Positional registration is crucial to secure frame-to-frame image stability. In case of a film camera, perforations are used as the index to align each film frame position, and a mechanical registration process is applied. Registration pins are physically inserted into the perforation, and shifts the film frame to the desired position. Unlike a film camera that runs new film rolls all the time, a telecine system is expected to handle various sorts of film, including those which were not kept in the ideal condition. The registration pin could possibly damage the film if the perforation is not properly aligned due to splicing errors or physical decay of the film base. The FVS-1000 uses a different technique that provides frame-to-frame image stability without risking the film. Further details are explained in a separate sheet of this brochure. Area Array CCD for Telecine Systems: A Perfect Match As the film frame is kept stationary during exposure, the FVS-1000 captures the image by area array CCDs. This unique approach provides the following key operational benefits. 1. Maximized Image Quality The performance of electronic imaging is largely determined by the signal-to-noise ratio. Any electronic circuitry is prone to processing noise, but the signal-to-noise ratio can be improved by increasing the signal level. In the case of a telecine system or film scanner, this can be achieved by exposing the film to the light source for a longer time to gather the rich tonality of the film frame. A very simple calculation shows that, per picture element, an area array CCD can secure more than 500 times the exposure time of a line scanning system, or 1,000,000 times that of a spot scanning system. Let us assume that a film shot at 24 Fps is passing through a continuous motion film transport to be converted into a 1920 x 1080 HDTV image. Each film frame has to be scanned within 1/24 second, during which more than 2,000,000 pixels, or over 1,000 lines, have to be scanned depending on the image capturing mechanism. The area array CCD may seem to be disadvantaged because of the idling time required to move and correctly position the film, but this is not significant. An assumption would be that half of the 1/24 second is used for the intermittent film movement. The area array CCD is therefore left with 1/48 second to capture one film frame. This means every single pixel has a maximum exposure time of 1/48 seconds on an area array CCD. The other systems have to share the 1/24 second ‘window’ with 1,000 lines or 2,000,000 spots. In reality, actual signal-to-noise ratio performance depends on additional factors such as the power of the light source, the sensitivity of the image pick-up device, and the electronic circuitry. However, this example clearly shows that the area array CCD approach accumulates vastly more ‘signals’ than other methods. Preliminary Frame-based Image Capturing Area Array CCD Image Capturing System Such a fundamental advantage significantly contributes to the excellent ■ Every pixel continues to be exposed up to approximately 1/24 X 1/2 seconds. signal-to-noise performance of the Conventional Line Scanning System FVS-1000. The relatively long exposure time allows the use of a digitally controlled lamphouse to ■ 1,000 lines are scanned within 1/24 seconds. achieve primary color ■ Exposure time per pixel is maximum 1/24 X 1/1,000 seconds or less. correction in the optical domain. Conventional Spot Scanning System ■ 2,000,000 spots are scanned within 1/24 seconds. ■ Exposure time per pixel is maximum 1/24 X 1/2,000,000 seconds or less. 2. RGB Independent Image Capturing and Processing The FVS-1000 is equipped with three area array CCDs, one each for the R, G, and B channels. The three primary color components are individually handled throughout the primary color correction process, all the way down to the final output stage when they are assembled to produce component video. Each CCD has a picture element count of 1920 (H) x 1080 (V). 3. Image Quality As the film is kept completely stationary during the image capturing process, the FVS-1000 film motion can not cause image deformation. There is virtually no risk of after-image lag or image burn. 4. Consistent Performance and Low Cost-of-ownership As already proven with various professional applications such as broadcast television cameras, CCDs can retain stable performance over a very long period of time. This remarkable stability, repeatability, and longevity allows the CCD to achieve constant transfer results over a period of time or between different machines, and helps to reduce maintenance costs. 5. Made by Sony As one of the leading suppliers of professional and consumer imaging equipment, Sony has accumulated enormous expertise in CCD engineering and manufacturing. The 1920 x 1080 area array CCD of the FVS-1000 is utilized across our range of HDTV acquisition equipment – we therefore manufacture in volume, thus ensuring high product quality and securing product availability. © 1998 Sony Corporation. All rights reserved. Reproduction in whole or in part without written permission is prohibited. Features and specifications are subject to change without notice. All non-metric weights and measures are approximate. Sony is a registered trademark of Sony Corporation. All other trademarks are the property of their respective owners. Primary Color Correction Area array CCD technology allows the Sony FVS-1000 to integrate a powerful primary color correction system comprising digital light control, logarithmic signal processing, and linear signal processing.
Recommended publications
  • ASPECT RATIO Aspect Ratios Are One of the More Confusing Parts of Video
    ASPECT RATIO Aspect ratios are one of the more confusing parts of video, although they used to be simple. That's because television and movie content was all about the same size, 4:3 (also known as 1.33:1, meaning that the picture is 1.33 times as long as it is high). The Academy Standard before 1952 was 1.37:1, so there was virtually no problem showing movies on TV. However, as TV began to cut into Hollywood's take at the theater, the quest was on to differentiate theater offerings in ways that could not be seen on TV. Thus, innovations such as widescreen film, Technicolor, and even 3-D were born. Widescreen film was one of the innovations that survived and has since dominated the cinema. Today, you tend to find films in one of two widescreen aspect ratios: 1. Academy Standard (or "Flat"), which has an aspect ratio of 1.85:1 2. Anamorphic Scope (or "Scope"), which has an aspect ratio of 2.35:1. Scope is also called Panavision or CinemaScope. HDTV is specified at a 16:9, or 1.78:1, aspect ratio.If your television isn't widescreen and you want to watch a widescreen film, you have a problem. The most common approach in the past has been what's called Pan and Scan. For each frame o a film, a decision is made as to what constitutes the action area. That part of the film frame is retained, and the rest is lost.. This can often leave out the best parts of a picture.
    [Show full text]
  • 24P and Panasonic AG-DVX100 and AJ-SDX900 Camcorder Support in Vegas and DVD Architect Software
    ® 24p and Panasonic AG-DVX100 and AJ-SDX900 camcorder support in Vegas and DVD Architect Software Revision 3, Updated 05.27.04 The information contained in this document is subject to change without notice and does not represent a commitment on the part of Sony Pictures Digital Media Software and Services. The software described in this manual is provided under the terms of a license agreement or nondisclosure agreement. The software license agreement specifies the terms and conditions for its lawful use. Sound Forge, ACID, Vegas, DVD Architect, Vegas+DVD, Acoustic Mirror, Wave Hammer, XFX, and Perfect Clarity Audio are trademarks or registered trademarks of Sony Pictures Digital Inc. or its affiliates in the United States and other countries. All other trademarks or registered trademarks are the property of their respective owners in the United States and other countries. Copyright © 2004 Sony Pictures Digital Inc. This document can be reproduced for noncommercial reference or personal/private use only and may not be resold. Any reproduction in excess of 15 copies or electronic transmission requires the written permission of Sony Pictures Digital Inc. Table of Contents What is covered in this document? Background ................................................................................................................................................................. 3 Vegas ..........................................................................................................................................................................
    [Show full text]
  • Cinematography
    CINEMATOGRAPHY ESSENTIAL CONCEPTS • The filmmaker controls the cinematographic qualities of the shot – not only what is filmed but also how it is filmed • Cinematographic qualities involve three factors: 1. the photographic aspects of the shot 2. the framing of the shot 3. the duration of the shot In other words, cinematography is affected by choices in: 1. Photographic aspects of the shot 2. Framing 3. Duration of the shot 1. Photographic image • The study of the photographic image includes: A. Range of tonalities B. Speed of motion C. Perspective 1.A: Tonalities of the photographic image The range of tonalities include: I. Contrast – black & white; color It can be controlled with lighting, filters, film stock, laboratory processing, postproduction II. Exposure – how much light passes through the camera lens Image too dark, underexposed; or too bright, overexposed Exposure can be controlled with filters 1.A. Tonality - cont Tonality can be changed after filming: Tinting – dipping developed film in dye Dark areas remain black & gray; light areas pick up color Toning - dipping during developing of positive print Dark areas colored light area; white/faintly colored 1.A. Tonality - cont • Photochemically – based filmmaking can have the tonality fixed. Done by color timer or grader in the laboratory • Digital grading used today. A scanner converts film to digital files, creating a digital intermediate (DI). DI is adjusted with software and scanned back onto negative 1.B.: Speed of motion • Depends on the relation between the rate at which
    [Show full text]
  • Glossary of Digital Video Terms
    Glossary of Digital Video Terms 24P: 24 frame per second, progressive scan. This has been the frame rate of motion picture film since talkies arrived. It is also one of the rates allowed for transmission in the DVB and ATSC television standards – so they can handle film without needing any frame-rate change (3:2 pull-down for 60 fields-per-second systems or running film at 25fps for 50 Hz systems). It is now accepted as a part of television production formats – usually associated with high definition 1080 lines, progressive scan. A major attraction is a relatively easy path from this to all major television formats as well as offering direct electronic support for motion picture film and D-cinema. 24Psf: 24 frame per second, progressive segmented frame. A 24P system in which each frame is segmented – recorded as odd lines followed by even lines. Unlike normal television, the odd and even lines are from the same snapshot in time – exactly as film is shown today on 625/50 TV systems. This way the signal is more compatible (than normal progressive) for use with video systems, e.g. VTRs, SDTI or HD-SDI connections, mixers/switchers etc., which may also handle interlaced scans. It can also easily be viewed without the need to process the pictures to reduce 24-frame flicker. 3:2 pull-down: Method used to map the 24 fps of film onto the 30 fps (60 fields) of 525-line TV, so that one film frame occupies three TV fields, the next two, etc. It means the two fields of every other TV frame come from different film frames making operations such as rotoscoping impossible, and requiring care in editing.
    [Show full text]
  • IQMCC30 3G/HD/SD-SDI Motion Compensated Frame Rate Converter and Motion Adaptive Up, Down, Cross Converter
    User Instruction Manual IQMCC30 3G/HD/SD-SDI Motion Compensated Frame Rate Converter and Motion Adaptive Up, Down, Cross Converter www.s-a-m.com IQMCC30 Information and Notices Information and Notices Copyright and Disclaimer Copyright protection claimed includes all forms and matters of copyrightable material and information now allowed by statutory or judicial law or hereinafter granted, including without limitation, material generated from the software programs which are displayed on the screen such as icons, screen display looks etc. Information in this manual and software are subject to change without notice and does not represent a commitment on the part of SAM. The software described in this manual is furnished under a license agreement and can not be reproduced or copied in any manner without prior agreement with SAM, or their authorized agents. Reproduction or disassembly of embedded computer programs or algorithms prohibited. No part of this publication can be transmitted or reproduced in any form or by any means, electronic or mechanical, including photocopy, recording or any information storage and retrieval system, without permission being granted, in writing, by the publishers or their authorized agents. SAM operates a policy of continuous improvement and development. SAM reserves the right to make changes and improvements to any of the products described in this document without prior notice. Contact Details Customer Support For details of our Regional Customer Support Offices, please visit the SAM website and navigate to Support/Customer Support Contacts. www.s-a-m.com/support/contact-support/ Customers with a support contract should call their personalized number, which can be found in their contract, and be ready to provide their contract number and details.
    [Show full text]
  • Standard 3:2 Pulldown, Explained by Arri
    A R R I T E C H N I C A L N O T E P - 1008 What is 3:2 Pulldown? July 20, 2000 Summary This note describes the 3:2 Pulldown process used in US Telecines to transfer 24 fps film to 29.97 fps video. Overview The 3:2 Pulldown process is a method to map the 24 frames per second (fps) that are captured during film production onto the 29.97 fps of a 525 line TV system, like the one used in the United States. This note concerns itself only with the 3:2 Pulldown process as used in the United States. Why 24 fps Film? Even though in the early days of film production many different fps rates were experimented with, most footage was captured at 18 fps as a compromise between flicker and raw stock cost. This changed when sound was introduced: To achieve reasonable sound quality the magnetic audio recorder had to move faster than 18 fps. 24 fps was adopted for the audio recorder and for the film camera. This has remained the speed of choice in the United States. Why 29.97 fps Video? The fps of video playback in the US was originally 30 fps. This speed was chosen to make a possible hum bar stationary in the picture, thus making it less objectionable. When color was introduced, the color information was superimposed over the B/W signal to ensure that the television broadcast could still be viewed on the old B/W sets. To make this work, the playback frequency had to be changed from 30 fps to 29.97 fps.
    [Show full text]
  • Camera Basics, Principles and Techniques –MCD 401 VU Topic No
    Camera Basics, Principles and techniques –MCD 401 VU Topic no. 76 Film & Video Conversion Television standards conversion is the process of changing one type of TV system to another. The most common is from NTSC to PAL or the other way around. This is done so TV programs in one nation may be viewed in a nation with a different standard. The TV video is fed through a video standards converter that changes the video to a different video system. Converting between a different numbers of pixels and different frame rates in video pictures is a complex technical problem. However, the international exchange of TV programming makes standards conversion necessary and in many cases mandatory. Vastly different TV systems emerged for political and technical reasons – and it is only luck that makes video programming from one nation compatible with another. History The first known case of TV systems conversion probably was in Europe a few years after World War II – mainly with the RTF (France) and the BBC (UK) trying to exchange their441 line and 405 line programming. The problem got worse with the introduction of PAL, SECAM (both 625 lines), and the French 819 line service. Until the 1980s, standards conversion was so difficult that 24 frame/s 16 mm or 35 mm film was the preferred medium of programming interchange. Overview Perhaps the most technically challenging conversion to make is the PAL to NTSC. PAL is 625 lines at 50 fields/s NTSC is 525 lines at 59.94 fields/s (60,000/1,001 fields/s) The two TV standards are for all practical purposes, temporally and spatially incompatible with each other.
    [Show full text]
  • Alchemist File - Understanding Cadence
    GV File Understanding Cadence Alchemist File - Understanding Cadence Version History Date Version Release by Reason for changes 27/08/2015 1.0 J Metcalf Document originated (1st proposal) 09/09/2015 1.1 J Metcalf Rebranding to Alchemist File 19/01/2016 1.2 G Emerson Completion of rebrand 07/10/2016 1.3 J Metcalf Updated for additional cadence controls added in V2.2.3.2 12/10/2016 1.4 J Metcalf Added Table of Terminology 11/12/2018 1.5 J Metcalf Rebrand for GV and update for V4.*** 16/07/2019 1.6 J Metcalf Minor additions & corrections 05/03/2021 1.7 J Metcalf Rebrand 06/09/2021 1.8 J Metcalf Add User Case (case 9) Version Number: 1.8 © 2021 GV Page 2 of 53 Alchemist File - Understanding Cadence Table of Contents 1. Introduction ............................................................................................................................................... 6 2. Alchemist File Input Cadence controls ................................................................................................... 7 2.1 Input / Source Scan - Scan Type: ............................................................................................................ 7 2.1.1 Incorrect Metadata ............................................................................................................................ 8 2.1.2 Psf Video sources ............................................................................................................................. 9 2.2 Input / Source Scan - Field order ..........................................................................................................
    [Show full text]
  • Sony HVR-A1&HC1
    Colorimetric and Resolution Settings for the Sony-HVR A1/HC1 Alan Roberts Data for this is taken from a long examination of a production model of the Sony HDV camcorder, HVR- A1E, and comparison with a HVR-HC1E. This is a HDTV camcorder, physically very similar to the standard-definition PDX10, with a single 1”/3 cmos sensor (5.9mm diagonal). It records in HDV (1080i/25, 50Hz interlaced) format onto miniDV tapes, and standard definition (576i/25) as either miniDV or DVCAM. The camera is essentially a consumer model; the A1 has some pretensions to professional capture, such as having a removable sound pod which will accept sound via XLR connectors at mic or line level, and slightly different features from its companion, the HC1. Both have an integral lens (Zeiss, 5.1~51mm) and viewfinder, with side lcd panel, and seem aimed at the high-end consumer market rather than broadcast or professional, which would normally demand interchangeable lenses. The HC1 is the simpler camera, and incorporates a flash for stills photography. The cameras have many internal menus for setting the performance and very few external controls, although enough to control most of the important features. There are analogue-only video outputs (components at HD and SD, composite and S-video at SD, all via multi-pin connectors) and digits via IEEE1394 Firewire (known as “i.Link” by Sony) and USB. Measurements were made only on an A1. The normal assessment procedure for cameras could not be used, largely because the A1 does not have a selectable test signal.
    [Show full text]
  • Broadcast Grade HD & SD Multi-Format Motion-Compensated
    SP-14 Broadcast Grade HD & SD Multi-Format Motion-Compensated Frame Rate Converter & Broadcast Up/Down/Cross Converter The SP-14 is a broadcast grade MEMC frame rate/standards converter. It accepts HD, SD & computer graphics signals, performs frame rate conversion, format conversion, frame synchronization, scan conversion and aspect ratio conversion as required, as well as embedded timecode processing and closed caption conversion. It is also applies powerful noise reduction & image enhancement to improve poor quality video. SP-14 FEATURES Frame Rate Conversion - Motion Estimation Motion Compensated (MEMC) conversion. Content Adaptive MEMC - Phase Plane Correlation and Block Matching Motion Estimation. Conversion Capabilities - Near−HD from SD up−conversion, SD to HD, HD to SD, HD to HD with support for CEA & SMPTE formats, scan converts computer VESA or CEA graphics with motion compensation, converts between all common broadcast and film frame rates. 3G HD-SDI, DVI/HDMI & Analog Signal Connectivity. Scene Cut Detection. Cadence-Aware MEMC - Preserves film−look by cadence conversion on scene−by−scene basis. Aspect Ratio Conversion & Pan/Zoom/Tilt/Trim. Broadcast Grade Performance - With 1024−tap scaling filter. Closed Caption Support - HD CEA708 & SD CEA608 formats. VITC/LTC Embedded Timecode Support - With automatic delay correction. Frame Synchronizer. Channel Logo Insertion. Audio Embed and De-Embed, Audio Delay Correction. Flexible Proc-Amp Controls. 2D Detail Enhancement - Sharpness control, Detail Enhance, Real−Time Unsharp Mask. De-Interlacer - Post−production/broadcast grade motion adaptive SD & HD de−interlacer with 3:2, 2:2 and non−standard/variable cadence detection. Noise Filtering and Reduction - Per pixel motion adaptive temporal/film noise filtering HD & SD, MPEG2 codec mosquito and block noise reduction for SD.
    [Show full text]
  • Area of 35 Mm Motion Picture Film Used in HDTV Telecines
    Rec. ITU-R BR.716-2 1 RECOMMENDATION ITU-R BR.716-2* AREA OF 35 mm MOTION PICTURE FILM USED BY HDTV TELECINES (Question ITU-R 113/11) (1990-1992-1994) Rec. ITU-R BR.716-2 The ITU Radiocommunication Assembly, considering a) that telecines are sometimes used as a television post-production tool for special applications such as the scanning of negative film or other image processing operations, and it is necessary to be able to position the scanned area anywhere on the film exposed area for this application; b) that telecines are also used to televise film programmes with no image post-processing, and it is desirable that the area to be used on the film frame be specified for this application; c) that many formats exist for 35 mm feature films, as listed below, and preferred dimensions for the area used on the frames of all those formats should be recommended: – 1.37:1 (“Academy” format, close to 4:3) – 1.66:1 (European wide-screen format, close to 16:9) – 1.85:1 (United States wide-screen format, close to 16:9) – 2.35:1 (anamorphic “Cinemascope” format); d) the content of ISO Standard 2906 “Image area produced by camera aperture on 35 mm motion picture film”, and that of ISO Standard 2907 “Maximum projectable image area on 35 mm motion picture film” which specifies the dimensions of the projectable area for all the frame formats listed above; e) the content of Recommendation ITU-R BR.713 “Recording of HDTV images on film”, which is based on ISO Standards 2906 and 2907, recommends 1.
    [Show full text]
  • A FLYING-SPOT SCANNER for TELEVISING 35 Mm FILM
    '. 1956/57, No. 7 193 A FLYING-SPOT SCANNER FOR TELEVISING 35 mm FILM by F. H. J. van der POEL. 621;397.611.2: 778.53 Flying-spot scanners ere. particularly suited for the televising of flat, transparent pictures. In a previous' article in this Review a flying-spot scanner for televising stationary objects.was described. A similar scanner has now been developed for the transmission of 35 mm cinefilm, and the present ortiele discusses the problems involved in scanning a succession. of images. , Introduction The transmission of films has become a feature of For the televising of films, frequent use is made of every television programme., The equipment used flying-spot scanners. The interlacing, particularly, for this purpose is required to derive' an electrical gives rise to a number of problems. In the following signal, suitable for television, from standard film description of a flying-spot scanner for 35 mm film made for cinematographic projection. Such films, . developed, in Philips Research Laboratories, the are recorded at 24, frames per sec; the European solution of these problems will be discussed. Before television standards, however, require 25 pictures this we shall first touch brieflyon a system of per sec. Since there is no simple method of obtaining televising films with the aid of a normal television 25 television pictures per sec. from 24 film frames camera. per sec, the obvious expedient is to match the film speed to the speed required for television. Increasing Televising of fil~s using a television camera tube the film speed from 24 to 2,5 frames per sec has no objectionable effect either on the picture or on the A familiar method of televising films is that in sound.
    [Show full text]